2022 Semi-Annual Groundwater Monitoring and Corrective Action Report

Georgia Power Company – Plant Mitchell

Ash Ponds A, 1, and 2 Putney, Georgia Project No.: 6122160170

Prepared for:

Atlanta, Georgia 2/28/2023

CERTIFICATION STATEMENT

This 2022 Semi-Annual Groundwater Monitoring and Corrective Action Report, Georgia Power Company Plant Mitchell - Ash Ponds A, I, and 2, Putney, Georgia has been prepared in compliance with Georgia Environmental Protection Division Rules for Solid Waste Management 391-3-4-.10 under the supervision of a licensed professional engineer and a licensed professional geologist with WSP USA Environment & Infrastructure Inc. I hereby certify that I am a qualified groundwater scientist, in accordance with the Georgia Rules of Solid Waste Management 391-3-4, and 40 CFR Part 258.50(g).

Gregory J. Wrenn, P.E. Registered Professional Engineer Professional Engineer No. 025565

Date: 2/28/2023

Rhonda N. Quinn, P.G. Registered Professional Geologist Georgia Registration #1031

Date: 2/28/2023

SUMMARY

This summary of the 2022 Semi-Annual Groundwater Monitoring and Corrective Action Report provides the status of groundwater monitoring and corrective action program from July through December 2022 at Georgia Power Company's (Georgia Power's) Plant Mitchell Ash Ponds A, 1 and 2 (the Site). This summary was prepared by WSP USA Environment & Infrastructure, Inc. (formerly Wood Environment & Infrastructure Solutions, Inc. on behalf of Georgia Power to meet the requirements listed in Georgia Environmental Protection Division (GA EPD) Rules for Solid Waste Management 391-3-4-.10, and by reference Part A, Section 6¹ of the United States Environmental Protection Agency (US EPA) coal combustion residual (CCR) rule (40 Code of Federal Regulations [CFR] 257 Subpart D).

Georgia Power's Plant Mitchell is located approximately eight miles south of Albany, Georgia. The Plant Mitchell Site is comprised of approximately 516 acres, with the northern portion of the Site located in Dougherty County and the southern portion located in Mitchell County. Baker County is located immediately to the west of the Site, with the Flint River forming the county boundary. There are three CCR surface impoundments (ash ponds) at the Site: Ash Pond A, Ash Pond 1, and Ash Pond 2. The three ash ponds are

Plant Mitchell Ash Ponds A, 1, and 2

located adjacent to each other and are therefore considered to be one multi-unit for groundwater monitoring purposes. The former coal-fired plant buildings have been demolished. The CCR material is being removed from the ash ponds and the ponds are in the process of being closed. Because the units ceased receiving waste prior to October 19, 2015, Ash Ponds A, 1, and 2 are not subject to Federal monitoring requirements of the CCR rule. The Plant Mitchell CCR Surface Impoundments (Ash Pond A, Ash Pond 1, and Ash Pond 2) Permit was approved on June 28, 2022 (Permit No. 047-024D(CCR)).

The groundwater monitoring program for the ash ponds is managed in accordance with the GA EPD CCR Rules. A comprehensive well network monitors the groundwater conditions upgradient and downgradient of the ash ponds, in accordance with GA EPD rule requirements. Routine sampling and reporting began after the background groundwater conditions were established between August 2016 and October 2018. The first detection monitoring event was conducted in March 2019 and the first assessment monitoring event was in October 2019.

The second 2022 semi-annual groundwater monitoring event was conducted in August 2022 and the Site remains in assessment monitoring. The samples collected during the routine semi-annual monitoring event were analyzed for the full suite of Appendix III² and the full suite of Appendix IV³ constituents. Three wells were re-sampled for total dissolved solids and one well for mercury because of hold time exceedances in the laboratory. Groundwater samples were submitted to Pace Analytical Services, LLC, for analysis. Per the CCR rule,

³ Antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, fluoride, lead, lithium, mercury, molybdenum, selenium, thallium, and radium 226 + 228

¹ 80 FR 21468, Apr. 17, 2015, as amended at 81 FR 51807, Aug. 5, 2016; 83 FR 36452, July 30, 2018; 85 FR 53561, Aug. 28, 2020

² Boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids (TDS)

groundwater results for August 2022 (including the October 2022 re-sampling results) were evaluated in accordance with the certified statistical methods. That evaluation showed statistically significant values of Appendix III constituents in wells provided in the table below. There are no confidence intervals of the individual well/constituent pairs above a Groundwater Protection Standard (GWPS). Therefore, no statistically significant levels (SSLs) were identified for the August 2022 sampling event.

Appendix III Constituents	August 2022
Boron	PZ-7D, PZ-15, PZ-16, PZ-18, PZ-19, PZ-25, PZ-33
Calcium	PZ-18, PZ-19, PZ-23A
Chloride	PZ-14, PZ-15, PZ-16, PZ-18, PZ-19
Fluoride	None
Н	PZ-14, PZ-18, PZ-19, PZ-23A
Sulfate	PZ-7D, PZ-14, PZ-15, PZ-16, PZ-17, PZ-18, PZ-19, PZ-23A,
	PZ-25, PZ-33
TDS	PZ-7D, PZ-15, PZ-17, PZ-18, PZ-19, PZ-23A

Based on review of the Appendix III and Appendix IV statistical results completed for the groundwater monitoring and corrective action program for August 2022, the Site will continue in assessment monitoring. Georgia Power will continue routine groundwater monitoring and reporting at the Site. Reports will be posted to the website and provided to GA EPD semi-annually.

Table of Contents

1.0	IN	ITRODUCTION	1
1.1		Site Description and Background	1
1.2		Regional Geology & Hydrogeologic Setting	2
1.3	2.1	Site Geology	2
1.3	2.2	Site Hydrogeology	3
1.3		Groundwater Monitoring System	3
2.0 2.1		ROUNDWATER MONITORING ACTIVITIES Monitoring Well Installation and Maintenance	
2.2		Assessment Monitoring	4
3.0 3.1		AMPLE METHODOLOGY & ANALYSES Groundwater Elevation Measurements and Flow Direction	
3.2		Groundwater Gradient and Flow Velocity	5
3.3		Groundwater Sampling	6
3.4		Laboratory Analyses	6
3.5		Groundwater Analytical Results	7
3.6		Quality Assurance & Quality Control	7
4.0 4.1		FATISTICAL ANALYSISStatistical Method	
4	1.1	Appendix III Statistical Method	9
4	1.2	Appendix IV Statistical Method	10
4.2		Statistical Analyses Results – Appendix III	11
4.3		Statistical Analyses Results - Appendix IV	11
5.0 6.0	C	ONITORING PROGRAM STATUSONCLUSIONS & FUTURE ACTIONS	13
7.0	Κŀ	EFERENCES	14

List of Tables

Table 1	Summary of Detection Monitoring Well Construction Data
Table 2	Summary of Piezometer Construction
Table 3	Groundwater Sampling Events
Table 4	Summary of Groundwater Elevations
Table 5	Groundwater Flow Velocity Calculations
Table 6	Analytical Data Summary Appendix III - August 2022
Table 7	Analytical Data Summary Appendix IV – August 2022
Table 8	Statistical Method Summary
Table 9	Summary of Groundwater Protection Standards

List of Figures

Figure 1	Site Location Map
Figure 2	Monitoring Network Well Location Map
Figure 3	Potentiometric Surface Map– Upper Bedrock – August 2022
	List of Appendices

Appendix A Well Inspections and Repairs

Appendix B Laboratory Analytical and Field Sampling Reports

Appendix C Statistical Analyses

List of Acronyms

CCR Coal Combustion Residuals
CFR Code of Federal Regulations
cm/sec centimeters per second

DO Dissolved Oxygen ft/day feet per day

GA EPD Georgia Environmental Protection Division

GWPS Groundwater Protection Standard MCL Maximum Contaminant Level

MDL Method Detection Limit mg/L milligrams per liter

NAD North America Datum of 1983

NAVD North America Vertical Datum of 1988

NELAP National Environmental Laboratory Accreditation Program

NTUs Nephelometric Turbidity Units
OCGA Official Code of Georgia Annotated
ORP Oxidation-Reduction Potential

PL Prediction Limit

QA/QC Quality Assurance/Quality Control RL Reporting Limit (laboratory)
SCS Southern Company Services
SSI Statistically Significant Increase
SSL Statistically Significant Level
su standard unit (unit for pH values)

US EPA United States Environmental Protection Agency

1.0 INTRODUCTION

In accordance with the Georgia Environmental Protection Division (GA EPD) Rules of Solid Waste Management 391-3-4-.10(6)(a)-(c), this 2022 Semi-Annual Groundwater Monitoring and Corrective Action Report has been prepared to document groundwater monitoring activities conducted at Georgia Power Company's (Georgia Power's) Plant Mitchell Ash Ponds A, 1, and 2. To specify groundwater monitoring requirements, GA EPD Rule 391-3-4-.10(6)(a) incorporates by reference the United States Environmental Protection Agency (US EPA) Coal Combustion Residuals (CCR) Rule 40 Code of Federal Regulations (CFR) § 257 Subpart D. For ease of reference, the US EPA CCR Rules are cited within this report instead of the GA EPD Rules.

Groundwater monitoring and reporting for Plant Mitchell are performed in accordance with the monitoring requirements of § 257.90 through § 257.95. This semi-annual report documents the activities completed from July through December 2022 in accordance with Georgia GA EPD Rule 391-3-4-.10(6)(c) and includes the semi-annual assessment monitoring event conducted in August 2022.

1.1 Site Description and Background

Georgia Power's Plant Mitchell is located approximately eight miles south of Albany, Georgia. The Plant Mitchell site (the Site) is comprised of approximately 516 acres, with the northern portion of the Site located in Dougherty County and the southern portion located in Mitchell County. Baker County is located immediately to the west of the Site, with the Flint River forming the county boundary (Figure 1: Site Location Map). As depicted in Figure 2: Monitoring Network Well Location Map, the former coal-fired electric generating facility was located to the north of Ash Ponds A, 1, and 2. The Site is partially bounded by the Flint River on the west, the Georgia and Florida Railway on the east, pecan orchards to the south. The wooded land immediately north of the former plant buildings is owned by the Georgia Power Company.

There are three CCR surface impoundments (ash ponds) at the Site: Ash Pond A, Ash Pond 1, and Ash Pond 2. The three ash ponds are located adjacent to each other and are therefore considered to be one multi-unit for groundwater monitoring purposes. The former coal-fired plant buildings have been demolished. The CCR material is being removed from the ash ponds and the ponds are in the process of being closed. The removed CCR material is being transported by rail and/or by truck for disposal at an approved landfill or beneficially reused.

Plant Mitchell Ash Pond A was closed in 1962, Ash Pond 1 closed in 1980, and Ash Pond 2 ceased accepting CCR prior to October 19, 2015. Because the units ceased receiving waste prior to October 19, 2015, Ash Ponds A, 1, and 2 are not subject to Federal monitoring requirements of the CCR rule. The Plant Mitchell CCR Surface Impoundments (Ash Pond A, Ash Pond 1, and Ash Pond 2) Permit was issued by GA EPD on June 28, 2022 (Permit No. 047-024D(CCR)).

Groundwater monitoring has been initiated in order to meet GA EPD CCR requirements. The CCR background study was initiated in August 2016 and was completed in October 2018. The first detection monitoring event was conducted in March 2019 and the first assessment

monitoring event was in October 2019. During this semi-annual reporting period, one semi-annual assessment monitoring event was conducted in August 2022. The Site remains in Assessment monitoring.

1.2 Regional Geology & Hydrogeologic Setting

The geology and hydrogeology of the Plant Mitchell Ash Ponds A, 1, and 2 are summarized below. The Plant Mitchell Site is located in the Dougherty Plain physiographic district within the Gulf Coastal Plain Physiographic Province (Watson, 1981; Clark and Zisa, 1976). The Dougherty Plain is characterized as relatively flat to gently rolling lowland karst terrain consisting of solutional features including caves, ephemeral streams, springs, and solution features which manifest surficially as shallow depressions.

The surface and near surface soils in the region consist of approximately 0 to 70 feet of unconsolidated sediment collectively referred to as residuum or overburden. This overburden is typically composed of discontinuous layers of sand and clay derived from the in-place weathering of the underlying Ocala Limestone. The overburden clay content ranges from 10 to 70 percent, with clay content typically being greater than 25 percent (Watson, 1981) making the overburden material less permeable than the underlying carbonate bedrock.

The Ocala Limestone in the region is described as a light-colored fossiliferous friable to well-indurated limestone (Gordon and Gonthier, 2017). Regionally, the Ocala Limestone is between 125 and 275 feet thick with increasing thickness to the southeast. The Ocala Limestone is part of the Floridan aquifer, which is hydraulically separated from the underlying Claiborne aquifer by the Lisbon Confining Unit (Gordon and Gonthier, 2017).

1.2.1 Site Geology

Based on the borings drilled to establish the detection monitoring network, the lithologies underlying the ash pond area from the ground surface to depth are overburden (residuum) and carbonate bedrock. The overburden (residuum) at the Site consists of an interlayered sequence of predominantly fine-grained unconsolidated material including reddish brown to gray silty and clayey sands overlying sandy clay and clay. The overburden material is composed of the residual product of weathering of the underlying Ocala Limestone in the form of non-calcareous clay interlayered with quartz sand alluvium deposits (Hicks et al, 1981). A discontinuous zone of low permeability fine-grained sediments overlying the Ocala Limestone may serve as a barrier that restricts vertical movement of groundwater from the overburden to the limestone beneath the ash pond area, as indicated by many of the boring logs from multiple subsurface investigations at the Site. The Hydrogeologic Assessment Report (Wood, 2021) presents laboratory analysis of undisturbed samples collected from finegrained sediment directly overlying the limestone indicate this material can exhibit a permeability on the order of 10⁻⁴ to 10⁻⁸ centimeters per second (cm/sec) or 10⁻¹ to 10⁻⁵ feet per day (ft/day). These values are generally consistent with the published range of literature values for overburden materials in the Dougherty Plain area. Hayes, et al. (1983) estimated horizontal hydraulic conductivity ranging from 0.0004 feet/day to 30 feet/day with a median value of 0.002 feet/day for samples gathered in the Dougherty Plain. A sample collected to

the north of the study area of Hayes, et al. (1983) estimated a hydraulic conductivity value of 0.002 feet/day and a vertical hydraulic conductivity value of 0.001 feet/day.

Locally, the Ocala Limestone bedrock is characterized as a pink to white, slightly silty, friable to well indurated fossiliferous limestone. The contact between overburden and bedrock at the Site is noted as an abrupt and distinct change in color, texture, and carbonate content from the overburden to bedrock. The Ocala Limestone is often described in the boring logs as a fine to coarse calcareous sand with increasing consolidation and cementation with depth. The surface of the carbonate bedrock is highly irregular due to differential weathering. In general, the bedrock surface slopes from the Site toward the Flint River in the west and southwest, and toward the unnamed creek in the east. As described in the Hydrogeologic Assessment Report (Wood, 2021), in-situ hydraulic conductivity (slug) tests in the bedrock at the Site ranged from 3.83 x 10⁻⁴ to 2.05 x 10⁻³ cm/sec or 1.08 to 5.81 feet/day with an average of 1.07 x 10⁻³ cm/sec or 3.04 feet/day.

1.2.2 Site Hydrogeology

Two main hydrostratigraphic units are present at the Site: overburden (residuum) and carbonate bedrock and comprise the uppermost aquifer. The bedrock and lower part of the overburden are saturated. Where there is CCR/embankment material overlying the overburden and bedrock, it is predominantly unsaturated as indicated by several piezometers screened in the CCR/overburden contact. The monitoring well network for the Ash Ponds monitors the carbonate upper bedrock because the limestone yields usable, continuous, and persistent water, unlike the overlying overburden.

General groundwater flow in the bedrock aquifer is from the northern and eastern boundaries of the Site toward Ash Ponds 1 and 2 where a more dominant westerly flow direction is present as indicated on **Figure 3: Potentiometric Surface Map – Upper Bedrock – August 2022.**

1.3 Groundwater Monitoring System

Ash Ponds A, 1, and 2 are located adjacent to each other and are therefore considered to be one multi-unit for groundwater monitoring purposes. The groundwater monitoring system is described below.

Groundwater at the Site is monitored using a comprehensive monitoring system of wells installed to meet federal and state monitoring requirements. Pursuant to § 257.91, Georgia Power installed a groundwater monitoring system within the uppermost aquifer at Ash Ponds A, 1, and 2. The monitoring system is designed to monitor groundwater passing the waste boundary of the Ash Ponds A, 1, and 2 within the uppermost aquifer. Wells were located to serve as upgradient or downgradient monitoring points of Ash Ponds A, 1, and 2 based on groundwater flow direction. The monitoring well locations are shown in **Figure 2** and **Table 1 Summary of Detection Monitoring Well Construction Data** provides construction details for the detection monitoring wells in the CCR monitoring network. The monitoring wells are supplemented with piezometers that are used for water level measurements only (**Table 2: Summary of Piezometer Construction**).

2.0 GROUNDWATER MONITORING ACTIVITIES

As required by 257.90(e), the following describes monitoring-related activities performed from July through December 2022. The groundwater sampling was performed in August 2022 for assessment monitoring in accordance with § 257.93. Samples were collected from each of the monitoring wells listed in **Table 3: Groundwater Sampling Events**.

2.1 Monitoring Well Installation and Maintenance

Monitoring well-related activities conducted during this period included the following:

- Monitoring wells are inspected semi-annually to determine if repairs or corrective actions are necessary to meet the requirements of the Georgia Water Well Standards Act (O.C.G.A. § 12-5-134(5)(d)(vii)). In August 2022, monitoring wells were inspected, necessary corrective actions were identified and subsequently completed, as documented in Appendix A: Well Inspections and Repairs. The inspection and repairs were performed under the direction of a professional geologist or engineer registered in the State of Georgia.
- A few minor repairs and maintenance activities were conducted on the wells during the August and October 2022 events and are summarized in the well repair memo in **Appendix A.**
- Sediment was encountered in the water column and in the bottom of water-level measurement piezometer MW-102. On August 26, 2022, the piezometer was redeveloped by surging and pumping to remove the sediment. The re-development data is in **Appendix A**.

2.2 Assessment Monitoring

Pursuant to § 257.94(e)(1), Georgia Power implemented assessment monitoring based on Statistically Significant Increases (SSIs) of Appendix III constituents identified in the initial detection monitoring event (March 2019). An Assessment Monitoring Program Notification was prepared for Ash Ponds A, 1, and 2 on November 13, 2019, pursuant to § 257.94(e)(3) and placed in the facility's Operating Record as required by § 257.105(h)(5).

One semi-annual assessment monitoring event was conducted during this reporting period in August 2022. Pursuant to § 257.95(d)(1), groundwater samples collected from the CCR monitoring network wells were analyzed for Appendix III constituents and the full suite of Appendix IV constituents. Data reports for the August 2022 monitoring event (including the October 2022 re-sampling) are included in **Appendix B: Laboratory Analytical and Field Sampling Reports.**

3.0 SAMPLE METHODOLOGY & ANALYSES

The following sections describe the methods used to complete groundwater monitoring at Plant Mitchell Ash Ponds A, 1, and 2.

3.1 Groundwater Elevation Measurements and Flow Direction

Prior to each sampling event, groundwater elevations are recorded from each well in the network for Plant Mitchell Ash Ponds A, 1, and 2. Groundwater elevations recorded during the August 2022 monitoring event are summarized in **Table 4: Summary of Groundwater Elevations**. Groundwater elevation data from the monitoring event were used to develop a potentiometric surface elevation contour map (**Figure 3: Potentiometric Surface Map – Upper Bedrock – August 2022).** The August 2022 groundwater elevations were calculated using the re-surveyed top of casing elevations from the June 15, 2020 survey by McKim & Creed. Groundwater flow in the carbonate upper bedrock (**Figure 3**) is to the west-southwest. The groundwater flow pattern observed during the August 2022 monitoring event is consistent with conditions observed during previous monitoring events.

3.2 Groundwater Gradient and Flow Velocity

The horizontal groundwater flow velocity at Plant Mitchell Ash Ponds A, 1, and 2 was calculated using the commonly used derivative of Darcy's Law. Specifically,

Where:
$$V = \frac{K*i}{n_e}$$

$$V = Groundwater flow velocity \left(\frac{feet}{day}\right)$$

$$K = Average hydraulic conductivity of the aquifer $\left(\frac{feet}{day}\right)$

$$i = Horizontal hydraulic gradient \left(\frac{feet}{feet}\right)$$

$$n_e = Effective porosity$$$$

Although Darcy's equation is primarily applicable to diffuse flow in porous media, it is also used where flow is analogous to conditions in a homogenous aquifer. Stewart, et al. (1999) states that "water flow in the Upper Floridan (Ocala Limestone) can be classified generally as (1) diffuse, where flow is analogous to conditions in homogenous aquifer, and can be described by using basic Darcian equations; and (2) conduit, where water flows in distinct conduits and surrounding rock has comparatively low porosity and low permeability." Based on the lack of karst features such as cavities in boring logs, the narrow range and relatively low values of hydraulic conductivity, and relatively uniform potentiometric surface for the bedrock aquifer at the Site, the application of Darcy's equation produces approximate linear groundwater flow velocities for the shallow bulk carbonate bedrock aquifer.

Groundwater flow velocities were calculated using an average hydraulic conductivity value of 3.04 feet/day, and an effective porosity of 20 percent (Hayes, et al., 1983). **Table 5: Groundwater Flow Velocity Calculations** summarize the groundwater flow velocities.
Results for groundwater flow velocities ranged from 0.010 to 0.025 feet/day (3.65 to 9.13

feet/year). These calculated groundwater velocities across the Site are generally consistent with historical calculations and with expected velocities in the site-specific geology, therefore, confirming the groundwater monitoring network is properly located to monitor the uppermost aquifer.

3.3 Groundwater Sampling

Groundwater samples were collected for the August 2022 monitoring event in accordance with § 257.93(a). Monitoring wells PZ-2D, PZ-25, and PZ-32 were re-sampled on October 11, 2022 for total dissolved solids (TDS) and well PZ-25 was also re-sampled for mercury. The resampling was conducted because the laboratory analyzed the initial four samples outside of the analytical method holding time. Each of the monitoring wells at the Site is equipped with a dedicated QED bladder pump. The monitoring wells were purged and sampled using low-flow sampling procedures. Sampling equipment and pump intakes were placed at the midpoint of the well screen. Care was taken to maintain a water level above the top of screen and not draw the water level down below the pump during purging. Water level stabilization was achieved when three consecutive water level measurements vary by 0.3 foot or less at a pumping rate of no less than 100 milliliters per minute. A SmarTroll or AquaTroll (In-Situ field instrument) was used to monitor and record field water quality parameters (pH, conductivity, dissolved oxygen (DO), temperature, and oxidation-reduction potential (ORP) and a Hach 2100Q (or similar) portable turbidity meter was used to measure turbidity during well purging to verify stabilization prior to sampling. Groundwater samples were collected when the following stabilization criteria were met:

- pH ± 0.1 Standard Units (s.u.).
- Specific conductance ± 5 percent.
- DO \pm 10 percent or \pm 0.2 milligrams per liter (mg/L) (whichever is greater) for DO where DO> 0.5 mg/L. If DO< 0.5mg/L no stabilization criteria apply
- Turbidity measurements less than 5 Nephelometric Turbidity Units, or between 5 and 10 NTUs after 3 hours of purging.

Once stabilization was achieved, samples were collected into appropriately preserved laboratory-supplied sample containers. Sample bottles were placed in ice-packed coolers and submitted to the analytical laboratory following chain-of-custody protocol. The field sampling and equipment calibration forms generated during the monitoring events are provided in **Appendix B.**

3.4 Laboratory Analyses

The full suites of Appendix III and IV constituents were analyzed during the August 2022 semi-annual event. Analytical methods used for groundwater sample analyses are listed on the analytical laboratory reports included in **Appendix B**.

Laboratory analyses were performed by Pace Analytical Services, LLC, of Peachtree Corners, Georgia, and Greensburg, Pennsylvania. Both Pace laboratories are accredited by National Environmental Laboratory Accreditation Program (NELAP) and maintain a NELAP certification for all constituents analyzed. In addition, Pace laboratories are certified to

perform analysis by the State of Georgia. Groundwater data laboratory reports and chain of custody records for the monitoring events are presented in **Appendix B**.

3.5 Groundwater Analytical Results

Table 6: Analytical Data Summary Appendix III – August 2022, summarizes the analytical data for the Appendix III constituents for the semi-annual monitoring events. The complete laboratory and field data sheets are included in **Appendix B**. Time series data for the Appendix III constituents are provided in **Appendix C: Statistical Analyses**.

Table 7: Analytical Data Summary Appendix IV – August 2022 summarizes the analytical data for the Appendix IV constituents for the August 2022 semi-annual monitoring event. The complete laboratory and field data sheets are included in **Appendix B**. Time series data for the Appendix IV constituents are provided in **Appendix C**.

3.6 Quality Assurance & Quality Control

During each sampling event, quality assurance/quality control (QA/QC) samples are collected. Equipment blanks (where non-dedicated sampling equipment is used) are collected at a rate of one QA/QC sample per 10 groundwater samples. Blind field duplicate samples were collected by filling additional containers at the same location during the sampling event and were collected at a rate of one QA/QC sample per 20 groundwater samples. Field blanks were also collected to evaluate ambient conditions at the sampling locations at a rate of one QA/QC sample per 20 groundwater samples. Quality assurance and quality control of the groundwater data was assessed by performing a data quality evaluation of the laboratory results reported. A data quality evaluation was conducted on the data using laboratory precision and accuracy, and analytical method requirements. The constituent concentrations were generally within the historical range of concentrations. The data quality evaluations are included in **Appendix B**.

The analytical results provided in **Tables 6 and 7** provide concentrations from the most recent sampling events as reported by the laboratory. When values are followed by a "J" flag, this indicates that the value is an estimated analyte concentration detected between the method detection limit and the laboratory reporting limit. The estimated value is positively identified but is below the lowest level that can be reliably achieved within specified limits of precision and accuracy under routine laboratory operating conditions. Radium values followed by a "U" flag indicate the constituent was not detected above the analytical minimum detectable concentration. The relative percent difference for the parent and duplicate sample data (PZ-1D/FD-01 and PZ-18/FD-02) for anions and metals data was less than 20 percent indicating good sampling precision. Radium was not detected in either sample duplicate pair (PZ-1D/FD-01 and PZ-18/FD-02), therefore, precision could not be assessed.

Laboratory quality issues were identified with a few of the samples analyzed for TDS and mercury. The TDS samples from wells PZ-2D, PZ-25, and PZ-32 and the field blank sample, collected on August 24, 2022, were analyzed beyond the seven-day TDS analytical method holding time. The mercury sample from well PZ-25 was analyzed beyond the mercury analytical method 28-day holding time. Therefore, on October 11, 2022, wells PZ-2D, PZ-25,

and PZ-32 were re-sampled for TDS analysis. Well PZ-25 was also re-sampled for mercury analysis. A field duplicate, equipment blank, and field blank were also collected during the re-sampling event. The October 11, 2022 results replaced the August 24, 2022 results for these four samples. The relative percent difference for the parent and duplicate sample data (PZ-25/FD-01) for TDS data was less than 20 percent indicating good sampling precision. Mercury was not detected in either sample duplicate pair (PZ-25/FD-01), therefore, precision could not be assessed.

Samples PZ-7D, PZ-15, PZ-16, PZ-17, PZ-18, PZ-23A, and FD-02, collected on August 25, 2022, required a five times dilution for boron to bring the concentration into the calibration range or to minimize matrix affects from the presence of elevated levels of non-target analytes or other matrix interference. The diluted concentrations were similar to past detected concentrations in these wells. The PZ-14 boron sample had a non-detect result with the five times dilution and was re-analyzed at a one times dilution.

The data are considered usable for meeting project objectives and the results are considered valid.

4.0 STATISTICAL ANALYSIS

The Site is currently in assessment monitoring. Statistical analysis of Appendix III groundwater monitoring data was performed on samples collected from the groundwater monitoring network pursuant to § 257.93(f) and following the Professional Engineer-certified statistical analysis plans. The statistical analysis plan used at the Site was developed in April 2019 by Groundwater Stats Consulting in accordance with § 257.93(f) using methodology presented in *Statistical Analysis of Groundwater Data at RCRA Facilities, Unified Guidance*, March 2009, EPA 530/R-09-007 (US EPA, 2009). To develop the statistical method, analytical data collected during the background period were evaluated and used to develop statistical limits for each Appendix III constituent. Subsequent detection monitoring results were compared to the statistical limits to determine if concentrations were statistically different from background.

Pursuant to § 257.95(d)(2), Georgia Power established groundwater protection standards (GWPS) for the Appendix IV monitoring constituents and conducted statistical analysis of the Appendix IV groundwater monitoring data obtained during the August 2022 semi-annual assessment monitoring event and October 2022 re-sampling to evaluate if concentrations statistically exceeded the established GWPS. The following subsections provide an overview of the statistical methods used to evaluate Appendix III and IV constituents and statistical analyses results.

4.1 Statistical Method

Sanitas groundwater statistical software was used to perform the statistical analyses at the Site. Sanitas is a commercially available decision support software package that incorporates the statistical tests required of Subtitle C and D facilities by US EPA regulations and guidance as recommended in the Unified Guidance (US EPA, 2009) document. The Sanitas groundwater statistical software was used to perform the statistical analyses of groundwater quality semi-annual data obtained in August and October 2022. The interwell statistical method was used for the analysis of the Appendix III constituents. Confidence intervals were calculated for each of the detected Appendix IV constituents in each downgradient well. **Table 8: Statistical Method Summary** provides a summary of the statistical methodology used at Ash Ponds A, 1, and 2 for the semi-annual monitoring event conducted in August 2022 and will be used for routine monitoring in the future. Specific methodology information is described in the following paragraphs.

4.1.1 Appendix III Statistical Method

Statistical tests used to evaluate the groundwater monitoring data consist of interwell prediction limits (PL) combined with a 1-of-2 verification re-sample plan for each of the Appendix III constituents. The interwell prediction limits were used to evaluate the full suite of Appendix III constituents. When using the interwell method, upgradient well data are pooled to establish a background statistical limit (PL) for each constituent. Pooled concentrations from Site upgradient wells (PZ-1D, PZ-2D, PZ-31, PZ-32) were used to establish the prediction limit for each individual Appendix III constituent. Appendix III constituent concentrations from the August 2022 monitoring event and October 2022 re-sampling were compared to the interwell prediction limits to evaluate whether downgradient well

concentrations exceed background statistical limits. When a constituent concentration exceeds the PL, a statistically significant increase (SSI) exceedance is identified.

If data from a sampling event initially exceeds the PL, an optional resampling strategy can be used to verify the result as described in Section 4.1 and **Table 8.** A confirmed exceedance is only noted when the re-sample confirms the initial exceedance by also exceeding the prediction limit or if re-sampling is not performed. If the re-sample does not exceed the PL, then there is no SSI.

4.1.2 Appendix IV Statistical Method

The assessment monitoring program statistics for Appendix IV constituents at Plant Mitchell were conducted in two parts. The first part was the calculation of tolerance limits for site-specific background limits for Appendix IV constituents. The second part was the calculation of confidence intervals for individual downgradient well/constituent pairs.

Interwell tolerance limits were used to calculate the site-specific background limits from pooled upgradient well data for Appendix IV constituents. Parametric tolerance limits are used when data follow a normal or transformed-normal distribution such as for barium, chromium, and radium. When data contained greater than 50 percent nondetects or did not follow a normal or transformed-normal distribution, non-parametric tolerance limits were used. The background limits were then used when determining the GWPS under 40 CFR § 257.95(h).

On July 30, 2018, US EPA revised the Federal CCR rule updating GWPS for cobalt, lead, lithium, and molybdenum as described above in 40 CFR § 257.95(h)(2). Effective on February 22, 2022, GA EPD has incorporated the updated GWPS into the current GA EPD Rules for Solid Waste Management 391-3-4-.10(6)(a). As described in the updated rules, the GWPS is:

- The maximum contaminant level (MCL) established under § 141.62 and § 141.66 of this title
- Where an MCL has not been established for a constituent, Federal and State CCR Rules specify levels for cobalt (0.006 mg/L), lead (0.015 mg/L), lithium (0.040 mg/L), and molybdenum (0.100 mg/L)
- The respective background level for a constituent when the background level is higher than the MCL or Federal CCR Rule specified GWPS

Following the above rule requirements, GWPSs were established for statistical comparison of Appendix IV constituents for the August 2022 sampling event. **Table 9: Summary of Groundwater Protection Standards** summarizes the GWPSs established for each event for the Appendix IV constituents. The background levels for each event are summarized in **Appendix C**.

To complete the statistical comparison to GWPS, confidence intervals were constructed for each of the Appendix IV constituents in each downgradient well for each event. The Sanitas software was used to calculate the tolerance limits and the confidence intervals. Those confidence intervals were compared to the GWPS established using the GA EPD Rules 391-3-4-.10(6)(a). Only when the entire confidence interval is above a GWPS is the downgradient

well/constituent pair considered to exceed its respective standard. If there is an exceedance of the GWPS, an SSL exceedance is identified.

4.2 Statistical Analyses Results – Appendix III

The statistical analysis and comparison to prediction limits are included as **Appendix C: Statistical Analyses**. Based on review of the full Appendix III statistical analysis discussion presented in **Appendix C**, groundwater conditions have not returned to background concentrations and assessment monitoring should continue to be conducted.

4.3 Statistical Analyses Results - Appendix IV

Appendix C: Statistical Analyses shows the individual well/constituent pairs with their respective confidence intervals in comparison to the respective constituent GWPS. There are no confidence intervals of the individual well/constituent pairs above a GWPS, established according to GA EPD Rules 391-3-4-.10(6)(a). Therefore, no SSLs were identified for the August/October 2022 sampling event.

5.0 MONITORING PROGRAM STATUS

The Plant Mitchell Ash Ponds A, 1, and 2 CCR multi-unit is in assessment monitoring due to the detection of SSIs of Appendix III constituents initially in March 2019. Similar SSIs of Appendix III constituents were detected in the August 2022 semi-annual event. No SSIs of the Appendix III constituents were detected in the October 2022 re-sampling event. No SSLs were identified for the Appendix IV constituents during the August/October 2022 event. Pursuant to § 257.95, Georgia Power will continue assessment monitoring at Plant Mitchell Ash Ponds A, 1, and 2.

6.0 CONCLUSIONS & FUTURE ACTIONS

This 2022 Semi-Annual Groundwater Monitoring & Corrective Action Report for Georgia Power's Plant Mitchell Ash Ponds A, 1, and 2 was prepared to fulfill the requirements of Georgia Environmental Protection Division (GA EPD) Rules for Solid Waste Management 391-3-4-.10. Statistical evaluations of the groundwater monitoring data for Plant Mitchell Ash Ponds A, 1, and 2 identified SSIs of Appendix III groundwater monitoring constituents. Georgia Power has initiated assessment monitoring pursuant to the requirements of § 257.95. The next semi-annual assessment sampling event is planned for February 2023. The next semi-annual assessment monitoring event will include sampling and analysis of the full suites of Appendix III and Appendix IV constituents.

7.0 REFERENCES

- Clark, W.Z., and Zisa, A.C., 1976, Physiographic Map of Georgia: 1:2,000,000, Georgia Department of Natural Resources, Geologic and Water Resources Division, Atlanta, Georgia.
- Georgia Department of Natural Resources, Environmental Protection Division. November 2016. Solid Waste Management Coal Combustion Residuals 391-3-4-.10.
- Gordon, D.W., and Gonthier, G., 2017, Hydrology of the Claiborne Aquifer and Interconnection with the Upper Floridan Aquifer in Southwest Georgia: U.S. Geological Survey Scientific Investigations, Report 2017–5017, 49 p.
- Hayes, L.R., Maslia, M.L., Meeks, W.C., 1983, Hydrology and Model Evaluation of the Principal Artesian Aquifer, Dougherty Plain, Southwest Georgia: Georgia Geologic Survey Bulletin 97, 93 p.
- Hicks, D.W., Krause, R.E., and Clarke, J.S., 1981, Geohydrology of the Albany area, Georgia: Georgia Geologic Survey Information Circular 57, 31 p.
- Sanitas: Groundwater Statistical Software, Sanitas Technologies, Shawnee, KS, 2007. www.sanitastech.com
- Southern Company Services, Inc., 1995a, A Chronological History of the Ash Ponds at Plant Mitchell, Albany, Georgia: Georgia Power Company.
- Southern Company Services, Inc., 1995b, Geophysical Survey Drawing E5330, Albany, Georgia: Georgia Power Company,
- Stewart, L.M., Warner, D., and Dawson, B.J. 1999, Hydrogeology and Water Quality of the Upper Floridan Aquifer, Western Albany Area, Georgia: U. S. Geological Survey Water-Resources Investigations, Report 99-4140, 49 p.
- US EPA, 2000. Guidance for Data Quality Assessment: Practical Methods for Data Analysis; US EPA QA/G-9, QA00 Update. Environmental Protection Agency report US EPA/600/R-96/084, Office of Environmental Information, Washington, D.C.
- US EPA, 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Resource Conservation and Recovery Program Implementation and Information Division. March 2009.
- US EPA, 2011. Data Validation Standard Operating Procedures. Science and Ecosystem Support Division. Region IV. Athens, GA. September.
- US EPA, 2015. Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. [EPA-HQ-RCRA-2009-0640; FRL-9919-44-OSWER]. RIN-2050-AE81. April.
- US EPA, 2017. National Functional Guidelines for Inorganic Superfund Methods Data. Office of Superfund Remediation and Technology Innovation. OLEM 9355.0-135 [EPA-540-R-2017-001]. Washington, DC. January.

- Watson, T.W., 1981, Geohydrology of the Dougherty Plain and Adjacent Area Southwest, Georgia: Georgia Geologic Survey Hydrologic Atlas 5.
- Wood Environment & Infrastructure Solutions, Inc., May 2021, Hydrogeologic Assessment Report, Plant Mitchell Ash Ponds A, 1 & 2, Dougherty and Mitchell Counties, Georgia.
- Wood Environment & Infrastructure Solutions, Inc., March 2022, Groundwater Monitoring Plan, Plant Mitchell Ash Ponds A, 1 & 2, Dougherty and Mitchell Counties, Georgia.

2022 Semi-Annual Groundwater Monitoring and Corrective Action Report Georgia Power Company – Plant Mitchell Ash Ponds A, 1, and 2 Putney, Georgia

TABLES

SUMMARY OF DETECTION MONITORING WELL CONSTRUCTION DATA

Georgia Power Company - Plant Mitchell Ash Ponds A, 1, and 2

Putney, Georgia

Well Name	Installation Date	Northing ⁽¹⁾	Easting ⁽¹⁾	Ground Surface Elevation (feet NAVD88) ⁽²⁾ (June 2020 Resurvey)	Top of Casing Elevation (feet NAVD88) ⁽²⁾ (June 2020 Resurvey)	Top of Screen Elevation (feet NAVD88) ⁽³⁾	Bottom of Screen Elevation (feet NAVD88) ⁽³⁾	Total Well Depth on Construction Log (feet below land surface)	Groundwater Zone Screened	Location	
PZ-1D	6/11/2014	526353.9	2307362.8	193.44	196.44	125.8	115.8	78.0	Bedrock	Upgradient	
PZ-2D	6/10/2014	526067.3	2308155.4	175.64	178.51	108.0	98.0	78.0	Bedrock Upg	Upgradient	
PZ-31	10/13/2016	526996.3	2306857.6	180.32	182.96	133.3	123.3	57.0	Bedrock	Upgradient	
PZ-32	10/13/2016	526078.7	2307723.7	178.19	180.75	126.2	116.2	62.0	Bedrock	Upgradient	
PZ-7D	6/3/2014	521425.1	2305995.3	170.28	173.08	123.7	113.7	57.0	Bedrock	Downgradient	
PZ-14	7/25/2016	521473.1	2306804.8	180.85	183.46	140.9	130.9	50.0	Bedrock	Downgradient	
PZ-15	7/23/2016	521600.2	2305357.3	167.38	170.37	97.4	87.4	80.0	Bedrock	Downgradient	
PZ-16	7/25/2016	522125.0	2305359.9	171.21	173.92	131.2	121.2	50.0	Bedrock	Downgradient	
PZ-17	7/22/2016	522587.9	2305886.7	170.12	172.91	120.1	110.1	60.0	Bedrock	Downgradient	
PZ-18	7/23/2016	523145.7	2306142.3	167.34	170.11	117.3	107.3	60.0	Bedrock	Downgradient	
PZ-19	7/13/2016	523582.1	2306153.6	169.40	172.05	120.4	110.4	60.0	Bedrock	Downgradient	
PZ-23A ⁽⁴⁾	3/10/2020	523831.5	2307743.4	189.06	191.85	134.6	124.6	64.5	Bedrock	Downgradient	
PZ-25	7/20/2016	524492.6	2306152.0	168.24	171.14	118.2	108.2	60.0	Bedrock	Downgradient	
PZ-33	10/2/2016	522212.6	2307233.9	187.08	189.61	126.7	116.7	70.4	Bedrock	Downgradient	
PZ-57 ⁽⁵⁾	11/4/2021	522849.9	2306107.5	166.54	169.35	107.0	97.0	70.0	Bedrock	Downgradient	

- (1) Coordinates are from June 15, 2020 re-survey of the wells by McKim & Creed, Inc. based on the North American Datum of 1983 (NAD 83) (2011) Georgia West Zone.
- (2) NAVD88 indicates feet (ft) in elevation referenced to the North American Vertical Datum 1988. Elevations are from June 15, 2020 re-survey of the wells by McKim & Creed, Inc.
- (3) Screen elevations calculated using depth below land surface and ground surface elevations from the June 2020 re-survey.
- (4) Monitoring well PZ-23 was abandoned on September 10, 2019 and was replaced with new monitoring well PZ-23A on March 10, 2020.
- (5) Monitoring well PZ-57 was surveyed on December 10, 2021 by McKim & Creed, Inc.

SUMMARY OF PIEZOMETER CONSTRUCTION

Georgia Power Company - Plant Mitchell Ash Ponds A, 1 and 2 Putney, Georgia

Well Name	Installation Date	Northing ⁽¹⁾	Easting ⁽¹⁾	Ground Surface Elevation (feet NAVD88) ⁽²⁾ (June 2020 Re-survey)	Top of Casing Elevation (feet NAVD88) ⁽²⁾ (June 2020 Re-survey)	Top of Screen Elevation (feet NAVD88) ⁽³⁾	Bottom of Screen Elevation (feet NAVD88) ⁽³⁾	Total Well Depth on Construction Log (feet below land surface)	Lithology Screened
PZ-01R	2/10/2016	524398.0 ⁽⁴⁾	2306492.9 ⁽⁴⁾	188.2 ⁽⁴⁾	191.87 ⁽⁴⁾	132.2	122.2	66.7	Overburden (Clay)/Bedrock
PZ-1S	6/11/2014	526357.1	2307356.7	193.43	196.52	145.8	135.8	58.0	Overburden (Clay)
PZ-02R	2/3/2016	522696.6 ⁽⁴⁾	2306666.5 ⁽⁴⁾	188.5 ⁽⁴⁾	191.66 ⁽⁴⁾	131.6	121.6	67.2	Overburden (Clay)/Bedrock
PZ-2S	6/10/2014	526066.7	2308163.4	175.63	178.61	131.6	121.6	54.4	Overburden (Sandy Clay)
PZ-3D	5/28/2014	525373.2	2307918.1	188.08	190.98	110.5	100.5	88.0	Bedrock
PZ-3S	5/28/2014	525365.6	2307918.8	188.14	191.12	138.5	128.5	60.0	Overburden (Sand)
PZ-4D	5/29/2014	524198.2	2308009.5	188.25	191.10	142.7	132.7	56.0	Bedrock
PZ-4S	5/29/2014	524192.1	2308005.0	188.42	191.20	163.8	153.8	35.0	Overburden (Sand/Clay)
PZ-6S	6/13/2014	522254.0	2307207.5	186.52	189.47	148.9	138.9	48.0	Overburden (Clay)
PZ-7S	6/3/2014	521424.4	2306002.8	170.10	173.10	146.5	136.5	34.0	Overburden (Clay)
PZ-8D	6/5/2014	521442.1	2305207.9	167.24	170.35	100.6	90.6	77.0	Bedrock
PZ-8S	6/5/2014	521440.2	2305217.4	167.67	170.78	142.9	132.9	35.2	Overburden (Sand)
PZ-9D	6/4/2014	521770.9	2305127.5	163.18	166.16	126.6	116.6	47.0	Bedrock
PZ-9S	6/5/2014	521763.7	2305125.7	163.06	166.02	145.5	135.5	28.0	Overburden (Sand)/Bedrock
PZ-10S	6/3/2014	522465.8	2305401.6	172.64	175.63	137.0	127.0	46.0	Bedrock
PZ-11S ⁽⁶⁾	6/12/2014	523112.9	2305532.1	188.71	191.69	141.1	131.1	58.0	Bedrock
PZ-12S	6/4/2014	523794.9	2305676.8	170.93	173.92	133.3	123.3	48.0	Bedrock
PZ-13S	6/6/2014	524467.0	2305810.0	170.23	173.22	132.6	122.6	48.0	Overburden (Clay)
PZ-20	7/14/2016	524025.0	2306152.6	170.62	173.44	121.1	111.1	60.0	Bedrock
PZ-21	7/29/2016	524639.5	2306932.0	177.08	179.84	117.1	107.1	70.0	Bedrock
PZ-22	7/28/2016	524622.4	2307749.0	184.76	187.69	134.8	124.8	60.0	Bedrock
PZ-24A	3/6/2020	523151.8	2307445.9	192.25	194.97	142.3	132.3	60.0	Bedrock
PZ-27	10/4/2016	522440.4	2305235.1	161.88	164.58	123.6	113.6	48.3	Bedrock
PZ-28	10/13/2016	522953.9	2305347.3	163.49	165.96	126.5	116.5	47.0	Bedrock
PZ-29	10/4/2016	523857.8	2305593.0	170.42	173.18	123.9	113.9	56.5	Bedrock

SUMMARY OF PIEZOMETER CONSTRUCTION

Georgia Power Company - Plant Mitchell Ash Ponds A, 1 and 2 Putney, Georgia

Well Name	Installation Date	Northing ⁽¹⁾	Easting ⁽¹⁾	Ground Surface Elevation (feet NAVD88) ⁽²⁾ (June 2020 Re-survey)	Top of Casing Elevation (feet NAVD88) ⁽²⁾ (June 2020 Re-survey)	Top of Screen Elevation (feet NAVD88) ⁽³⁾	Bottom of Screen Elevation (feet NAVD88) ⁽³⁾	Total Well Depth on Construction Log (feet below land surface)	Lithology Screened
MW-101	2/14/1995	524507.6	2306160.1	168.14	170.93	154.8	145.3	23.4	Overburden (Sand and Clay)
MW-102	2/22/1995	524508.2	2306153.6	168.10	170.93	132.3	122.8	45.9	Bedrock
MW-108 ⁽⁷⁾	2/21/1995	521561.7	2306874.5	182.75	185.47	145.1	136.0	47.4	Bedrock
MW-111	2/23/1995	521618.2	2305308.8	165.28	168.06	127.8	118.8	47.0	Bedrock
MW-113	2/21/1995	522357.4	2305578.4	171.88	174.61	129.6	120.1	52.4	Bedrock
MW-115 ⁽⁵⁾	2/21/1995	522837.4	2306080.2	166.23	169.05	89.0	79.5	87.3	Bedrock
MW-116	2/23/1995	523649.9	2306082.5	168.93	171.69	100.7	94.3	75.2	Bedrock
MW-120	2/24/1995	525216.0	2307100.9	191.03	193.79	152.8	143.3	48.3	Overburden (Clay)/Bedrock

- (1) Coordinates are from June 15, 2020 re-survey of the piezometers by McKim & Creed, Inc. based on the North American Datum of 1983 (NAD 83) (2011) Georgia West Zone.
- (2) NAVD88 indicates feet (ft) in elevation referenced to the North American Vertical Datum 1988. Elevations are from June 15, 2020 re-survey of the piezometers by McKim & Creed, Inc.
- (3) Screen elevations calculated using depth below land surface and ground surface elevations from the June 2020 re-survey.
- (4) Coordinates and elevations for piezometers PZ-01R and PZ-02R are from E&CS Civil Field Services March 2, 2016. PZ-01R and PZ-02R were not re-surveyed in June 2020 as the piezometers were not accessible due to construction activities.
- (5) Piezometer MW-115 was abandoned on November 3, 2021.
- (6) Piezometer PZ-11S was abandoned on March 28, 2022.
- (7) Piezometer MW-108 was abandoned on March 29, 2022.

GROUNDWATER SAMPLING EVENTS

Georgia Power Company - Plant Mitchell Ash Ponds A, 1, and 2

Putney, Georgia

		Summary of Sa	mpling Events				
Well ID	Hydraulic Location	August 24-26, 2022	October 11, 2022	Status of Monitoring Well			
Purpose of S	Sampling Event	Assessment	Re-sample				
ASH PONDS DETECTION	MONITORING WELL NET	WORK					
PZ-1D	Upgradient	X		Assessment Monitoring			
PZ-2D	Upgradient	X	X	Assessment Monitoring			
PZ-31	Upgradient	X		Assessment Monitoring			
PZ-32	Upgradient	X	X	Assessment Monitoring			
PZ-7D	Downgradient	X		Assessment Monitoring			
PZ-14	Downgradient	Х		Assessment Monitoring			
PZ-15	Downgradient	Х		Assessment Monitoring			
PZ-16	Downgradient	Х		Assessment Monitoring			
PZ-17	Downgradient	Х		Assessment Monitoring			
PZ-18	Downgradient	X		Assessment Monitoring			
PZ-19	Downgradient	Х		Assessment Monitoring			
PZ-23A	Downgradient	Х		Assessment Monitoring			
PZ-25	Downgradient	Х	X	Assessment Monitoring			
PZ-33	Downgradient	Х		Assessment Monitoring			
PZ-57	Downgradient	Х		Assessment Monitoring			

- 1. X indicates well sampled during event
- 2. Monitoring well PZ-23 was abandoned on September 10, 2019 and was replaced with new monitoring well PZ-23A on March 10, 2020.
- 3. New monitoring well PZ-57 construction was completed on November 4, 2021.
- 4. Wells PZ-2D, PZ-25, and PZ-32 were re-sampled on October 11, 2022 for Total Dissolved Solids.
- 5. Well PZ-25 was re-sampled for mercury on October 11, 2022.
- 6. October 11, 2022 sampling was for re-samples for TDS and mercury due to the laboratory analyzed the samples outside of the TDS and mercury analytical method holding times.

SUMMARY OF GROUNDWATER ELEVATIONS Georgia Power Company - Plant Mitchell Ash Ponds A, 1, and 2

Putney, Georgia

Well ID	Screened Matrix	Top of Casing Elevation (feet NAVD88) ⁽¹⁾	Depth to Water (feet below TOC) ⁽²⁾	Groundwater Elevation (feet NAVD88) ⁽³
Measurement		(June 2020 Re-	8/23/2022	8/23/2022
Date		survey)	0/23/2022	0/23/2022
MW-101	Overburden (Sand and Clay)	170.93	23.16	147.77
MW-102	Bedrock	170.93	32.70	138.23
MW-108	Overburden (Sand/Clay)/ Bedrock	185.47	Abando	oned ⁽⁸⁾
MW-111	Bedrock	168.06	30.36	137.70
MW-113	Bedrock	174.61	36.97	137.64
MW-115	Bedrock	169.05	Abando	oned ⁽⁵⁾
MW-116	Bedrock	171.69	34.09	137.60
MW-120	Overburden (Clay)/Bedrock	193.79	Di	ry
PZ-1D	Bedrock	196.44	55.16	141.28
PZ-01R	Bedrock and Clay	191.87 ⁽⁴⁾	54.09	137.78
PZ-1S	Overburden (Clay)	196.52	41.54	154.98
PZ-2D	Bedrock	178.51	38.62	139.89
PZ-02R	Bedrock	191.66 ⁽⁴⁾	54.12	137.54
PZ-2S	Overburden (Clay)	178.61	38.69	139.92
PZ-3D	Bedrock	190.98	51.40	139.58
PZ-3S	Overburden (Sand)	191.12	49.15	141.97
PZ-4D	Bedrock	191.10	52.11	138.99
PZ-4S	Overburden (Sand/Clay)	191.20	30.75	160.45
PZ-6S	Overburden (Clay)	189.47	26.88	162.59
PZ-7D	Bedrock	173.08	35.95	137.13
PZ-7S	Overburden (Clay)	173.10	34.87	138.23
PZ-8D	Bedrock	170.35	32.75	137.60
PZ-8S	Overburden (Sand)	170.78	32.59	138.19
PZ-9D	Bedrock	166.16	28.74	137.42
PZ-9S	Overburden (Sand)/Bedrock	166.02	28.68	137.34
PZ-10S	Overburden (Clayey Sand)	175.63	38.35	137.28
PZ-11S	Overburden (Gravelly Sand)	191.69	Abando	
PZ-12S	Bedrock	173.92	36.22	137.70
PZ-13S	Overburden (Clay)	173.22	35.06	138.16
PZ-133	Bedrock	183.46	45.87	137.59
PZ-14 PZ-15	Bedrock	170.37	33.60	136.77
PZ-15 PZ-16	Bedrock	170.57	36.63	136.77
PZ-16 PZ-17	Bedrock	173.92	35.56	137.29
PZ-17 PZ-18	Bedrock	172.91	32.68	137.43
PZ-18 PZ-19	Bedrock	170.11	34.47	137.43
PZ-19 PZ-20	Bedrock Bedrock	172.05	35.79	137.58
PZ-20 PZ-21	Bedrock Bedrock	173.44	41.31	137.65
PZ-21 PZ-22	Bedrock Bedrock	179.84	+	138.53
			48.88	
PZ-23A	Bedrock	191.85	52.95	138.90
PZ-24A	Bedrock	194.97	56.59	138.38
PZ-25	Bedrock	171.14	32.91	138.23
PZ-27	Bedrock	164.58	27.31	137.27
PZ-28	Bedrock	165.96	28.57	137.39
PZ-29	Bedrock	173.18	35.41	137.77
PZ-31	Bedrock	182.96	41.76	141.20
PZ-32	Bedrock	180.75	40.70	140.05
PZ-33	Bedrock	189.61	51.68	137.93
PZ-57 ⁽⁶⁾	Bedrock	169.35	32.02	137.33

Notes:

- (1) NAVD88 indicates feet (ft) in elevation referenced to the North American Vertical Datum 1988. Elevations are from June 15, 2020 re-survey of the monitoring wells and piezometers by McKim & Creed, Inc.
- (2) TOC Top of Casing
- (3) Groundwater elevations for 2022 are calculated using TOC elevations from the June 15, 2020 re-survey.
- (4) Coordinates and elevations for piezometers PZ-01R and PZ-02R are from E&CS Civil Field Services March 2, 2016. PZ-01R and PZ-02R were not re-surveyed in June 2020 as the piezometers were not accessible due to construction activities.
- (5) Piezometer MW-115 was abandoned on November 4, 2021.
- (6) Well PZ-57 construction was completed on November 4, 2021 and was surveyed December 10, 2021 by McKim & Creed, Inc.
- (7) Piezometer PZ-11S was abandoned on March 28, 2022.
- (8) Piezometer PZ-108 was abandoned on March 29, 2022.

Groundwater elevations of wells and piezometers screened in the bedrock were used to generate potentiometric contours on the potentiometric map.

GROUNDWATER FLOW VELOCITY CALCULATIONS

Georgia Power Company - Plant Mitchell Ash Ponds A, 1, and 2 Putney, Georgia

Potentiometric Map Date	Water-Bearing Zone	Location	Groundwater Elevations in Well Pairs (h ₁ , h ₂) (feet) 141.28 137.78		Change in Elevation (Δh) (feet)	Distance Between Location 1 and 2 Measured Along Flow Path (L) (feet)	Hydraulic Gradient (i) (feet/feet)	Average Hydraulic Conductivity (K) (feet/day)	Estimated Effective Porosity (n _e)	Calculated Groundwater Flow Velocity (V) (feet/day)	Calculated Groundwater Flow Velocity (V) (feet/year)	
August 2022	Limestone	PZ-1D to PZ-01R	141.28 137.78		3.50	2094	0.002	3.04	0.20	0.025	9.13	
August 2022	Limestone	PZ-4D to PZ-19	138.99	137.58	1.41	2056	0.001	3.04	0.20	0.010	3.65	

- 1. In-situ hydraulic conductivity (slug) tests in the bedrock at the Site ranged from 1.08 to 5.81 feet/day with an average of 3.04 feet/day.
- 2. Effective porosity of 20% was selected for Ocala Limestone from Hydrology and Model Evaluation of the Principal Artesian Aquifer, Dougherty Plain, Southwest Georgia: Georgia Geologic Survey Bulletin 97 (Hayes, L.R., Maslia, M.L., Meeks, W.C., 1983)
- 3. Flow paths are illustraged on Figure 3 of this report.
- 4. Groundwater flow velocity equation: $V = (K * i)/n_e$

ANALYTICAL DATA SUMMARY APPENDIX III - AUGUST 2022 Georgia Power Company - Plant Mitchell Ash Ponds A, 1, and 2 Putney, Georgia

Well Name	Sample Date	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS
PZ-1D	8/24/2022	O.O11 (J)	45.8	2.6	0.080 (J)	7.49	2.2	139
PZ-2D	8/24/2022	0.012 (J)	27.3	2.1	0.088 (J)	8.01	2.0	287
PZ-2D	10/11/2022	NA	NA	NA	NA	7.94	NA	75.0
PZ-7D	8/25/2022	0.20	107	4.1	0.056 (J)	6.98	47.3	325
PZ-14	8/25/2022	0.032 (J)	108	4.6	0.051 (J)	6.93	10.7	259
PZ-15	8/25/2022	0.21	96.7	6.4	0.074 (J)	7.15	75.5	319
PZ-16	8/25/2022	0.24	92.0	6.3	0.058 (J)	7.14	38.7	90.0
PZ-17	8/25/2022	O.19 (J)	99.5	3.9	0.078 (J)	7.05	62.7	321
PZ-18	8/25/2022	0.39	141	4.6	0.052 (J)	6.76	96.3	446
PZ-19	8/25/2022	0.58	156	4.6	0.086 (J)	6.67	84.4	528
PZ-23A	8/25/2022	O.17 (J)	145	3.2	0.074 (J)	6.76	45.6	437
PZ-25	8/24/2022	0.19	87.6	1.8	0.15	7.10	35.7	286
PZ-25	10/11/2022	NA	NA	NA	NA	7.13	NA	267
PZ-31	8/24/2022	< 0.0086	95.2	3.0	0.069 (J)	7.04	0.56 (J)	261
PZ-32	8/24/2022	0.022 (J)	67.1	2.7	0.058 (J)	7.34	1.7	172
PZ-32	10/11/2022	NA	NA	NA	NA	7.37	NA	173
PZ-33	8/24/2022	0.32	96.5	1.8	0.092 (J)	7.10	34.7	265
PZ-57	8/26/2022	0.18	95.5	2.4	0.083 (J)	7.09	87.2	358

- 1. Results for metals and anions are reported in milligrams per liter (mg/L). Results for pH are reported in standard units (su).
- 2. < indicates the constituent was not detected above the analytical method detection limit (MDL).
- 3. (J) indicates the constituent was detected between the analytical method detection limit and laboratory reporting limit. The value followed by (J) is qualified by the laboratory as estimated.
- 4. TDS indicates total dissolved solids.
- 5. NA indicates constituent was not analyzed.
- 6. October 11, 2022 data are re-sample results for TDS due to the laboratory analyzed the samples outside of the TDS analytical method holding time.

ANALYTICAL DATA SUMMARY APPENDIX IV - AUGUST 2022

Georgia Power Company - Plant Mitchell Ash Ponds A, 1, and 2

Putney, Georgia

Well Name	Sample Date	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Fluoride	Lead	Lithium	Mercury	Molybdenum	Radium	Selenium	Thallium
PZ-1D	8/24/2022	< 0.00078	< 0.0022	0.015	< 0.000054	< 0.00011	0.0025 (J)	< 0.00039	0.080 (J)	< 0.00089	< 0.00073	< 0.00013	0.00088 (J)	0.196 U	< 0.0014	< 0.00018
PZ-2D	8/24/2022	O.OO11 (J)	< 0.0022	0.010	< 0.000054	< 0.00011	0.0066	< 0.00039	0.088 (J)	< 0.00089	0.0012 (J)	0.00013 (J)	< 0.00074	0.0268 U	< 0.0014	< 0.00018
PZ-7D	8/25/2022	< 0.00078	< 0.0022	0.0058	< 0.000054	< 0.00011	0.0024 (J)	< 0.00039	0.056 (J)	< 0.00089	0.0030 (J)	< 0.00013	< 0.00074	0.771 U	0.0017 (J)	< 0.00018
PZ-14	8/25/2022	< 0.00078	< 0.0022	0.011	< 0.000054	< 0.00011	0.0014 (J)	< 0.00039	0.051 (J)	< 0.00089	< 0.00073	< 0.00013	< 0.00074	0.453 U	< 0.0014	< 0.00018
PZ-15	8/25/2022	< 0.00078	< 0.0022	0.057	< 0.000054	< 0.00011	< 0.0011	< 0.00039	0.074 (J)	< 0.00089	0.0012 (J)	< 0.00013	< 0.00074	1.05	< 0.0014	< 0.00018
PZ-16	8/25/2022	< 0.00078	< 0.0022	0.035	< 0.000054	< 0.00011	0.0012 (J)	< 0.00039	0.058 (J)	< 0.00089	< 0.00073	< 0.00013	< 0.00074	0.728 U	< 0.0014	< 0.00018
PZ-17	8/25/2022	< 0.00078	< 0.0022	0.061	< 0.000054	< 0.00011	< 0.0011	< 0.00039	0.078 (J)	< 0.00089	0.0018 (J)	< 0.00013	< 0.00074	0.980 U	< 0.0014	0.00037 (J)
PZ-18	8/25/2022	< 0.00078	< 0.0022	0.026	< 0.000054	< 0.00011	< 0.0011	< 0.00039	0.052 (J)	< 0.00089	0.0033 (J)	< 0.00013	< 0.00074	0.0434 U	< 0.0014	< 0.00018
PZ-19	8/25/2022	< 0.00078	< 0.0022	0.046	< 0.000054	< 0.00011	< 0.0011	< 0.00039	0.086 (J)	< 0.00089	0.012 (J)	< 0.00013	0.0017 (J)	0.937	0.0019 (J)	0.00053 (J)
PZ-23A	8/25/2022	< 0.00078	< 0.0022	0.036	< 0.000054	< 0.00011	0.0022 (J)	< 0.00039	0.074 (J)	< 0.00089	< 0.00073	< 0.00013	< 0.00074	0.396 U	0.0023 (J)	< 0.00018
PZ-25	8/24/2022	< 0.00078	< 0.0022	0.10	< 0.000054	< 0.00011	< 0.0011	0.0016 (J)	0.15	< 0.00089	0.0073 (J)	0.00018 (J)	< 0.00074	0.764 U	< 0.0014	0.00048 (J)
PZ-25	10/11/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.00013	NA	NA	NA	NA
PZ-31	8/24/2022	< 0.00078	< 0.0022	0.0063	< 0.000054	< 0.00011	0.0015 (J)	< 0.00039	0.069 (J)	< 0.00089	< 0.00073	< 0.00013	< 0.00074	0.781 U	< 0.0014	< 0.00018
PZ-32	8/24/2022	0.0010 (J)	< 0.0022	0.019	< 0.000054	< 0.00011	< 0.0011	< 0.00039	0.058 (J)	< 0.00089	< 0.00073	0.00014 (J)	< 0.00074	0.342 U	< 0.0014	< 0.00018
PZ-33	8/24/2022	0.00082 (J)	< 0.0022	0.038	< 0.000054	< 0.00011	< 0.0011	< 0.00039	0.092 (J)	< 0.00089	< 0.00073	< 0.00013	< 0.00074	0.764 U	< 0.0014	< 0.00018
PZ-57	8/26/2022	< 0.00078	< 0.0022	0.064	< 0.000054	< 0.00011	< 0.0011	0.0012 (J)	0.083 (J)	< 0.00089	0.0013 (J)	< 0.00013	< 0.00074	0.488 U	< 0.0014	< 0.00018

- 1. Results for metals are reported in milligrams per liter (mg/L).
- 2. < indicates the constituent was not detected above the analytical method detection limit.
- 3. (J) indicates the constituent was detected between the analytical method detection limit and laboratory reporting limit. Therefore, the value displayed (J) is qualified by the laboratory as an estimated number.
- 4. Radium units are in picocuries per liter (pCi/L)
- 5. U indicates the constituent was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce as reliable of a value. Therefore, the value followed by U is qualified by the laboratory as estimated.
- 6. NA indicates constituent was not analyzed.
- 7. October 11, 2022 data are re-sample results for mercury due to the laboratory analyzed the sample outside of the mercury analytical method holding time.

TABLE 8 STATISTICAL METHOD SUMMARY Georgia Power Company - Plant Mitchell Ash Ponds A, 1, and 2 Putney, Georgia

	Data Screening on Proposed Background	Evaluate outliers, trends, and seasonality when sufficient data are available.	
	Statistical Limits	Interwell statistical limits will be applied on a parameter basis, depending on the appropriateness of the method as determined by the Analysis of Variance.	
Statistical Methodology	Prediction Limits	Parametric when data follow a normal or transformed normal distribution and when less than 50% non- detects, utilizing Kaplan Meier non-detect adjustment when applicable.	
		Nonparametric when data sets contain greater than 50% non-detects or when data are not normally or transformed-normally distributed.	
	Management of Non- Detects	When data contain less than 15% non-detects in background, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the practical quantitation limit (PQL) as reported by the laboratory.	
		When data contain between 15-50% non-detects the Kaplan-Meier non-detect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.	
	Confidence Intervals	Used in Assessment and Corrective Action monitoring.	
	No Statistical Testing	Statistical testing is not required for parameters containing 100% non-detects (US EPA Unified Guidance, 2009, Chapter 6).	
	Verification Resample Plan	Optional 1-of-2 with minimum of 8 samples per well for interwell testing.	
	Optional	 Initial statistical exceedance warrants optional independent resampling within 90 days. If resample passes, well/parameter is not a confirmed statistically significant increase (SSI). If resample exceeds, well/parameter has a confirmed SSI. If no resample is collected, the original result is deemed verified. 	

SUMMARY OF GROUNDWATER PROTECTION STANDARDS

Georgia Power Company - Plant Mitchell Ash Ponds A, 1, and 2 Putney, Georgia

Constituent	Units	MCL	Federal CCR Rule Specified Limit ⁽¹⁾	Site-Specific Background August 2022	GWPS ⁽⁴⁾ August 2022
Antimony	mg/L	0.006		0.0035	0.006
Arsenic	mg/L	0.01		0.005	0.01
Barium	mg/L	2.0		0.048	2.0
Beryllium	mg/L	0.004		0.0005	0.004
Cadmium	mg/L	0.005		0.0005	0.005
Chromium	mg/L	0.1		0.01	0.1
Cobalt (2)	mg/L		0.006	0.005	0.006
Combined Radium	pCi/L	5.0		1.66	5.0
Fluoride	mg/L	4.0		0.29	4.0
Lead ^{(2) (3)}	mg/L		0.015	0.001	0.015
Lithium ⁽²⁾	mg/L		0.04	0.03	0.04
Mercury	mg/L	0.002		0.0002	0.002
Molybdenum ⁽²⁾	mg/L		0.1	0.01	0.1
Selenium	mg/L	0.05		0.005	0.05
Thallium	mg/L	0.002		0.001	0.002

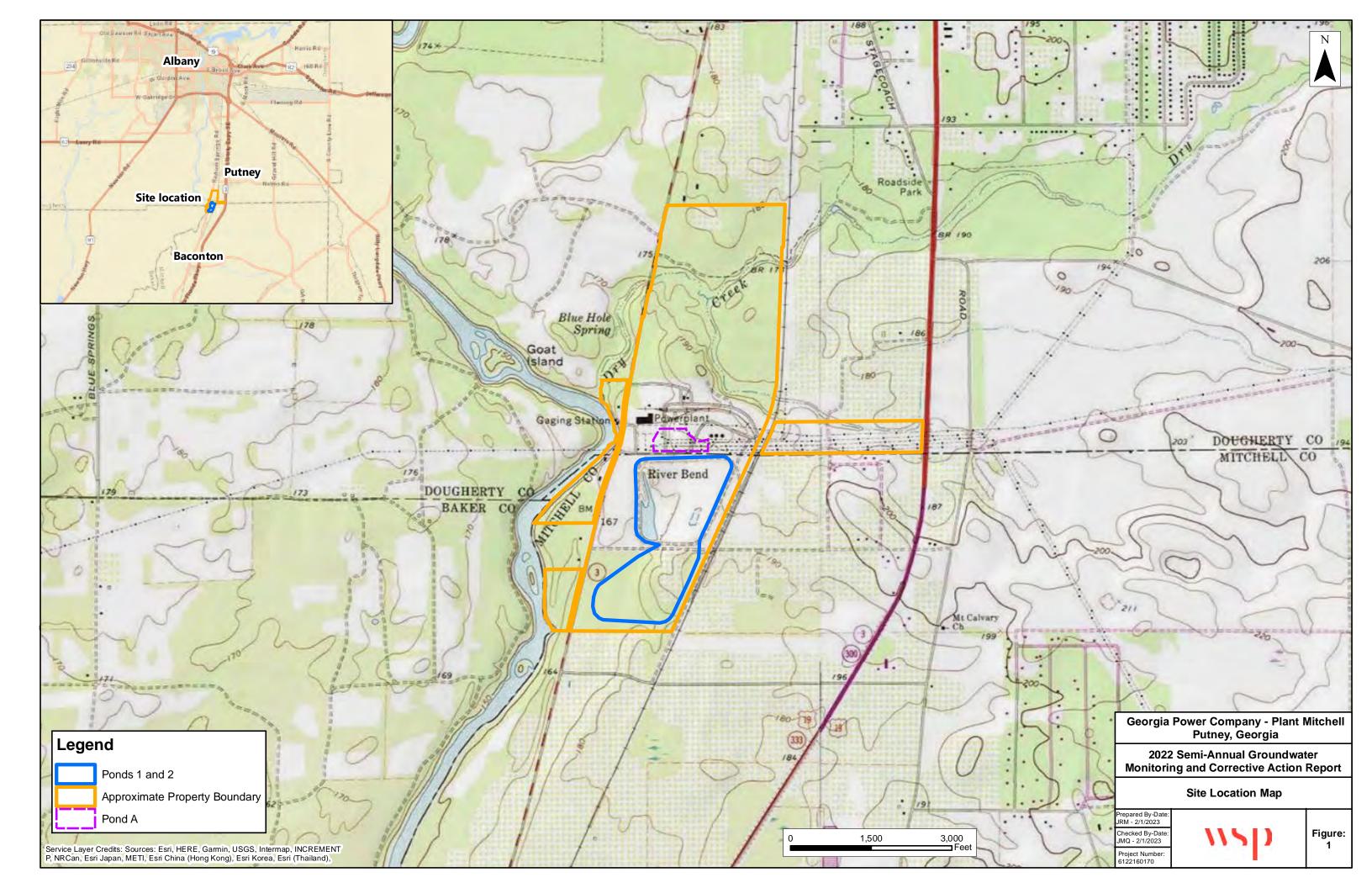
Notes:

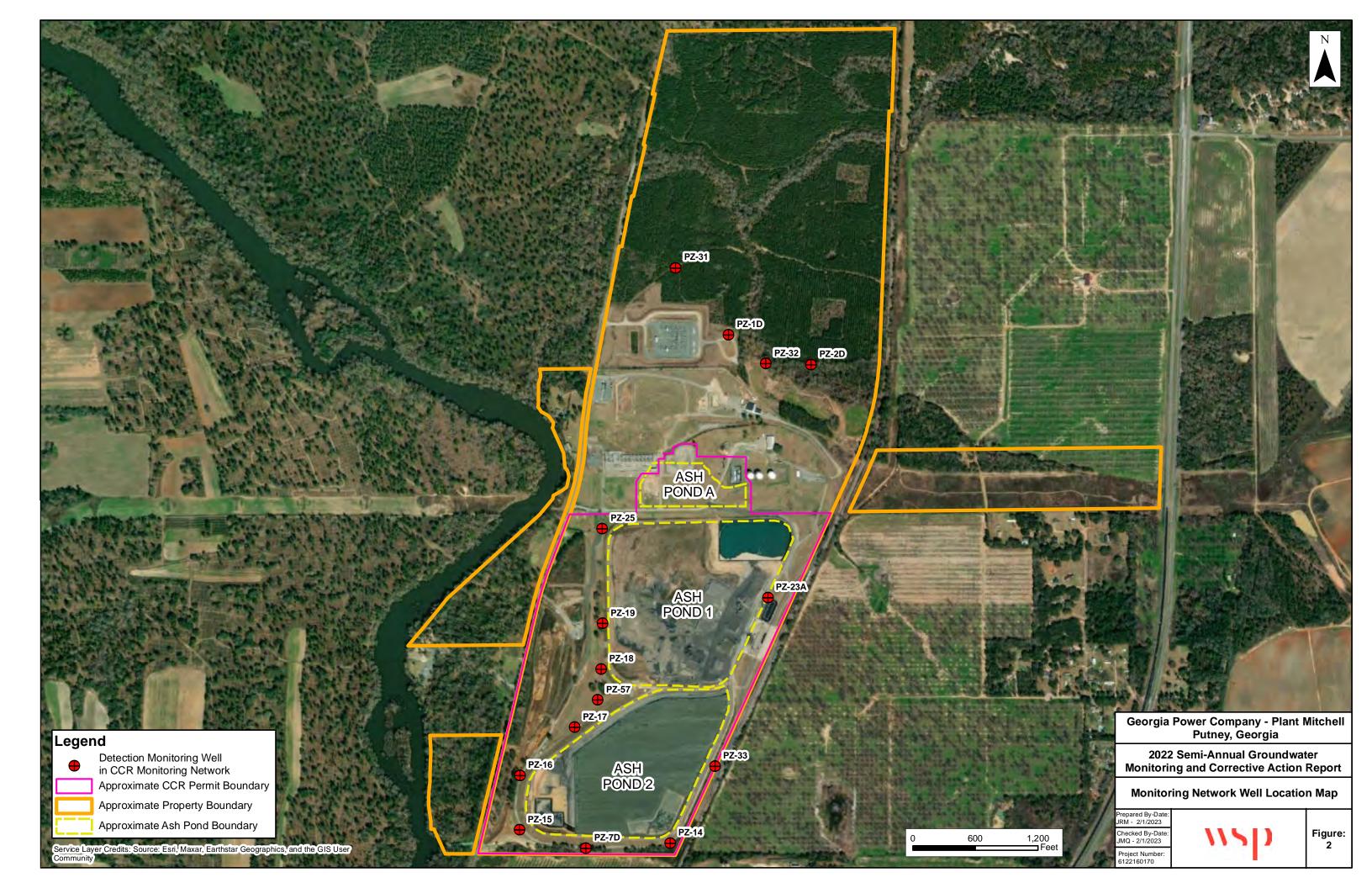
mg/L - milligrams per liter

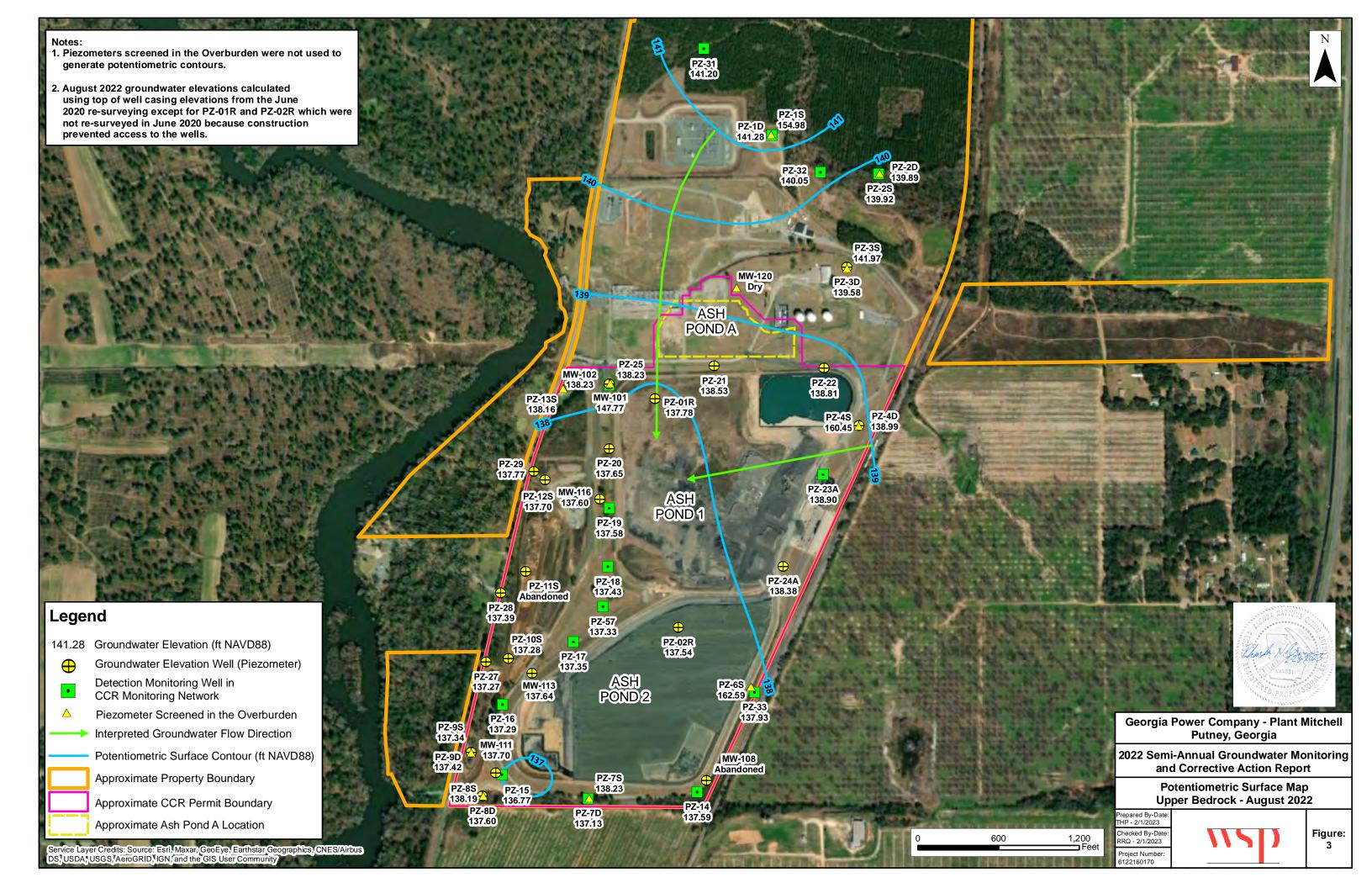
pCi/L - picoCuries per liter

CCR - coal combustion residuals

MCL - Maximum Contaminant Level


GWPS - Groundwater Protection Standard


- (1) Federal CCR Rule 40 CFR § 257.95 (h) Amendment July 30, 2018 lists levels for cobalt, lead, lithium, and molybdenum.
- (2) Constituent without an established MCL.
- (3) Currently, there is no MCL established for lead. The value listed is the established US EPA Action Level for drinking water.
- (4) Effective on February 22, 2022 the Georgia EPD has incorporated the updated GWPS into the current GA EPD Rules for Solid Waste Management 391-3-4-.10(6)(a). As described in the updated Rules, the GWPS is: (i) the MCL
 - (ii) where an MCL has not been established for a constituent, Federal and State CCR Rules specify levels for cobalt (0.006 mg/L), lead (0.015 mg/L), lithium (0.040 mg/L), and molybdenum (0.100 mg/L)
 - (iii) the respective background level for a constituent when the background level is higher than the MCL or Federal CCR Rule specified GWPS



2022 Semi-Annual Groundwater Monitoring and Corrective Action Report Georgia Power Company – Plant Mitchell Ash Ponds A, 1, and 2 Putney, Georgia

FIGURES

2022 Semi-Annual Groundwater Monitoring and Corrective Action Report Georgia Power Company – Plant Mitchell Ash Ponds A, 1, and 2 Putney, Georgia

APPENDIX A WELL INSPECTIONS AND REPAIRS

2022 Semi-Annual Groundwater Monitoring and Corrective Action Report Georgia Power Company – Plant Mitchell Ash Ponds A, 1, and 2 Putney, Georgia

APPENDIX A

WELL REPAIRS

MEMORANDUM

Date: November 18, 2022

To: Kristen Jurinko – Georgia Power

CC: Ben Hodges

From: WSP USA Environment & Infrastructure, Inc.

Subject: Plant Mitchell Ash Ponds A, 1, and 2 - Well Maintenance and Repair

Documentation

Georgia Power Company

WSP USA Environment & Infrastructure, Inc.(WSP) (formerly Wood Environment & Infrastructure Solutions, Inc.) has prepared this memorandum to provide documentation of groundwater monitoring well maintenance and/or repair performed at PLANT MITCHELL during the semi-annual reporting period. All repairs and maintenance were completed in accordance with the Georgia Environmental Protection Division (GAEPD) guidance on routine visual inspections of groundwater monitoring wells.

Georgia Power	Date	Well ID	Maintenance/ Repair Performed
Site/Unit	Performed		
Mitchell Ash Ponds A, 1, & 2	October 2022	MW-103, MW-111, MW-120, PZ-1D, PZ-1S, PZ-3D, PZ-3S, PZ-4D, PZ-4S, PZ-7D, PZ-22, PZ-25, PZ-28, PZ-31, PZ-33	Weeds and grass had grown up around the wells and piezometers. The site was mowed in October 2022 to remove the weeds and grass.
Mitchell Ash Ponds A, 1, & 2	August 26, 2022	MW-102	Well was re-developed to remove suspended sediment from piezometer.
Mitchell Ash Ponds A, 1, & 2	October 2022	MW-8D, MW-8S, MW-9D, MW-9S, MW-10S	Poor access to piezometers due to heavy vegetation. The site was mowed in October 2022.
Mitchell Ash Ponds A, 1, & 2	August 23, 2022	PZ-16	Removed ant mound from around well pad. Replaced well lock.
Mitchell Ash Ponds A, 1, & 2	August 23, 2022	PZ-19	Removed wasp nest from well cover.
Mitchell Ash Ponds A, 1, & 2	August 23, 2022	PZ-22	Removed ant mound from around well pad.

Georgia Power Site/Unit	Date Performed	Well ID	Maintenance/ Repair Performed
Mitchell Ash Ponds A, 1, & 2		PZ-42	Soil loss around PZ-42 due to elevated riverbank scour.
Mitchell Ash Ponds A, 1, & 2		PZ-51	Concrete pad is loose. Repair will be completed.
Mitchell Ash Ponds A, 1, & 2		MW-113	Well pad is deteriorating. Repair will be completed.

Well Redevelopment

					V V L	LL PURGIN	G - FIELD	WATER QU	JALITY ME	ASUREMENT	S FORM		
Location:	a A	,				Identify Me (e.g. Top o	easuring Po of Casing)	oint (MP):	TOC				page $\underline{\int}$ of $\underline{\hat{I}}$
Well ID: Field Samplin	M()	[-102 EVER	Guille	·N	_	Depth to S	creen belo	w MP:	39 Top	_of screen		of screen	Well Depth, (Ft.) 49, 24 Depth To Water (Ft.) 31, 49
					- - ·	Pump Intal Purging De	ke at (ft. be evice (Pum	elow MP): p Type):	47,0 MONS		Bottom 		Water Column (Ft.) /?.75 Well Volume (gal) 9.02
Date	Time	Depth to	Purge Rate	На	Spec	Turbidity	DO	Temp.	(e.g. Dedicat	ed pump, peristal	tic pump, bailer, b	ladder pump, etc.)	
		Water Below MP			Cond.	, are any	Flow cell	1 .	Potential	Purged	e CHEMetrics DO	Ferrous	Comments
	24 hr	ft	mL/min	pH units	mS/cm	NTUs	mg/L	°C	mV	gallons	mg/L (low)	lron mg/L	·
8-26-22	1025	31.49	1000	6,92	502.37	71000	0.74	23.77	-141.3	0.25			BIACK (=DIMEN \$
	1029	32,17		6.99	515,52	71000	1113	23,57	-117,4	1.0			BLACK SEDIMEN &
	1033	33.61			519.35	71000	1.01	23.34		2.0			77.70%
		33:72		6.95	513:13	71000	0.16	24.03	-88,5	3.0			
		33.48		6.97	517.59	>1000	0.58	23,93	-79,3	40			
	1045			7:07	520.15	71000	1.91	24.16	-79.7	5,0			
	1049					>1000	1.26	24,24	-84,0	6.0			
		33.41			519.50	71000		24,45	-77.6	8.0			
		33.63		6195	504:28	>1000	0.16	23:97	-82.7	10,0		_	
	1113	33,38		建7,03	505,93	7000	054	23,37	-39.0	12.0			
	1121	33,47			521.6l	>1000	0.33	23,43		14,0			
	1129	33:58		6,96	512.13	7 1000	0.15	23.71	-80.1	16.0			
	1137	33,3Z		6.97	520,17	1 1		23.53		18.0	-	-	
	1145	33,66		6.96	5/11/2	71000		22,87		20,0		•	
	1153	33,42		6.97	509.32	7/200	0.0	22.68	-74.5	22.0			GRRY-TANISH GRAY
	1201	33,49			522.70	>1000	1.16	23,03	-60,6	24,0	-	_	GRAYISH TAN
	1209	33.58	-	7.02	520,13	71000	1.18	23,23	-53.4	26,0			
	1217	33.42	Y		541.71	>1000	0,07	23,70	-83.5			_	LAST SURGE
	1221	33,49	Ψ		513,21	32 i	0.17	23.31	-40,2				NOT SURGED
	1226	33.31	400	7,02	517,16	92,2	0:14	23,38	-38.7	29.5		_	WATER CLEAR
		33.07	400		518:32			23.27		30.0			
		32.88	400	7,01	519.17	13.2		23,33		30,5			DTB = 49.38
Notes:	1241	32.61	400	7.00	518,91	8,72	0.07	23,29	-3913	31,0		-	DTW=31.37 AFTER RELIGIALES TRANSDUCER (13:04)

Note when "Stabilization" has occurred. Stabilization Criteria (achieved after a minimum of three successive readings): ±0.1 for pH

If stabilization does not occur within 2 hours, contact Site Manager for action. If well goes dry prior to stabilization, stop, allow well to recharge, and collect sample. ±10 mV for redox ±3% for specific cond. ±10% for DO <10 NTUs for turbidity NA for temperature

Well Casing Volume (Gal):

2" diameter well: Water column (ft.) x 0.163

4" diameter well: Water column x 0.653

2022 Semi-Annual Groundwater Monitoring and Corrective Action Report Georgia Power Company – Plant Mitchell Ash Ponds A, 1, and 2 Putney, Georgia

APPENDIX A WELL INSPECTIONS

Site Name	Plant Mitchell			
Permit Number	N/A	-		
Well ID	MW-101	,		
Date	8/13-12	- V	NI -	1
1 Location/	<u>Identification</u>	Yes	No	n/a
a	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require			
	protection from traffic?	<u> </u>		
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)			
2 Protective			P	
а	Is the protective casing free from apparent damage and able to be secured?	/		
b	Is the casing free of degradation or deterioration?			
С	Does the casing have a functioning weep hole?	$\overline{\mathcal{L}}$		
d	Is the annular space between casings clear of debris and water,	•		
	or filled with pea gravel/sand?	<u> </u>		
е	Is the well locked and is the lock in good condition?			
3 <u>Surface p</u>	<u>ad</u>			
а	Is the well pad in good condition (not cracked or broken)?	/		
b	Is the well pad sloped away from the protective casing?			H-4
С	Is the well pad in complete contact with the protective casing?	- /-		
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not	,		
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?	<u>/</u>		
4 Internal ca	asing			
a	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			
C	Is the well properly vented for equilibration of air pressure?		-	
d	Is the survey point clearly marked on the inner casing?		***********	
e f	Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched			
ı	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
5 Sampling:	Groundwater Wells Only:			
a	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition		***************************************	
	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			<u>/</u>
6 Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory	/		
	requirements?			
7 Corrective	actions as needed, by date:			

Name	Plant Mitchell	-		
mit Number	N/A			
II ID	MW-102			
e	8/23/22	Vaa	N	!-
1 Locatio	n/Identification	Yes	No	n/a
а	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require			***************************************
	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)			
2 Protecti	ve Casing			
а	Is the protective casing free from apparent damage and able to be secured?	/		
b	Is the casing free of degradation or deterioration?			
С	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?	∠.		
е	Is the well locked and is the lock in good condition?			
3 <u>Surface</u>	pad			
а	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?	/		
С	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal	casing			
a <u>internar</u>	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from		 .	
-	foreign objects (such as bailers)?	V .		
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?	/		
е	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)	/		
5 Complin	,			
ə <u>Sampini</u> a	g: Groundwater Wells Only: Does well recharge adequately when purged?	/		
b b	If dedicated sampling equipment installed, is it in good condition			
-	and specified in the approved groundwater plan for the facility?			/
С	Does the well require redevelopment (low flow, turbid)?			
6 Based o	n your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?			

Signature and Seal of PE/PG responsible for inspection

Daniel Howard

ite Name	Plant Mitchell				
ermit Number	N/A				
/ell ID	MW-103	- -			
ate	8/23/22				
1 Location	n/Identification	Yes	No	n/a	
a <u>Location</u>	Is the well visible and accessible?				
b	Is the well properly identified with the correct well ID?				
C	Is the well in a high traffic area and does the well require		-		
ŭ	protection from traffic?	./			
d	Is the drainage around the well acceptable? (no standing water,				
	nor is well located in obvious drainage flow path)				
2 Protectiv	ve Casing				
a	Is the protective casing free from apparent damage and able to be				
	secured?	√.			
b	Is the casing free of degradation or deterioration?	7 .			
С	Does the casing have a functioning weep hole?				
d	Is the annular space between casings clear of debris and water,				
	or filled with pea gravel/sand?				
е	Is the well locked and is the lock in good condition?				
3 <u>Surface</u>	<u>pad</u>				
а	Is the well pad in good condition (not cracked or broken)?	1/			,
b	Is the well pad sloped away from the protective casing?			*****	
С	Is the well pad in complete contact with the protective casing?	<u> </u>			
d	Is the well pad in complete contact with the ground surface and				
.	stable? (not undermined by erosion, animal burrows, and does not				
	move when stepped on)				
е	is the pad surface clean (not covered with sediment or debris)?				
4 Internal of	pooing				
a <u>internar</u>	Does the cap prevent entry of foreign material into the well?	1			
b	Is the casing free of kinks or bends, or any obstructions from				
Б	foreign objects (such as bailers)?				
С	Is the well properly vented for equilibration of air pressure?				
d	Is the survey point clearly marked on the inner casing?	-V			•
e	Is the depth of the well consistent with the original well log?				
f	Is the casing stable? (or does the pvc move easily when touched				
	or can it be taken apart by hand due to lack of grout or use of slip	,			
	couplings in construction)				
5 <u>Sampling</u>	g: Groundwater Wells Only:				
а	Does well recharge adequately when purged?				
b	If dedicated sampling equipment installed, is it in good condition				•
	and specified in the approved groundwater plan for the facility?				
С	Does the well require redevelopment (low flow, turbid)?				
6 Based or	your professional judgement, is the well construction / location				
	appropriate to 1) achieve the objectives of the Groundwater				
	Monitoring Program and 2) comply with the applicable regulatory				
	requirements?	<u> </u>			
	e actions as needed, by date:				
<u>Ora</u>	ss needs cutting				

Signature and Seal of PE/PG responsible for inspection

Daniel L Howard

nit Number	N/A			,
ID	MW-111			
!	8-23-22	_		
		Yes	No	n/a
	on/Identification			
a	Is the well visible and accessible? WELL Access OverGROWN			
b	Is the well properly identified with the correct well ID?	Low		
С	Is the well in a high traffic area and does the well require			
d	protection from traffic? Is the drainage around the well acceptable? (no standing water,			
u	nor is well located in obvious drainage flow path)	4°		
***************************************	ive Casing		2. ·	
а	Is the protective casing free from apparent damage and able to be secured?			
b	Is the casing free of degradation or deterioration?			
C	Does the casing have a functioning weep hole?		-	
ď	Is the annular space between casings clear of debris and water,			
-	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?			
3 Surface	*			V
a <u>Suriace</u>			_	
	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?			
С	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal	casing			
а	Does the cap prevent entry of foreign material into the well?	1		
b	Is the casing free of kinks or bends, or any obstructions from			H##
	foreign objects (such as bailers)?	<u>e</u>		
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?			
e	Is the depth of the well consistent with the original well log?	<u>e</u>		
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)	i.		
5 O - · · · · · !!	·			
	g: Groundwater Wells Only: Does well recharge adequately when purged?			
a b	If dedicated sampling equipment installed, is it in good condition			<u></u>
D	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			-
o pased o	n your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?			
	ve actions as needed, by date:			

Signature and Seal of PE/PG responsible for inspection

Name nit Number	Plant Mitchell N/A			
ID	MW-113	- ,	· -	
	8-22-22	_		
		Yes	No	n/a
1 <u>Location</u>	n/Identification			
а	Is the well visible and accessible?	2	•	
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require			
	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,	_		
	nor is well located in obvious drainage flow path)	<u>i</u>		
2 Protectiv	<u>re Casing</u>			
а	Is the protective casing free from apparent damage and able to be	_		
	secured?			
b	Is the casing free of degradation or deterioration?			
C C	Does the casing have a functioning weep hole?	<u> </u>		
d	Is the annular space between casings clear of debris and water,			
0	or filled with pea gravel/sand? Is the well locked and is the lock in good condition?			
е	-			
3 <u>Surface</u>	<u>pad</u>		OLORATI	NG
а	Is the well pad in good condition (not cracked or broken)? ¿'x z' ڳو	o is DETE	2	•
b	Is the well pad sloped away from the protective casing?			
С	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
_	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)			
е	is the pad surface clean (not covered with sediment or debris)?		·	
1 Internal	· ·			***************************************
4 Internal of				
a	Does the cap prevent entry of foreign material into the well?			
	le the enging free of kinks or hands, or any chatructions from			
b	Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?			
	foreign objects (such as bailers)?	<u> </u>		
С	foreign objects (such as bailers)? Is the well properly vented for equilibration of air pressure?	~ ~		
c d	foreign objects (such as bailers)? Is the well properly vented for equilibration of air pressure? Is the survey point clearly marked on the inner casing?	V		
c d e	foreign objects (such as bailers)? Is the well properly vented for equilibration of air pressure? Is the survey point clearly marked on the inner casing? Is the depth of the well consistent with the original well log?	VVV		
c d	foreign objects (such as bailers)? Is the well properly vented for equilibration of air pressure? Is the survey point clearly marked on the inner casing?	VVV		
c d e	foreign objects (such as bailers)? Is the well properly vented for equilibration of air pressure? Is the survey point clearly marked on the inner casing? Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched			
c d e f	foreign objects (such as bailers)? Is the well properly vented for equilibration of air pressure? Is the survey point clearly marked on the inner casing? Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)			
c d e f	foreign objects (such as bailers)? Is the well properly vented for equilibration of air pressure? Is the survey point clearly marked on the inner casing? Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip			
c d e f 5	foreign objects (such as bailers)? Is the well properly vented for equilibration of air pressure? Is the survey point clearly marked on the inner casing? Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) Groundwater Wells Only: Does well recharge adequately when purged? If dedicated sampling equipment installed, is it in good condition			
c d e f 5 <u>Sampling</u> a	foreign objects (such as bailers)? Is the well properly vented for equilibration of air pressure? Is the survey point clearly marked on the inner casing? Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) Groundwater Wells Only: Does well recharge adequately when purged? If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?			
c d e f 5 <u>Sampling</u> a	foreign objects (such as bailers)? Is the well properly vented for equilibration of air pressure? Is the survey point clearly marked on the inner casing? Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) Groundwater Wells Only: Does well recharge adequately when purged? If dedicated sampling equipment installed, is it in good condition			
c d e f 5 <u>Sampling</u> a b	foreign objects (such as bailers)? Is the well properly vented for equilibration of air pressure? Is the survey point clearly marked on the inner casing? Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) Groundwater Wells Only: Does well recharge adequately when purged? If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?			
c d e f 5 <u>Sampling</u> a b	foreign objects (such as bailers)? Is the well properly vented for equilibration of air pressure? Is the survey point clearly marked on the inner casing? Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) I: Groundwater Wells Only: Does well recharge adequately when purged? If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? Does the well require redevelopment (low flow, turbid)?			
c d e f 5 <u>Sampling</u> a b	foreign objects (such as bailers)? Is the well properly vented for equilibration of air pressure? Is the survey point clearly marked on the inner casing? Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) Groundwater Wells Only: Does well recharge adequately when purged? If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? Does the well require redevelopment (low flow, turbid)?			

mit Number	N/A	_		
LID				
I ID	MW-116	-		
e	8/23/22	_		
4.1	(I. I	Yes	No	n/a
	<u>(Identification</u>	_		
a	Is the well visible and accessible?	<u> </u>		
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require	He	_	
	protection from traffic?	<u> </u>		
d	Is the drainage around the well acceptable? (no standing water,	/		
	nor is well located in obvious drainage flow path)	<u></u>		
2 Protective				
а	Is the protective casing free from apparent damage and able to be secured?	/		
b	Is the casing free of degradation or deterioration?			
С	Does the casing have a functioning weep hole?	$\overline{}$		
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?			
3 Surface p	ad			
а	Is the well pad in good condition (not cracked or broken)?			
b	•			
	Is the well pad sloped away from the protective casing?	<u></u>		
С	Is the well pad in complete contact with the protective casing?	<u></u>		
d	Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)	. .		
е	Is the pad surface clean (not covered with sediment or debris)?			
41.				
4 Internal ca				
a	Does the cap prevent entry of foreign material into the well?	<u> </u>		
b	Is the casing free of kinks or bends, or any obstructions from	,	•	
	foreign objects (such as bailers)?	<u> </u>		
C	Is the well properly vented for equilibration of air pressure?	V		
d	Is the survey point clearly marked on the inner casing?			
e	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
F.G	, and the second			
	Groundwater Wells Only:			1
a	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
•	and specified in the approved groundwater plan for the facility?			V
С	Does the well require redevelopment (low flow, turbid)?			
6 Based on	your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?			
7.0	•			
7 Corrective	actions as needed, by date:			

Signature and Seal of PE/PG responsible for inspection

Daniel & Howard

	Plant Mitchell			
it Number	N/A			•
ID	MW-119			
	8/22/22	Vac	NI.	I-
1 Locatio	n/Identification	Yes	No	n/a
a	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)	/		
2 Protecti	ve Casing		· ·	
а	Is the protective casing free from apparent damage and able to be secured?			
b	Is the casing free of degradation or deterioration?	*		
С	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?	V		
е	Is the well locked and is the lock in good condition?	V		n
3 <u>Surface</u>	pad			
а	Is the well pad in good condition (not cracked or broken)?	./		
b	·			
	Is the well pad sloped away from the protective casing?	V		
c d	Is the well pad in complete contact with the protective casing? Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)	./		
e	Is the pad surface clean (not covered with sediment or debris)?	<u>/</u>		
4 <u>Internal</u>	occing.			
a a	Does the cap prevent entry of foreign material into the well?	/		
b	Is the casing free of kinks or bends, or any obstructions from		 .	
~	foreign objects (such as bailers)?	/		
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?	V		
е	Is the depth of the well consistent with the original well log?	1/		
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
	g: Groundwater Wells Only:			
a	Does well recharge adequately when purged?			<u> </u>
b	If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?			. /
С	Does the well require redevelopment (low flow, turbid)?			<u>-V</u>
		 -		
v dased ol	n your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	/		• •

Signature and Seal of PE/PG responsible for inspection

Daniel L Howard

Site Name	Plant Mitchell			
Permit Number	N/A	-		ž.
Well ID	MW-120			
Date	8/22/22	-		
1 Location	/Identification	Yes	No	n/a
a	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?			-
c	Is the well in a high traffic area and does the well require protection from traffic?	<u></u>		
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)			
2 Protective	e Casing			
a	Is the protective casing free from apparent damage and able to be secured?			
b	Is the casing free of degradation or deterioration?			
С	Does the casing have a functioning weep hole?	1		
d	Is the annular space between casings clear of debris and water,			Market and Control of the Control of
	or filled with pea gravel/sand?	V		
е	Is the well locked and is the lock in good condition?	\overline{Z}		
3 <u>Surface p</u>	<u>pad</u>			
а	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?			
С	Is the well pad in complete contact with the protective casing?	<u> </u>		
d	Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal ca	asina	***************************************		
a	Does the cap prevent entry of foreign material into the well?	./		
b	Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?	<u> </u>	 .	
С	Is the well properly vented for equilibration of air pressure?	1/		
d	Is the survey point clearly marked on the inner casing?			
е	Is the depth of the well consistent with the original well log?	V		
f	Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)			
5 Sampling:	Groundwater Wells Only:			
a	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?			<u></u>
С	Does the well require redevelopment (low flow, turbid)?			<u> </u>
6 Based on	your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	✓		
	actions as needed, by date:			

Signature and Seal of PE/PG responsible for inspection

Daniel L Howard

Site Name	Plant Mitchell			
Permit Number	N/A			
Well ID	PZ-IA			
Date	8/23/22			_
1 Location	/Identification	Yes	No	n/a
a	Is the well visible and accessible?	./		
b	Is the well properly identified with the correct well ID?	-		
С	Is the well in a high traffic area and does the well require			
	protection from traffic?		1	
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)			
2 Protective				÷
а	Is the protective casing free from apparent damage and able to be secured?			
b	Is the casing free of degradation or deterioration?			7
С	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?			7
3 <u>Surface p</u>	· · · · · · · · · · · · · · · · · · ·			
a				4
b	Is the well pad in good condition (not cracked or broken)?			<u> </u>
	Is the well pad sloped away from the protective casing?			1
C	Is the well pad in complete contact with the protective casing?			1
ď	Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)			/
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal ca	asing			
a	Does the cap prevent entry of foreign material into the well?	/		
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?			
e	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	/		
5 Sampling	Groundwater Wells Only:			
а <u>батряту.</u>	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			$\overline{\mathcal{L}}$
6 Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory	,		
	requirements?			
7 Corrective	actions as needed, by date:			

Signature and Seal of PE/PG responsible for inspection

Daniel & Howard

Name mit Number	Plant Mitchell N/A				
II ID e	8/22/22	-			
	0122/22	Yes	No	n/a	
1 Location	n/Identification		.,,		
а	Is the well visible and accessible?				•
b	Is the well properly identified with the correct well ID?	$\overline{\mathcal{L}}$			
С	Is the well in a high traffic area and does the well require				
-1	protection from traffic?				
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)			***	
2 Protecti	ve Casing				
а	Is the protective casing free from apparent damage and able to be				
	secured?			-	
b	Is the casing free of degradation or deterioration?	-			
C	Does the casing have a functioning weep hole?				
d	Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?	./			
е	Is the well locked and is the lock in good condition?	V			
	·				
3 <u>Surface</u>	<u>pad</u>	,			
а	Is the well pad in good condition (not cracked or broken)?				
b	Is the well pad sloped away from the protective casing?				
С	Is the well pad in complete contact with the protective casing?				
d	Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)		***************************************	,	
е	Is the pad surface clean (not covered with sediment or debris)?				
4 Internal		_			
a	Does the cap prevent entry of foreign material into the well?	<u></u>			
b	Is the casing free of kinks or bends, or any obstructions from	./			
	foreign objects (such as bailers)?				
C.	Is the well properly vented for equilibration of air pressure?	<u> </u>			
d	Is the survey point clearly marked on the inner casing? Is the depth of the well consistent with the original well log?	<u> </u>	***************************************		
e f	Is the casing stable? (or does the pvc move easily when touched	<u> </u>			
'	or can it be taken apart by hand due to lack of grout or use of slip				
	couplings in construction)				
5 <u>Sampling</u>	g: Groundwater Wells Only:	,			
а	Does well recharge adequately when purged?				
b	If dedicated sampling equipment installed, is it in good condition				
	and specified in the approved groundwater plan for the facility?				
С	Does the well require redevelopment (low flow, turbid)?				
6 Based or	your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	/			
6 Based or 7 Correctiv	a your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory				

Signature and Seal of PE/PG responsible for inspection

Daniel Howard

Site Name	Plant Mitchell			
Permit Number	N/A	•		
Well ID	PZ-OIR			
Date	8/23/22			
1 Location/	Identification	Yes	No	n/a
a	Is the well visible and accessible?			•
b	Is the well properly identified with the correct well ID?			
C	Is the well in a high traffic area and does the well require			
	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)	/		
2 Protective				
a	Is the protective casing free from apparent damage and able to be			
	secured?			
b	Is the casing free of degradation or deterioration?			
С	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?			
, e	Is the well locked and is the lock in good condition?			
3 <u>Surface p</u>	•			
а а				,
h	Is the well pad in good condition (not cracked or broken)?			<u> </u>
b	Is the well pad sloped away from the protective casing?			<u> </u>
С	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			<i>,</i>
	move when stepped on)			<u> </u>
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal ca	<u>asing</u>			
а	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?		,	
С	Is the well properly vented for equilibration of air pressure?	1/		·
d	Is the survey point clearly marked on the inner casing?			
е	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched			****
	or can it be taken apart by hand due to lack of grout or use of slip	_		
	couplings in construction)			
5 <u>Sampling:</u>	Groundwater Wells Only:			
a	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
С	and specified in the approved groundwater plan for the facility? Does the well require redevelopment (low flow, turbid)?			<u> </u>
	· · · · · · · · · · · · · · · · · · ·			
o based on	your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater			()
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?			
	actions as needed, by date:	<u>v</u> .		
i Contective	asions as needed, by date.			

Signature and Seal of PE/PG responsible for inspection

Daniel R Howard

me Number	Plant Mitchell N/A	-		
	P7-15			
)	8/22/22	-		
		Yes	No	n/a
1 Location	n/Identification	4		
а	Is the well visible and accessible?	<u> </u>		
b	Is the well properly identified with the correct well ID?	V		
C	Is the well in a high traffic area and does the well require protection from traffic?		_/	
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)			•
2 Protecti	ve Casing			
а	Is the protective casing free from apparent damage and able to be secured?	V		
b	Is the casing free of degradation or deterioration?			
C	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?	1		
е	Is the well locked and is the lock in good condition?			
3 Surface	pad			
а	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?			
С	Is the well pad sloped away from the protective casing? Is the well pad in complete contact with the protective casing?	<u></u>		
d	Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal	· · ·			
a	Does the cap prevent entry of foreign material into the well?	/		
b	Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?		N// 1	
С	Is the well properly vented for equilibration of air pressure?	~ /		
d	Is the survey point clearly marked on the inner casing?	<u> </u>		
е	Is the depth of the well consistent with the original well log?	· ·		
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip	_		
	couplings in construction)		,	
5 <u>Samplin</u>	g: Groundwater Wells Only:			
a	Does well recharge adequately when purged?	. .		
b	If dedicated sampling equipment installed, is it in good condition			
С	and specified in the approved groundwater plan for the facility? Does the well require redevelopment (low flow, turbid)?			
	· · · · · · · · · · · · · · · · · · ·	·	<u>.</u>	
o Based o	n your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	·		

Signature and Seal of PE/PG responsible for inspection

Daniel & Howard

Site Name	Plant Mitchell			
Permit Number	N/A	,		
Well ID	$\frac{NZ-2A}{}$,		
Date	8/23/22	V		,
1 Location/	/Identification	Yes	No	n/a
a	Is the well visible and accessible?	/		•
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require			
	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)			
2 Protective			.* .	•
а	Is the protective casing free from apparent damage and able to be			_
b	secured? Is the casing free of degradation or deterioration?			<u></u>
C	Does the casing have a functioning weep hole?		•	
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?			7
3 <u>Surface</u> p	p <u>ad</u>			
а	Is the well pad in good condition (not cracked or broken)?			
b	•			~
С	Is the well pad sloped away from the protective casing? Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal ca	asing			
a	Does the cap prevent entry of foreign material into the well?	/		
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?	<u>/</u> ,		*
C	Is the well properly vented for equilibration of air pressure?		<u> </u>	
d	Is the survey point clearly marked on the inner casing?	1		***************************************
e f	Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched	<u> </u>		
ı	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
5 <u>Sampling:</u>	Groundwater Wells Only:			
а	Does well recharge adequately when purged?			~
b	If dedicated sampling equipment installed, is it in good condition			/
С	and specified in the approved groundwater plan for the facility? Does the well require redevelopment (low flow, turbid)?			
o Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	/		
7 Corrective	actions as needed, by date:			

Signature and Seal of PE/PG responsible for inspection

Daniel L Howard

Site Name	Plant Mitchell			
Permit Number	N/A			
Vell ID	PZ-2D	,		
Date	•	-		
4.1	W. C. (1997) (1997)	Yes	No	n/a
	/Identification			
a	Is the well visible and accessible?	_/_		
b	Is the well properly identified with the correct well ID?			·
С	Is the well in a high traffic area and does the well require protection from traffic?		/	
d	Is the drainage around the well acceptable? (no standing water,			
u	nor is well located in obvious drainage flow path)	./		
O Danta atta				
2 Protectiv			<i></i>	*
а	Is the protective casing free from apparent damage and able to be secured?			
b	Is the casing free of degradation or deterioration?	<u>~</u>		-
C	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?	/		
е	Is the well locked and is the lock in good condition?			
3 <u>Surface r</u>				
a <u>ounace r</u>		_		
	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?			
С	Is the well pad in complete contact with the protective casing?	V		
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)	<u> </u>		
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal c	asing			
a	Does the cap prevent entry of foreign material into the well?	1		
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?	V		
е	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip	/		
	couplings in construction)			
5 <u>Sampling</u>	: Groundwater Wells Only:	1		-
a	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition	/		
0	and specified in the approved groundwater plan for the facility? Does the well require redevelopment (low flow, turbid)?	<u> </u>		
C				
ช Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory requirements?			
7.0	·	<u> </u>		
/ Corrective	e actions as needed, by date:			

Signature and Seal of PE/PG responsible for inspection

Daviel Howard

Site Name	Plant Mitchell			
Permit Number	N/A	- -	<u>.</u>	,
Well ID	PZ-OAR	_		
Date	8/23/22	- V	M.	
1 Location	<u>/Identification</u>	Yes	No	n/a
a	Is the well visible and accessible?	/		
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require			
	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)			
2 Protectiv				
а	Is the protective casing free from apparent damage and able to be			_
h	secured?			
b c	Is the casing free of degradation or deterioration? Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,	PARTITION 1		
ŭ.	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?			
3 <u>Surface p</u>				
a <u>odridoo r</u>				
b	Is the well pad in good condition (not cracked or broken)?			
	Is the well pad sloped away from the protective casing?			
C	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)			1
е	Is the pad surface clean (not covered with sediment or debris)?			
1 Internal o	nging			
4 <u>Internal c</u> a	Does the cap prevent entry of foreign material into the well?	1		
b	Is the casing free of kinks or bends, or any obstructions from	<u>~</u>		*****
V	foreign objects (such as bailers)?	V		
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?	1		
е	Is the depth of the well consistent with the original well log?	1		
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)			
5.0 "	,			· · · · · · · · · · · · · · · · · · ·
	Groundwater Wells Only: Does well recharge adequately when purged?			
a b	If dedicated sampling equipment installed, is it in good condition			
Б	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			-/
6 Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory	٥		
	requirements?	-i/		
7 Corrective	actions as needed, by date:			

Signature and Seal of PE/PG responsible for inspection

Daniel L Howard

Site Name	Plant Mitchell			
Permit Number	N/A	-	-5	. ,
Well ID	PZ-25	-		
Date	8/22/22	 	N1 .	,
1 Location	n/Identification	Yes	No	n/a
a	Is the well visible and accessible?	./		
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require			
	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)	_		
2 Protectiv	ve Casing			
а	Is the protective casing free from apparent damage and able to be			
	secured?			
Ь	Is the casing free of degradation or deterioration?			
C	Does the casing have a functioning weep hole?			******************
d	Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?	/		
е	Is the well locked and is the lock in good condition?	<u> </u>		
	-			
3 <u>Surface</u>		,		
a	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?	1		
С	Is the well pad in complete contact with the protective casing?	7		
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
•	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal of	casing			
а	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			-
C	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?			
e f	Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched			
1	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	/		
5 Sampling	g: Groundwater Wells Only:			
a <u>oampiins</u>	Does well recharge adequately when purged?			/
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			
6 Based or	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory	/	•	
	requirements?	V		
7 Corrective	e actions as needed, by date:			

Name	Plant Mitchell			
nit Number	N/A			
ID	pz-30	•		
)	8/22/22			
4 1 0001:00	//	Yes	No	n/a
	n/Identification	/		
a	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require protection from traffic?		. /	
đ	Is the drainage around the well acceptable? (no standing water,			
u	nor is well located in obvious drainage flow path)			
2 Protectiv	ve Casing			
а	Is the protective casing free from apparent damage and able to be			
	secured?	/		
b	Is the casing free of degradation or deterioration?			
С	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,	_		
	or filled with pea gravel/sand?	<u>/</u>		
е	Is the well locked and is the lock in good condition?			
3 <u>Surface</u>	<u>pad</u>			
а	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?	/		
С	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			-
4 Internal of				
a a	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			
S	foreign objects (such as bailers)?	/		
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?			
e	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip	_		
	couplings in construction)	V		
5 <u>Sampling</u>	g: Groundwater Wells Only:			-
а	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			<u> </u>
6 Based or	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	V		
	e actions as needed, by date:			
	Grass needs catting around well			

Name	Plant Mitchell			
nit Number	N/A	 -		,
ID	<u> </u>	_		
	8/22/22	,		
1 Location	n/Identification	Yes	No	n/a
a <u>Eogatioi</u>	Is the well visible and accessible?	1		•
b	Is the well properly identified with the correct well ID?			
C	Is the well in a high traffic area and does the well require		-	
Ü	protection from traffic?		./	
d	Is the drainage around the well acceptable? (no standing water,			
_	nor is well located in obvious drainage flow path)			
2 Protectiv	ve Casing			
<u>а</u>	Is the protective casing free from apparent damage and able to be		•	
	secured?			
b	Is the casing free of degradation or deterioration?			
С	Does the casing have a functioning weep hole?	7		
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?			
3 Surface	pad			
а	Is the well pad in good condition (not cracked or broken)?			
b	·			
	Is the well pad sloped away from the protective casing?			
C	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not move when stepped on)	. /		
е	,			
G	Is the pad surface clean (not covered with sediment or debris)?	<u> </u>		
4 Internal of	casing			
а	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?	\checkmark		
d	Is the survey point clearly marked on the inner casing?			
е	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
	g: Groundwater Wells Only:			
a	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
0	and specified in the approved groundwater plan for the facility? Does the well require redevelopment (low flow, turbid)?			
C				
6 Based or	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	<u> </u>		
	e actions as needed, by date:			.
	grass needs cutting around well. Mudat	bot	tomo	Fwell

Site Name	Plant Mitchell			
Permit Number	N/A	_		
Vell ID	17-4D	-		
Pate	8/23/22	V.,	NI -	
1 Location/	<u>Identification</u>	Yes	No	n/a
a	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?	-		
С	Is the well in a high traffic area and does the well require			
	protection from traffic?	****		
d	Is the drainage around the well acceptable? (no standing water,	/		
	nor is well located in obvious drainage flow path)			
2 Protective			·* .	
а	Is the protective casing free from apparent damage and able to be secured?	1		
b	Is the casing free of degradation or deterioration?			
С	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,	_		
0	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?	→		B
3 <u>Surface p</u>	<u>ad</u>	•		
a	Is the well pad in good condition (not cracked or broken)?	<u></u>		
Ь	Is the well pad sloped away from the protective casing?	V		
С	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and	•		
	stable? (not undermined by erosion, animal burrows, and does not move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?	<u></u>		
		<u> </u>		
4 <u>Internal ca</u>				
a b	Does the cap prevent entry of foreign material into the well? Is the casing free of kinks or bends, or any obstructions from			
b	foreign objects (such as bailers)?	V		
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?	<u> </u>		
е	Is the depth of the well consistent with the original well log?			
f ,	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)			
5 Sampling	Groundwater Wells Only:			
а <u>одтринд.</u>	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			_/_
С	Does the well require redevelopment (low flow, turbid)?			Z
6 Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory requirements?	/		
70	•	<u> </u>		C+N
	actions as needed, by date:			
<u> </u>	Is need cutting back	·		

Signature and Seal of PE/PG responsible for inspection

Daniel Howard

Name	Plant Mitchell			
nit Number	N/A	•		•
ID	PZ-45			
	3/123/22	,		
1 Location/I	dentification	Yes	No	n/a
a <u>Locationii</u>	Is the well visible and accessible?	/		
b	Is the well properly identified with the correct well ID?			
C	Is the well in a high traffic area and does the well require			
Ü	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)			
2 Protective	Casing			
a	Is the protective casing free from apparent damage and able to be		•	
	secured?	/		
b	Is the casing free of degradation or deterioration?			
С	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?		-	
е	Is the well locked and is the lock in good condition?			
3 <u>Surface pa</u>	<u>ad</u>			
а	Is the well pad in good condition (not cracked or broken)?	/		
b	Is the well pad sloped away from the protective casing?			
С	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
4 <u>Internal ca</u>	sing			
а	Does the cap prevent entry of foreign material into the well?	V		
	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			
	Is the well properly vented for equilibration of air pressure?	/_	-	
	Is the survey point clearly marked on the inner casing?			-
	Is the depth of the well consistent with the original well log?		-	
	Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			Z DH
	Groundwater Wells Only:			<u> </u>
	Does well recharge adequately when purged?			
	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			
6 Based on y	our professional judgement, is the well construction / location	· 		
-	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory	/		
i	requirements?	_/		
	actions as needed, by date:			
INIO	eds meed cutting back			

Signature and Seal of PE/PG responsible for inspection

David Howard

Site Name	Plant Mitchell	_		
Permit Number	N/A	_ _	-	,
Well ID Date	P2-65	_		
Date	8/22/22	- Yes	No	n la
1 Location/	<u>Identification</u>	165	No	n/a
а	Is the well visible and accessible?			•
b	Is the well properly identified with the correct well ID?	$\overline{}$		
С	Is the well in a high traffic area and does the well require protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)			
2 Protective	e Casing			
a	Is the protective casing free from apparent damage and able to be secured?	/		
b	Is the casing free of degradation or deterioration?	7		
С	Does the casing have a functioning weep hole?	-		
d	Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?			***************************************
е	Is the well locked and is the lock in good condition?	-//		
	-			
3 <u>Surface p</u> a				
	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?			
С	Is the well pad in complete contact with the protective casing?	$\overline{\mathcal{L}}$		
d	Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)	<u> </u>		
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal ca	asing	_		
а	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?			V-14
d	Is the survey point clearly marked on the inner casing?			
е	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip	_		
7 0 "	couplings in construction)	- V		
	Groundwater Wells Only: Does well recharge adequately when purged?			
a b	If dedicated sampling equipment installed, is it in good condition			
b	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			
6 Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory	/		
	requirements?	<u>/</u>		
7 Corrective	actions as needed, by date:			

Signature and Seal of PE/PG responsible for inspection

Name	Plant Mitchell			
nit Number	N/A	_		ě
I ID e	PZ-7D 8-22-22			
,	8-22-20	- Yes	No	n/a
1 <u>Locatio</u>	n/Identification	165	NO	11/a
а	Is the well visible and accessible?	سسين		
b	Is the well properly identified with the correct well ID?	<u> </u>	***************************************	
С	Is the well in a high traffic area and does the well require			***************************************
	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)	4		
2 Protecti	ve Casing			
a	Is the protective casing free from apparent damage and able to be	!		
	secured?	~		
b	Is the casing free of degradation or deterioration?			
С	Does the casing have a functioning weep hole?	<i>i</i> /		
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?	i/		
3 <u>Surface</u>	pad			
а	Is the well pad in good condition (not cracked or broken)?	i comment		
b	Is the well pad sloped away from the protective casing?	2 4544		
С	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)	4		
е	Is the pad surface clean (not covered with sediment or debris)?	v		
4 Internal	casing			
a	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?	نسست		
С	Is the well properly vented for equilibration of air pressure?	•	,	
d	Is the survey point clearly marked on the inner casing?			
е	Is the depth of the well consistent with the original well log?			-
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip	. /		
	couplings in construction)			
	g: Groundwater Wells Only:	/		
a b	Does well recharge adequately when purged? If dedicated sampling equipment installed, is it in good condition			
Ь	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			
	n your professional judgement, is the well construction / location			
5 Daooa 01	appropriate to 1) achieve the objectives of the Groundwater			
	requirements?			
	Monitoring Program and 2) comply with the applicable regulatory requirements? The actions as needed, by date: THE WELL PAD	_	-	

Signature and Seal of PE/PG responsible for inspection

Number	N/A	_		
)	PZ-75	-		
	8-22-22	- -	N1 .	,
1 Location	n/Identification	Yes	No	n/a
a	Is the well visible and accessible?	/		
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require protection from traffic?			***************************************
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)			
2 Protecti	ve Casing			
a a	Is the protective casing free from apparent damage and able to be secured?		•	
b	Is the casing free of degradation or deterioration?	-		
C	Does the casing have a functioning weep hole?	_		
d	Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?	~		
е	Is the well locked and is the lock in good condition?	~		
3 Surface	•			
a <u>Surrace</u>				
_	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?			
С	Is the well pad in complete contact with the protective casing?	à/		
d	Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
1 Internal				
4 Internal	Does the cap prevent entry of foreign material into the well?	./		
b	Is the casing free of kinks or bends, or any obstructions from			
D	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?			
е	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
5 Sampling	g: Groundwater Wells Only:			
a	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?			/
С	Does the well require redevelopment (low flow, turbid)?		ACCORDING TO SECURITY	
6 Based or	n your professional judgement, is the well construction / location			
_3004 01	appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	./		
	e actions as needed, by date:			

Signature and Seal of PE/PG responsible for inspection

Site Name	Plant Mitchell			
Permit Number	N/A	-		
Well ID	PZ-80			
Date	8-2322	 _V	N1	,
1 Location	n/Identification	Yes	No	n/a
а	Is the well visible and accessible? Poor Access		-	
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require protection from traffic?			Re-resident and Assessment
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)			
2 Protecti	ve Casing			
a	Is the protective casing free from apparent damage and able to be secured?		•	
b	Is the casing free of degradation or deterioration?		***************************************	***************************************
С	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?	·/		
3 Surface	<u>pad</u>			****
а	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?			
С	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)	<u> </u>		
е	Is the pad surface clean (not covered with sediment or debris)?	- Comment		·
4 <u>Internal</u>	casing			
а	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?			, , , , , , , , , , , , , , , , , , ,
d	Is the survey point clearly marked on the inner casing?	1		
е	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
5 <u>Samplin</u>	g: Groundwater Wells Only:			
a	Does well recharge adequately when purged?	FVC-IN		<u> </u>
b	If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?			V
С	Does the well require redevelopment (low flow, turbid)?			
6 Based o	n your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?			,
7 Correctiv	ve actions as needed, by date:			

Signature and Seal of PE/PG responsible for inspection

it Number	N/A	_	٠.	
ID .	PZ-85	_		
	8-23-22	V	M.	
1 Locatio	on/Identification	Yes	No	n/a
<u></u>	Is the well visible and accessible? Poor Access		ë.	
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)			
2 Protect	ive Casing			
а	Is the protective casing free from apparent damage and able to be secured?		,	
b	Is the casing free of degradation or deterioration?	-		
С	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?	<u></u>		
3 Surface	<u>e pad</u>			
а	Is the well pad in good condition (not cracked or broken)?	CALADON .		
b	Is the well pad sloped away from the protective casing?			
С	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not			
0	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal				
a	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?		٠	
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?			
ė	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip	_		
	couplings in construction)			
5 <u>Samplir</u>	ng: Groundwater Wells Only:			
a	Does well recharge adequately when purged?			_1/
b	If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?		·	V
С	Does the well require redevelopment (low flow, turbid)?			_ V
6 Based o	on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?			

Signature and Seal of PE/PG responsible for inspection

it Number	N/A			,
ID	P2-9D	-		
)	8-23-27			
1 Locatio	n/Identification	Yes	No	n/a
а	Is the well visible and accessible? Poor Access		~	
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require protection from traffic?		V	
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)			
2 Protecti	ve Casing		21	
a	Is the protective casing free from apparent damage and able to be secured?		·	
b	Is the casing free of degradation or deterioration?		Real-	
С	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?			
3 <u>Surface</u>	pad			
а	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?			
С	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal			***************************************	
a a	Does the cap prevent entry of foreign material into the well?	A STATE OF THE STA		
b	Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?			
e	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)	/		
5 <u>Samplin</u>	g: Groundwater Wells Only:		-	
а	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?	18-18-Tendischer Ummerst		
С	Does the well require redevelopment (low flow, turbid)?			
6 Based or	n your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	/		

Signature and Seal of PE/PG responsible for inspection

t Number	N/A	_		. ,
D	PZ-98	·		
	8-23-22	_ Yes	No	
1 Location	on/Identification	162	NO	n/a
а	Is the well visible and accessible? Pour Access		e	
b	Is the well properly identified with the correct well ID?	-	,	
С	Is the well in a high traffic area and does the well require protection from traffic?			,
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)	c		
2 Protect	tive Casing			
a	Is the protective casing free from apparent damage and able to be secured?	٠		÷
b	Is the casing free of degradation or deterioration?	<u> </u>		
С	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?	· Alleranda		****
3 Surface	<u>e pad</u>			
а	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?			*******
С	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal	casing		•	
a	Does the cap prevent entry of foreign material into the well?	4		
b	Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?	in		
e f	Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)			
5 <u>Samplir</u>	ng: Groundwater Wells Only:			
а	Does well recharge adequately when purged?			~
b	If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			1
6 Based o	on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?			

Signature and Seal of PE/PG responsible for inspection

it Number	N/A	_		
D	PZ-108	- -		
	8-23-22	- - -	N.	,
1 <u>Locatio</u>	n/ldentification	Yes	No	n/a
а	Is the well visible and accessible? Poor Access		~	
b	Is the well properly identified with the correct well ID?	V		
С	Is the well in a high traffic area and does the well require protection from traffic?		v	
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)	V		
2 Protecti	ive Casing			
а	Is the protective casing free from apparent damage and able to be secured?		·	
b	Is the casing free of degradation or deterioration?			
С	Does the casing have a functioning weep hole?	-	DW11	
d	Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?	4		F
е	Is the well locked and is the lock in good condition?	V		
3 <u>Surface</u>	pad			
а	Is the well pad in good condition (not cracked or broken)?	-		
b	Is the well pad sloped away from the protective casing?			
С	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
4 <u>Internal</u>				
а	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?	<u>i</u>		
d	Is the survey point clearly marked on the inner casing?	U		
е	Is the depth of the well consistent with the original well log?	~		
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)	_		
# G #				
	g: Groundwater Wells Only:			
a h	Does well recharge adequately when purged?			V
b	If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			
6 Based o	n your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	1 /		
	ve actions as needed, by date:			

Signature and Seal of PE/PG responsible for inspection

Site Name Permit Number Well ID Date	Plant Mitchell N/A P Z - 1 2 5 8/23/22	- - -		,
1 Location/I	dentification	Yes	No	n/a
a	Is the well visible and accessible?	~		
b	Is the well properly identified with the correct well ID?			
C	Is the well in a high traffic area and does the well require protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)			
2 Protective	Casing			
a <u>1100001110</u>	Is the protective casing free from apparent damage and able to be secured?	/	• •	
b	Is the casing free of degradation or deterioration?			
С	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?	~		
е	Is the well locked and is the lock in good condition?			
3 Surface pa	<u>ad</u>			
а	Is the well pad in good condition (not cracked or broken)?	/		
b	Is the well pad sloped away from the protective casing?			
С	Is the well pad in complete contact with the protective casing?			······································
d	Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal ca	sina			
	Does the cap prevent entry of foreign material into the well?	V		
b	Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?	V		
	Is the survey point clearly marked on the inner casing?	$\overline{\mathcal{L}}$		
	Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)			
5 <u>Sampling:</u>	Groundwater Wells Only:			
b	Does well recharge adequately when purged? If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility? Does the well require redevelopment (low flow, turbid)?			
; 	vour professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	/		
	actions as needed, by date:			

Signature and Seal of PE/PG responsible for inspection

Daniel Howard

Site Name	Plant Mitchell			
Permit Number	N/A			ŧ
Well ID	PZ-135			
Date	8/23/22			
		Yes	No	n/a
	n/Identification	^		
a	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require protection from traffic?		/	
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)			
2 Protectiv	ve Casing			
a	Is the protective casing free from apparent damage and able to be secured?			
b	Is the casing free of degradation or deterioration?		***************************************	
С	Does the casing have a functioning weep hole?			**************************************
d	Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?			***************************************
3 <u>Surface</u>	pad			
а	Is the well pad in good condition (not cracked or broken)?	./		
b	Is the well pad sloped away from the protective casing?	7		
С	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does no move when stepped on)	t /		
е	Is the pad surface clean (not covered with sediment or debris)?	Ż		
4 Internal of	casing			
a	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?	$\overline{\hspace{1cm}}$		
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?			
е	Is the depth of the well consistent with the original well log?	1		
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)			
5 <u>Sampling</u>	g: Groundwater Wells Only:			
а	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?			✓
С	Does the well require redevelopment (low flow, turbid)?			
	your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	<u> </u>	***************************************	
7 Corrective	e actions as needed, by date:			

Signature and Seal of PE/PG responsible for inspection

David & Howard

lame	Plant Mitchell			
it Number	N/A			ŧ
ID	PZ-14 8-22-22	_		
	B-CC- CC	– Yes	No	n/a
1 Locatio	n/Identification	163	NO	
a	Is the well visible and accessible?	سن		
b	Is the well properly identified with the correct well ID?	i		
С	Is the well in a high traffic area and does the well require			
	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)			
2 Protecti	ve Casing			
а	Is the protective casing free from apparent damage and able to be secured?	• _/	•	
b	Is the casing free of degradation or deterioration?			-
С	Does the casing have a functioning weep hole?	~		
d	Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?	v		
е	Is the well locked and is the lock in good condition?	V	-	
3 Surface	pad			
а	Is the well pad in good condition (not cracked or broken)?	L		
b	-			
	Is the well pad sloped away from the protective casing?			
c d	Is the well pad in complete contact with the protective casing? Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does no	t		
е	move when stepped on) Is the pad surface clean (not covered with sediment or debris)?			
4 Internal	-			
a	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			
0	foreign objects (such as bailers)?			
c d	Is the well properly vented for equilibration of air pressure? Is the survey point clearly marked on the inner casing?			
e	Is the depth of the well consistent with the original well log?	10		
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)	V		
5 <u>Samplin</u>	g: Groundwater Wells Only:	-		
а	Does well recharge adequately when purged?	_ ii		
b	If dedicated sampling equipment installed, is it in good condition	/		
	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?		<u> </u>	
6 Based o	n your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?			
	ve actions as needed, by date:			

Signature and Seal of PE/PG responsible for inspection

lame it Number	Plant Mitchell N/A	_		
ID	PZ-15	-		*
	8-22-22	-		
		Yes	No	n/a
1 <u>Location</u>	n/Identification			• • • • • • • • • • • • • • • • • • • •
а	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?	c		-
С	Is the well in a high traffic area and does the well require protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)	U		
2 Protectiv	ve Casing			
а	Is the protective casing free from apparent damage and able to be secured?	e		
b	Is the casing free of degradation or deterioration?	0 000		
С	Does the casing have a functioning weep hole?	- <u>v</u>		
d	Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?	·	***************************************	
е	Is the well locked and is the lock in good condition?	C	·	
3 Surface	pad			
а	Is the well pad in good condition (not cracked or broken)?	سسدن		
b	·			
	Is the well pad sloped away from the protective casing?			
c d	Is the well pad in complete contact with the protective casing? Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?	2		
4 Internal	rasing		-	
a a	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?	<u>v</u>		
С	Is the well properly vented for equilibration of air pressure?	v		
d	Is the survey point clearly marked on the inner casing?	1/		
е	Is the depth of the well consistent with the original well log?	V		
f	Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	V		
	g: Groundwater Wells Only:			
a b	Does well recharge adequately when purged? If dedicated sampling equipment installed, is it in good condition			
С	and specified in the approved groundwater plan for the facility? Does the well require redevelopment (low flow, turbid)?	<u>/</u>		
			<u></u>	
6 Based or	n your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?			
7.0		<u> </u>		

Signature and Seal of PE/PG responsible for inspection

Name	Plant Mitchell	-		
nit Number	N/A	-		,
ID e	PZ-16 B-23-22	- '		
;	B-23-22	Yes	No	n la
1 Location	n/Identification	162	NO	n/a
a	Is the well visible and accessible?	سسنا		
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require			
	protection from traffic?		<u>E</u>	
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)			
2 Protectiv	ve Casing			-
а	Is the protective casing free from apparent damage and able to be			
	secured?	_८_		
b	Is the casing free of degradation or deterioration?	<u> </u>		
C	Does the casing have a functioning weep hole?	~		
d	Is the annular space between casings clear of debris and water,	£		
е	or filled with pea gravel/sand? Is the well locked and is the lock in good condition?			
	REPLACED LOCK			
3 <u>Surface</u>	<u>pad</u>			
а	Is the well pad in good condition (not cracked or broken)?	<u></u>		
b	Is the well pad sloped away from the protective casing?			
С	Is the well pad in complete contact with the protective casing?	<u> </u>		
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)	L		
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal of	casing			
a	Does the cap prevent entry of foreign material into the well?	£		
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?	2		
С	Is the well properly vented for equilibration of air pressure?	2		
d	Is the survey point clearly marked on the inner casing?	1/-		
е	Is the depth of the well consistent with the original well log?	W.		
f	Is the casing stable? (or does the pvc move easily when touched		· · · · · · · · ·	
	or can it be taken apart by hand due to lack of grout or use of slip	, _		
	couplings in construction)		····	
5 <u>Sampling</u>	g: Groundwater Wells Only:	•		
a	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
0	and specified in the approved groundwater plan for the facility?			
C	Does the well require redevelopment (low flow, turbid)?			
6 Based or	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory requirements?		•	
	e actions as needed, by date:			

Signature and Seal of PE/PG responsible for inspection

Site Name	Plant Mitchell			
Permit Number	N/A			
Well ID	PZ-17	,		
Date	8-22-22	- - ,,		
1 <u>Locatio</u>	n/Identification	Yes	No	n/a
а	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?	e	-	
С	Is the well in a high traffic area and does the well require protection from traffic?			***************************************
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)			***************************************
2 Protecti	ve Casing			
a	Is the protective casing free from apparent damage and able to be secured?	·		
b	Is the casing free of degradation or deterioration?	i	PARTY	
С	Does the casing have a functioning weep hole?	4		
d	Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?	i	***************************************	
3 Surface	pad			
а	Is the well pad in good condition (not cracked or broken)?	2		
b	Is the well pad sloped away from the protective casing?	v		
С	Is the well pad in complete contact with the protective casing?	V		
d	Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)			<u></u>
е	Is the pad surface clean (not covered with sediment or debris)?	<u>~~</u>		
4 Internal	casing			
а	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?	V		
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?			
е	Is the depth of the well consistent with the original well log?	V		
f	Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)	i		
5 Sampling	g: Groundwater Wells Only:			
a <u>samping</u>	Does well recharge adequately when purged?	/		
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			
6 Based or	n your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?			
7 Composition	·			
/ Correctiv	re actions as needed, by date:			

Signature and Seal of PE/PG responsible for inspection

te Name	Plant Mitchell			
rmit Number	N/A	-	-	
ell ID	PZ-18			
ate	8-22-22	-		
1 Location	on/Identification	Yes	No	n/a
a	Is the well visible and accessible?	d:		
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require			
	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)	~		
2 Protect	tive Casing		.*	
a	Is the protective casing free from apparent damage and able to be secured?			
b	Is the casing free of degradation or deterioration?			
С	Does the casing have a functioning weep hole?	-		
d	Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?			***************************************
е	Is the well locked and is the lock in good condition?			P
3 Surface	e pad			
а	Is the well pad in good condition (not cracked or broken)?	L-		
b	Is the well pad sloped away from the protective casing?			
С	Is the well pad in complete contact with the protective casing?	1		
d	Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does no			***************************************
е	move when stepped on) Is the pad surface clean (not covered with sediment or debris)?	- C		
4 Internal				
a	Does the cap prevent entry of foreign material into the well?	a		
b	Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?			
e	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched			
·	or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)	V		
5 <u>Samplir</u>	ng: Groundwater Wells Only:			
а	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			
6 Based o	on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	<u> </u>		
7 Correcti	ve actions as needed, by date:			***************************************

Signature and Seal of PE/PG responsible for inspection

Name	Plant Mitchell	_			
nit Number	N/A	_		•	
I ID e	0/02/02	-			
;	8/23/22	Yes	N1 -	I-	
1 Location/I	dentification	res	No	n/a	
а	Is the well visible and accessible?				
b	Is the well properly identified with the correct well ID?				
С	Is the well in a high traffic area and does the well require				
	protection from traffic?		_		
d	Is the drainage around the well acceptable? (no standing water,				
	nor is well located in obvious drainage flow path)				
2 Protective	Casing		2.		
a	Is the protective casing free from apparent damage and able to be		•		
	secured?	1/			
b	Is the casing free of degradation or deterioration?				
С	Does the casing have a functioning weep hole?	N			
d	Is the annular space between casings clear of debris and water,				
	or filled with pea gravel/sand?				
е	Is the well locked and is the lock in good condition?				
3 Surface pa	ad				
	Is the well pad in good condition (not cracked or broken)?				
la.	Is the well pad sloped away from the protective casing?				
	Is the well pad in complete contact with the protective casing?	<u> </u>			
	Is the well pad in complete contact with the ground surface and				
	stable? (not undermined by erosion, animal burrows, and does not				
	move when stepped on)				
	Is the pad surface clean (not covered with sediment or debris)?				
4 Internal ca	sina				
	Does the cap prevent entry of foreign material into the well?				
	Is the casing free of kinks or bends, or any obstructions from				
	foreign objects (such as bailers)?	/			
	Is the well properly vented for equilibration of air pressure?		·		
	Is the survey point clearly marked on the inner casing?	-			
	Is the depth of the well consistent with the original well log?	-	***************************************		
	Is the casing stable? (or does the pvc move easily when touched				
	or can it be taken apart by hand due to lack of grout or use of slip				
	couplings in construction)	<u> </u>			
5 Sampling:	Groundwater Wells Only:				
	Does well recharge adequately when purged?				
b	If dedicated sampling equipment installed, is it in good condition				
	and specified in the approved groundwater plan for the facility?				
C	Does the well require redevelopment (low flow, turbid)?				
6 Based on y	our professional judgement, is the well construction / location				
	appropriate to 1) achieve the objectives of the Groundwater				
	Monitoring Program and 2) comply with the applicable regulatory	,			
1	requirements?				
7 Corrective	actions as needed, by date:			_	
141	asp in well cover Removed waspnest	8/2	3/22		

Signature and Seal of PE/PG responsible for inspection

Name	Plant Mitchell	_		
nit Number	N/A		-	
ID	8/23/22			
		 Yes	No	n/a
1 Location	n/Identification	103	110	11/0
а	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)			
2 Protecti	ve Casing			
а	Is the protective casing free from apparent damage and able to be secured?			
b	Is the casing free of degradation or deterioration?			
С	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?	_/		
е	Is the well locked and is the lock in good condition?			
3 Surface	pad			
а	Is the well pad in good condition (not cracked or broken)?	/		
b	Is the well pad sloped away from the protective casing?	V		
С	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does no			
е	move when stepped on)	-/-	-	
6	Is the pad surface clean (not covered with sediment or debris)?	<u></u>		
4 Internal				
а	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?	<u></u>		
C	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?	-		
e	Is the depth of the well consistent with the original well log?	<u> </u>		
f	Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)	V		
5 <u>Sampling</u>	g: Groundwater Wells Only:			
а	Does well recharge adequately when purged?	,		
b	If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?			V
С	Does the well require redevelopment (low flow, turbid)?			V
6 Based or	n your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	./	_	
	re actions as needed, by date:	<u></u>		

Signature and Seal of PE/PG responsible for inspection

Site Name	Plant Mitchell			
Permit Number	N/A	-		,
Well ID	PZ-21	-		
Date	8/23/22	- Yes	No	m/m
1 <u>Location</u>	/Identification	res	NO	n/a
а	Is the well visible and accessible?	/		
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require protection from traffic?		/	
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)			
2 Protectiv	e Casing			
а	Is the protective casing free from apparent damage and able to be secured?	/	,	
b	Is the casing free of degradation or deterioration?		***************************************	
С	Does the casing have a functioning weep hole?	\rightarrow		
d	Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?			
3 <u>Surface r</u>	<u>pad</u>			
а	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?	J.		
С	Is the well pad in complete contact with the protective casing?			B
d	Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not			
е	move when stepped on) Is the pad surface clean (not covered with sediment or debris)?	V		
				
4 <u>Internal c</u>				
a b	Does the cap prevent entry of foreign material into the well? Is the casing free of kinks or bends, or any obstructions from			
b	foreign objects (such as bailers)?	/	·	
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?	7.		<u> </u>
е	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched	,		
	or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)	/		
5 <u>Sampling</u>	: Groundwater Wells Only:			j
a	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
С	and specified in the approved groundwater plan for the facility? Does the well require redevelopment (low flow, turbid)?			
6 Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory	ļ		
	requirements?			
7 Corrective	e actions as needed, by date:			

Signature and Seal of PE/PG responsible for inspection

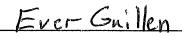
Site Name	Plant Mitchell				
Permit Number	N/A	- 		1	
Well ID	PZ-12	- ,			
Date	8/23/22	-			
4.1	7. L. v. 055 z. 10 z. v.	Yes	No	n/a	
	/Identification	/			
а	Is the well visible and accessible?				
b	Is the well properly identified with the correct well ID?		B		
С	Is the well in a high traffic area and does the well require	/			
d	protection from traffic? Is the drainage around the well acceptable? (no standing water,				
u	nor is well located in obvious drainage flow path)				
0.5. / //					
2 Protective			-* .	*	
а	Is the protective casing free from apparent damage and able to be secured?	<u> </u>			
b	Is the casing free of degradation or deterioration?				
С	Does the casing have a functioning weep hole?				
d	Is the annular space between casings clear of debris and water,				
	or filled with pea gravel/sand?				
е	Is the well locked and is the lock in good condition?				
3 <u>Surface p</u>	<u>oad</u>				
а	Is the well pad in good condition (not cracked or broken)?				
b	Is the well pad sloped away from the protective casing?				
С	Is the well pad in complete contact with the protective casing?	-			
d	Is the well pad in complete contact with the ground surface and				
	stable? (not undermined by erosion, animal burrows, and does not				
	move when stepped on)	1			
е	Is the pad surface clean (not covered with sediment or debris)?				
4 <u>Internal ca</u>	asina				
a	Does the cap prevent entry of foreign material into the well?	/			
b	Is the casing free of kinks or bends, or any obstructions from				
	foreign objects (such as bailers)?	.1			
С	Is the well properly vented for equilibration of air pressure?	_/			
d	Is the survey point clearly marked on the inner casing?				
е	Is the depth of the well consistent with the original well log?				
f	Is the casing stable? (or does the pvc move easily when touched			***************************************	
	or can it be taken apart by hand due to lack of grout or use of slip	/			
	couplings in construction)				•
5 <u>Sampling:</u>	Groundwater Wells Only:				
a	Does well recharge adequately when purged?				
b	If dedicated sampling equipment installed, is it in good condition			/	•
С	and specified in the approved groundwater plan for the facility? Does the well require redevelopment (low flow, turbid)?				
	· · · · · · · · · · · · · · · · · · ·				
6 Based on	your professional judgement, is the well construction / location				
	appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory				
	requirements?	/			
7.0	· ·				
Λ ,	actions as needed, by date:	f ×			
Hat m	round around well pad + grass needs cut	ting			

Signature and Seal of PE/PG responsible for inspection

Name	Plant Mitchell			
nit Number	N/A	_	-	. ,
ID	P2-23A			
•	8-22-22	—		
1 Locatio	on/Identification	Yes	No	n/a
a	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?			
C	. Is the well in a high traffic area and does the well require protection from traffic?		~	
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)	i		***************************************
2 Protect	ive Casing			
a	Is the protective casing free from apparent damage and able to be secured?	e 		
b	Is the casing free of degradation or deterioration?			
С	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?	v		
е	Is the well locked and is the lock in good condition?			
3 Surface	e pad			
а	Is the well pad in good condition (not cracked or broken)?	V		
b	Is the well pad sloped away from the protective casing?			
С	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does no move when stepped on)	t		*****
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal	casing			
a	Does the cap prevent entry of foreign material into the well?	A COMPANY		
b	Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?	-		
е	Is the depth of the well consistent with the original well log?	-	-	***************************************
f	Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
5 <u>Samplin</u>	g: Groundwater Wells Only:			
a	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
С	and specified in the approved groundwater plan for the facility? Does the well require redevelopment (low flow, turbid)?		—	
6 Based o	n your professional judgement, is the well construction / location			****
o based o	appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory			
	requirements?			
7 Correctiv	ve actions as needed, by date:			

Signature and Seal of PE/PG responsible for inspection

Vame it Number	Plant Mitchell N/A			
ID	PZ-24A	- . `		,
	B-23-22	_		
1 Locatio	on/Identification	Yes	No	n/a
a	Is the well visible and accessible?		•	
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)			
2 Protect	ive Casing			
а	Is the protective casing free from apparent damage and able to be secured?		<u>.</u>	
b	Is the casing free of degradation or deterioration?	-		
С	Does the casing have a functioning weep hole?	-		
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?			
3 Surface	<u>pad</u>			
а	Is the well pad in good condition (not cracked or broken)?	4		
b	Is the well pad sloped away from the protective casing?	مسمعة		
С	Is the well pad in complete contact with the protective casing?			•
d	Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not	:		***************************************
е	move when stepped on) Is the pad surface clean (not covered with sediment or debris)?			
C	is the pad surface clean (not covered with sediment or depris)?			
4 <u>Internal</u>	· · · · ·			
а	Does the cap prevent entry of foreign material into the well?	<u></u>		
b	Is the casing free of kinks or bends, or any obstructions from		•	
C	foreign objects (such as bailers)?			
c d	Is the well properly vented for equilibration of air pressure?		-	
	Is the survey point clearly marked on the inner casing? Is the depth of the well consistent with the original well log?	<u></u>		
e f	Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip	<u>~</u> .		
	couplings in construction)	1/		
5 Samplin	g: Groundwater Wells Only:			
а	Does well recharge adequately when purged?			1
b	If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			V
6 Based o	n your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?			
	ve actions as needed, by date:			


Signature and Seal of PE/PG responsible for inspection

Name	Plant Mitchell			
nit Number	N/A	_	'	•
IID	PZ-ZS	-		
)	8/23/22	_		
4.1		Yes	No	n/a
1 Location/	<u>Identification</u>	,		
а	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require			
	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)	V		
2 Protective	Cacina		***************************************	
а	Is the protective casing free from apparent damage and able to be secured?			
h				-
b	Is the casing free of degradation or deterioration?			
C C	Does the casing have a functioning weep hole?			Name of the last o
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?	~		
е	Is the well locked and is the lock in good condition?			-
3 Surface p	ad			
a		1		
	Is the well pad in good condition (not cracked or broken)?			
Ь	Is the well pad sloped away from the protective casing?			
С	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
G.	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
Ü	is the pad surface clean (not covered with sediment of debits)?			
4 Internal ca	asing			
а	Does the cap prevent entry of foreign material into the well?	1/		
b	Is the casing free of kinks or bends, or any obstructions from			•
_	foreign objects (such as bailers)?	./		
С	Is the well properly vented for equilibration of air pressure?			
q	Is the survey point clearly marked on the inner casing?	<u> </u>		
	Is the depth of the well consistent with the original well log?			M
e f	Is the casing stable? (or does the pvc move easily when touched	<u>v</u> .		
1	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
	,			
5 <u>Sampling:</u>	Groundwater Wells Only:			
a	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?		<u> </u>	
6 Based on	your professional judgement, is the well construction / location			
- 20000 011	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	/		
	·	V		
	actions as needed, by date:			
Gr	ass needs catting			

Signature and Seal of PE/PG responsible for inspection

Name	Plant Mitchell	_		
Permit Number Vell ID Pate	N/A	-		•
	P2-27	•		
€	8-23-22	- Yes	Al -	.a.l.
1 <u>Locatio</u>	n/Identification	res	No	n/a
а	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require	N		
d	protection from traffic? Is the drainage around the well acceptable? (no standing water,			
u	nor is well located in obvious drainage flow path)	L		
2 Protecti	ve Casing			
а	Is the protective casing free from apparent damage and able to be			
	secured?	سسنا		
b	Is the casing free of degradation or deterioration?			
С	Does the casing have a functioning weep hole?	2		
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?		w	
е	Is the well locked and is the lock in good condition?			
3 <u>Surface</u>	pad			
а	Is the well pad in good condition (not cracked or broken)?	سن		
b	Is the well pad sloped away from the protective casing?	i		
С	Is the well pad in complete contact with the protective casing?	مسا		
d	Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)	سسن		
е	Is the pad surface clean (not covered with sediment or debris)?	<u></u>		
4 Internal	casing			
а	Does the cap prevent entry of foreign material into the well?	L		
b	Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?			
e	Is the depth of the well consistent with the original well log?	<u> </u>		
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
5 <u>Sampling</u>	g: Groundwater Wells Only:			-
а	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			<u> </u>
С	Does the well require redevelopment (low flow, turbid)?			
6 Based or	n your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?			
	roquiromonio:			

Signature and Seal of PE/PG responsible for inspection

Name iit Number	Plant Mitchell N/A	-		
iit Number ID	PZ-28			,
	8-23-22	•		
		Yes	No	n/a
1 Location	n/Identification			
а	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?	c		
С	Is the well in a high traffic area and does the well require			
d	protection from traffic? Is the drainage around the well acceptable? (no standing water,			
u	nor is well located in obvious drainage flow path)	2		
0.0-14	- , , ,			
2 Protecti	ve Casing Is the protective casing free from apparent damage and able to be		F	
а	secured?			
Ь	Is the casing free of degradation or deterioration?			
С	Does the casing have a functioning weep hole?	1		
d	Is the annular space between casings clear of debris and water,			***************************************
	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?	U		
3 <u>Surface</u>	<u>pad</u>			
а	Is the well pad in good condition (not cracked or broken)?			
b	· · · · · · · · · · · · · · · · · · ·			
С	Is the well pad sloped away from the protective casing? Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
u	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal	casina			
a a	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			
~	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?	<u></u>		
d	Is the survey point clearly marked on the inner casing?	<u></u>		
е	Is the depth of the well consistent with the original well log?	V		
f	Is the casing stable? (or does the pvc move easily when touched	,		
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)		····	
	g: Groundwater Wells Only:			
a	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?			./
С	Does the well require redevelopment (low flow, turbid)?			
	- The state of the			
o based of	n your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?			
	e actions as needed, by date:		······································	

Signature and Seal of PE/PG responsible for inspection

Name	Plant Mitchell			
mit Number	N/A	•		,
ll ID	<u> 12-29</u>			
е	8/23/22	- 、,		_
1 Location	n/Identification	Yes	No	n/a
a	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?	1		
С	Is the well in a high traffic area and does the well require			
	protection from traffic?		/	
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)			
2 Protectiv	ve Casing			
а	Is the protective casing free from apparent damage and able to be	/		
	secured?			
b	Is the casing free of degradation or deterioration?			
С	Does the casing have a functioning weep hole?	/_		
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?			
3 <u>Surface</u>	<u>pad</u>			
а	Is the well pad in good condition (not cracked or broken)?	/		
b	Is the well pad sloped away from the protective casing?			
С	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal of	casing			
a	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?			
е	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip	,		
	couplings in construction)			
5 <u>Sampling</u>	g: Groundwater Wells Only:			
a	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			_
•	and specified in the approved groundwater plan for the facility?			
C	Does the well require redevelopment (low flow, turbid)?			
6 Based or	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory requirements?			
	requirements:	V		-

Signature and Seal of PE/PG responsible for inspection

ame Number	Plant Mitchell N/A	-		,
)	PZ-31			
	8/22/22	- -		
		Yes	No	n/a
	n/Identification	,		
a	Is the well visible and accessible?	<u></u>		
b	Is the well properly identified with the correct well ID? Is the well in a high traffic area and does the well require			
С	protection from traffic?			Philipping
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)			
2 Protecti	ve Casing			
а	Is the protective casing free from apparent damage and able to be secured?			
b	Is the casing free of degradation or deterioration?		***************************************	
С	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?	<u> </u>		
3 Surface	pad			
а	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?			
С	Is the well pad in complete contact with the protective casing?	<u> </u>		
d	Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
1 Internal				
4 Internal	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?			
е	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip	_		
	couplings in construction)			
5 Sampling	g: Groundwater Wells Only:			
а	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?		<u> </u>	
6 Based or	n your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?			
	re actions as needed, by date:	<u> </u>		

Signature and Seal of PE/PG responsible for inspection

Vame	Plant Mitchell			
nit Number	N/A	-		
ID	PZ-32			
	8/22/22	-		
		Yes	No	n/a
1 Location	<u>/Identification</u>			
a	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require		,	
	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,	,		
	nor is well located in obvious drainage flow path)			
2 Protective	e Casing		et j	
а	Is the protective casing free from apparent damage and able to be secured?	/		
b	Is the casing free of degradation or deterioration?	~/	-	
С	Does the casing have a functioning weep hole?	7		
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?	/		
е	Is the well locked and is the lock in good condition?	<u></u>		
3 <u>Surface p</u>	nad			***************************************
a		/		
_	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?			
С	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)		BOOK TO THE REAL PROPERTY.	
е	Is the pad surface clean (not covered with sediment or debris)?		PO-7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
4 Internal ca	asina			
a	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?	1/		
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?			
е	Is the depth of the well consistent with the original well log?	V		
f	Is the casing stable? (or does the pvc move easily when touched	 .		-
	or can it be taken apart by hand due to lack of grout or use of slip	_		
	couplings in construction)		Books and a second	
5 Sampling:	Groundwater Wells Only:			
а	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?	1		
С	Does the well require redevelopment (low flow, turbid)?			
6 Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory	,		
	requirements?	1/		
	· ·	K		

Signature and Seal of PE/PG responsible for inspection

Name	Plant Mitchell	_		
it Number	N/A	_		,
ID	PZ-33 8-23-22	_		
	0-63-60	- Yes	No	n/a
1 Location	n/Identification	1 62	140	II/a
а	Is the well visible and accessible?	سسن		
b	Is the well properly identified with the correct well ID?	-		
С	Is the well in a high traffic area and does the well require			
	protection from traffic?		<u>'</u>	
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)	<u></u>		
2 Protectiv	<u>ve Casing</u>		<i></i>	
а	Is the protective casing free from apparent damage and able to be secured?	à.		
b	Is the casing free of degradation or deterioration?	س		
С	Does the casing have a functioning weep hole?	<u> </u>		
d	Is the annular space between casings clear of debris and water,			
_	or filled with pea gravel/sand?	<u> </u>		***************************************
е	Is the well locked and is the lock in good condition?			
3 Surface	pad			
а	Is the well pad in good condition (not cracked or broken)?	-		
b	Is the well pad sloped away from the protective casing?	9		
С	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)	<u>î</u>		
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal of	easing			
а	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?	U		
d	Is the survey point clearly marked on the inner casing?	V		
е	Is the depth of the well consistent with the original well log?	Û.		
f	Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	,	_	
5 Compline	g: Groundwater Wells Only:			
a <u>Samping</u>	Does well recharge adequately when purged?			•
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			
6 Based on	your professional judgement, is the well construction / location			
- 2 3. 3 .	appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	/		
7 Corrective	e actions as needed, by date:	· ·		
	eds need cutting back			

Signature and Seal of PE/PG responsible for inspection

Site Name	Plant Mitchell	_			
Permit Number Well ID	N/A	_	**	• ,	
Date	8/23/22				
1 Logotion	Videntification	Yes	No	n/a	
a <u>Location</u>	n <u>/Identification</u> Is the well visible and accessible?	/			
b	Is the well properly identified with the correct well ID?	-			
C	Is the well in a high traffic area and does the well require		·············		
	protection from traffic?		_/		
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)		/		
2 Protectiv	ve Casing				
a	Is the protective casing free from apparent damage and able to be secured? *		,		
b	Is the casing free of degradation or deterioration?			***************************************	
C	Does the casing have a functioning weep hole?				
d	Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?	V .			
е	Is the well locked and is the lock in good condition?				
3 <u>Surface</u>	<u>pad</u>				
а	Is the well pad in good condition (not cracked or broken)?	/			
b	Is the well pad sloped away from the protective casing?	/			
С	Is the well pad in complete contact with the protective casing?	_			
d	Is the well pad in complete contact with the ground surface and	-		***************************************	
	stable? (not undermined by erosion, animal burrows, and does no	t /			
е	move when stepped on) Is the pad surface clean (not covered with sediment or debris)?				
	·				
4 <u>Internal c</u>					
a b	Does the cap prevent entry of foreign material into the well? Is the casing free of kinks or bends, or any obstructions from				
D	foreign objects (such as bailers)?	/			
С	Is the well properly vented for equilibration of air pressure?	-			•
d	Is the survey point clearly marked on the inner casing?	<u> </u>			
е	Is the depth of the well consistent with the original well log?				
f	Is the casing stable? (or does the pvc move easily when touched				
	or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)	/			
5 Sampling	: Groundwater Wells Only:				•
a <u>oumpung</u>	Does well recharge adequately when purged?				
b	If dedicated sampling equipment installed, is it in good condition				
	and specified in the approved groundwater plan for the facility?				
С	Does the well require redevelopment (low flow, turbid)?				
6 Based on	your professional judgement, is the well construction / location				
	appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory				
	requirements?				
7 Corrective	e actions as needed, by date:	-			
Area	around well is act ting washed out from	- Fai	n wat	er dr	<u>wining</u>
Signature and Seal	e river. Well to is getting harder to accomp PE/PG responsible for inspection protective casing slowly sinking down the Hard to open	ess.	T+	hink .	the
	A slowly sinking day	ng an	a we	the -	d are
Dan	id Howard * Hard to open	and	clos	C prot	rective
	casing lid.	-		T T	-1100
	~				

Name	Plant Mitchell	-			
it Number ID	N/A	-			
טו	8/23/22	-			
	0/N3/NL	Yes	No	n/a	
1 Location	n/Identification	100	110		
а	Is the well visible and accessible?				
b	Is the well properly identified with the correct well ID?				
С	Is the well in a high traffic area and does the well require				
	protection from traffic?				
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)				
2 Protectiv	ve Casing				
а	Is the protective casing free from apparent damage and able to be secured?	/			
b	Is the casing free of degradation or deterioration?	_/	***************************************		
С	Does the casing have a functioning weep hole?	1			
d	Is the annular space between casings clear of debris and water,	1			
	or filled with pea gravel/sand?				
е	Is the well locked and is the lock in good condition?				
3 <u>Surface</u>	<u>pad</u>				
а	Is the well pad in good condition (not cracked or broken)?	1			
b	Is the well pad sloped away from the protective casing?				
С	Is the well pad in complete contact with the protective casing?	<u>~</u>			
d	Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not			TV Park	
е	move when stepped on) Is the pad surface clean (not covered with sediment or debris)?				
Ü	is the pad surface dear (not covered with sediment or depris):				
4 Internal of					
a	Does the cap prevent entry of foreign material into the well?				
Ь	Is the casing free of kinks or bends, or any obstructions from	/			
	foreign objects (such as bailers)?				٠
c d	Is the well properly vented for equilibration of air pressure? Is the survey point clearly marked on the inner casing?			<u>~</u> /	Flush mou
e e	Is the depth of the well consistent with the original well log?	1			
f	Is the casing stable? (or does the pvc move easily when touched				
•	or can it be taken apart by hand due to lack of grout or use of slip				
	couplings in construction)	1			
5 Sampling	: Groundwater Wells Only:				
а	Does well recharge adequately when purged?			1	
b	If dedicated sampling equipment installed, is it in good condition				•
	and specified in the approved groundwater plan for the facility?				
С	Does the well require redevelopment (low flow, turbid)?				
6 Based or	your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?				
	-				

Signature and Seal of PE/PG responsible for inspection

ame t Number	Plant Mitchell N/A	•••		
D	PZ-50	-	-	•
	8/23/22	<u>-</u>		
1 Location	/Identification	Yes	No	n/a
a	Is the well visible and accessible?	/		
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)			
2 Protectiv	re Casing			
a	Is the protective casing free from apparent damage and able to be secured?	/		
b	Is the casing free of degradation or deterioration?			
С	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?	1		
3 Surface	<u>pad</u>		,	
а	Is the well pad in good condition (not cracked or broken)?	/		
b	•			
	Is the well pad sloped away from the protective casing?	<u> </u>		
c d	Is the well pad in complete contact with the protective casing? Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)			
е	is the pad surface clean (not covered with sediment or debris)?	-		BANK .
			*****	-
4 <u>Internal c</u>		,		
a b	Does the cap prevent entry of foreign material into the well? Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?	<u> </u>		PR-798-4
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?			_V Flushmon
e	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
5 Sampling	: Groundwater Wells Only:			
а	Does well recharge adequately when purged?	<i>V</i> -1-1-1-1		
b	If dedicated sampling equipment installed, is it in good condition			
С	and specified in the approved groundwater plan for the facility? Does the well require redevelopment (low flow, turbid)?			
6 Based on	your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?			

Signature and Seal of PE/PG responsible for inspection

lame it Number	Plant Mitchell				
D Number	N/A		••	. ,	
D	\$ [2 2] 1 2	-			
	<u> </u>	Yes	No	n/a	
1 Location	n/Identification				
а	Is the well visible and accessible?				•
b	Is the well properly identified with the correct well ID?				
С	Is the well in a high traffic area and does the well require protection from traffic?		1.		
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)				
2 Protectiv	<u>ve Casing</u>				
а	Is the protective casing free from apparent damage and able to be secured?	V .			
b	Is the casing free of degradation or deterioration?				
С	Does the casing have a functioning weep hole?				
d	Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?	<u>/</u>			
е	Is the well locked and is the lock in good condition?				
3 <u>Surface</u>	<u>pad</u>	,			
а	Is the well pad in good condition (not cracked or broken)?				
b	Is the well pad sloped away from the protective casing?				
С	Is the well pad in complete contact with the protective casing?		***************************************		
d	Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)				
е	Is the pad surface clean (not covered with sediment or debris)?				
4 Internal	eacing .				
a <u>internar</u>	Does the cap prevent entry of foreign material into the well?				
b	Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?	<u>~</u>	 .		
С	Is the well properly vented for equilibration of air pressure?			VFI	lush mon
d	Is the survey point clearly marked on the inner casing?	/			
e	Is the depth of the well consistent with the original well log?				
f	Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)	/			
5 Sampline	g: Groundwater Wells Only:				
a	Does well recharge adequately when purged?			1	•
b	If dedicated sampling equipment installed, is it in good condition				
С	and specified in the approved groundwater plan for the facility? Does the well require redevelopment (low flow, turbid)?				
6 Based or	your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	./			

Signature and Seal of PE/PG responsible for inspection

It Number ID Part	Name	Plant Mitchell			
1 Location/Identification a Is the well visible and accessible? b is the well properly identified with the correct well ID? c Is the well in a high traffic area and does the well require protection from traffic? d Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) 2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well pad in good condition (not cracked or broken)? b Is the well pad in good condition (not cracked or broken)? b Is the well pad in complete contact with the protective casing? c Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) e Is the pad surface clean (not covered with sediment or debris)? 4 Internal casing a Does the cap prevent entry of foreign material into the well? b Is the easing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling: Groundwater Wells Only: a Does well rectarge adequately when purged? b if dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require redevelopment (low flow, furbid)? c Does the well require redevelopment (low flow, flow, turbid)?	it Number	N/A	-	•	
1 Location/Identification a Is the well visible and accossible? b is the well in a high traffic area and does the well require protection from traffic? c Is the well in a high traffic area and does the well require protection from traffic? d Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) 2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked and is the lock in good condition? 3 Surface pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad in complete contact with the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the protective casing? d Is the pad surface clean (not covered with sediment or debris)? 4 Internal casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as ballers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling: Groundwater Wells Only; a Does well recharge adequately when purged? b if dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require roetevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applica	ID	PZ-52			
1 Location/Identification a Is the well visible and accossible? b is the well in a high traffic area and does the well require protection from traffic? c Is the well in a high traffic area and does the well require protection from traffic? d Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) 2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked and is the lock in good condition? 3 Surface pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad in complete contact with the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the protective casing? d Is the pad surface clean (not covered with sediment or debris)? 4 Internal casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as ballers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling: Groundwater Wells Only; a Does well recharge adequately when purged? b if dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require roetevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applica		8/23/22			
a Is the well properly identified with the correct well ID? b Is the well properly identified with the correct well ID? c Is the well in a high traffic area and does the well require protection from traffic? d Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) 2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or iflied with pea gravel/sand? e Is the well locked and is the lock in good condition? 3 Surface pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the gronde surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) e Is the pad surface clean (not covered with sediment or debris)? 4 Internal casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as ballers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sambling. Groundwater Wells Only: a Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require rodevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction I location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applic			Yes	No	n/a
b Is the well properly identified with the correct well ID? c Is the well in a high traffic area and does the well require protection from traffic? d Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) 2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well pad in good condition (not cracked or broken)? b Is the well pad in good condition (not cracked or broken)? b Is the well pad in complete contact with the protective casing? c Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) c Is the pad surface clean (not covered with sediment or debris)? 4 Internal casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvo move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling: Groundwater Wells Only; a Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? C Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	· · · · · · · · · · · · · · · · · · ·				
c Is the well in a high traffic area and does the well require protection from traffic? d Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) 2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked and is the lock in good condition? 3 Surface pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) e Is the pad surface clean (not covered with sediment or debris)? 4 Internal casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as ballers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvo move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling. Croundwater Wells Only; a Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? C Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction I location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?					
protection from traffic? d Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) 2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the anular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked and is the lock in good condition? 3 Surface pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad in complete contact with the protective casing? c Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) e Is the pad surface clean (not covered with sediment or debris)? 4 Internal casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well property vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pve move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Samoling: Groundwater Wells Only: a Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?					***************************************
d Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) 2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked and is the lock in good condition? 3 Surface pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad in complete contact with the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) e Is the pad surface clean (not covered with sediment or debris)? 4 Internal casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pyc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling: Groundwater Wells Only: a Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	С			_	
nor is well located in obvious drainage flow path) 2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked and is the lock in good condition? 3 Surface pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad in complete contact with the protective casing? c Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) e Is the pad surface clean (not covered with sediment or debris)? 4 Internal casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as ballers)? c Is the well property vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pcv move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling: Groundwater Wells Only: a Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	لم	•			····
2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked and is the lock in good condition? 3 Surface pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad in complete contact with the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) e Is the pad surface clean (not covered with sediment or debris)? 4 Internal casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling: Groundwater Wells Only: a Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	a	- ' ' '	/		
Is the protective casing free from apparent damage and able to be secured? Is the casing free of degradation or deterioration?	2 Protecti	- · · ·			
secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked and is the lock in good condition? 3 Surface pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) e Is the pad surface clean (not covered with sediment or debris)? 4 Internal casing a Does the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling: Groundwater Wells Only: a Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?			.	٠.	
c Does the casing have a functioning weep hole? d Is the annuliar space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked and is the lock in good condition? 3 Surface pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) e Is the pad surface clean (not covered with sediment or debris)? 4 Internal casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling: Groundwater Wells Only: a Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?					
c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked and is the lock in good condition? 3 Surface pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) e Is the pad surface clean (not covered with sediment or debris)? 4 Internal casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling: Groundwater Wells Only: a Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	b	Is the casing free of degradation or deterioration?			Di Di semanana di Salah sand
d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked and is the lock in good condition? 3 Surface pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) e Is the pad surface clean (not covered with sediment or debris)? 4 Internal casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equillibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling: Groundwater Wells Only: a Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?					-
or filled with pea gravel/sand? Is the well locked and is the lock in good condition? 3 Surface pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) e Is the pad surface clean (not covered with sediment or debris)? 4 Internal casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling: Groundwater Wells Only: a Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?					M
a Is the well pad in good condition (not cracked or broken)? b Is the well pad in good condition (not cracked or broken)? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) e Is the pad surface clean (not covered with sediment or debris)? 4 Internal casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling: Groundwater Wells Only: a Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Moniforing Program and 2) comply with the applicable regulatory requirements?			/		
ls the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) e Is the pad surface clean (not covered with sediment or debris)? 4 Internal casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling: Groundwater Wells Only: a Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	е	· · ·			
ls the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) e Is the pad surface clean (not covered with sediment or debris)? 4 Internal casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling: Groundwater Wells Only: a Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	3 Surface	pad	,		**************************************
b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) e Is the pad surface clean (not covered with sediment or debris)? 4 Internal casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling: Groundwater Wells Only: a Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	а	Is the well pad in good condition (not cracked or broken)?			
c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) e Is the pad surface clean (not covered with sediment or debris)? 4 Internal casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling: Groundwater Wells Only: a Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	b	,			
d Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) e Is the pad surface clean (not covered with sediment or debris)? 4 Internal casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling: Groundwater Wells Only: a Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	C		/		
stable? (not undermined by erosion, animal burrows, and does not move when stepped on) e					
move when stepped on) ls the pad surface clean (not covered with sediment or debris)? Internal casing Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? Is the well properly vented for equilibration of air pressure? Is the survey point clearly marked on the inner casing? Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) Sampling: Groundwater Wells Only: a Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? C Does the well require redevelopment (low flow, turbid)? Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	u		,		
e Is the pad surface clean (not covered with sediment or debris)? 4 Internal casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling: Groundwater Wells Only: a Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?					
a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling: Groundwater Wells Only: a Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	е	• • • • • • • • • • • • • • • • • • • •			
a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling: Groundwater Wells Only: a Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	4 Internal	casing			
b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling: Groundwater Wells Only: a Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?					
foreign objects (such as bailers)? C Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling: Groundwater Wells Only: a Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?					
Is the well properly vented for equilibration of air pressure? Is the survey point clearly marked on the inner casing? Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) Sampling: Groundwater Wells Only: Does well recharge adequately when purged? If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? Does the well require redevelopment (low flow, turbid)? Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	Б		/		
d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling: Groundwater Wells Only: a Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	С				161
e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling: Groundwater Wells Only: a Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?		·			V / INJA MO
f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling: Groundwater Wells Only: a Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?		• • • • • • • • • • • • • • • • • • • •			
or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling: Groundwater Wells Only: a Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?					
couplings in construction) 5 Sampling: Groundwater Wells Only: a Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	•				
b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?			V		
Does well recharge adequately when purged? b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	5 Sampling	g: Groundwater Wells Only:			
b If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? c Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?					/
c Does the well require redevelopment (low flow, turbid)? 6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	b	If dedicated sampling equipment installed, is it in good condition			
6 Based on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?					
appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?	С	Does the well require redevelopment (low flow, turbid)?			
Monitoring Program and 2) comply with the applicable regulatory requirements?	6 Based or				
requirements?					
			,		
7 Corrective actions as needed, by date:		requirements?			
	7 Correctiv	re actions as needed, by date:			
		. , , ,			

Signature and Seal of PE/PG responsible for inspection

t Number	N/A	_		
D	P2-57	_		
	8-22-22	- Yes	NI -	1
1 Locatio	on/Identification	res	No	n/a
а	Is the well visible and accessible?	C	_	
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require			
	protection from traffic?	P		
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)			***************************************
2 Protect	tive Casing			
а	Is the protective casing free from apparent damage and able to be secured?	ù		
b	Is the casing free of degradation or deterioration?	~		
С	Does the casing have a functioning weep hole?	c/		E-7
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?			
3 Surface	<u>e pad</u>			
а	Is the well pad in good condition (not cracked or broken)?	4		
b	Is the well pad sloped away from the protective casing?	v		W
С	Is the well pad in complete contact with the protective casing?	- Carrier		
d	Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal	, , ,			
a a	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from		 .	
-	foreign objects (such as bailers)?	i		
С	Is the well properly vented for equilibration of air pressure?	~	***************************************	
d	Is the survey point clearly marked on the inner casing?	<u> </u>		
е	Is the depth of the well consistent with the original well log?	4		
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip		,	
-	couplings in construction)			
	ng: Groundwater Wells Only:			
a h	Does well recharge adequately when purged? If dedicated sampling equipment installed, is it in good condition			
b	and specified in the approved groundwater plan for the facility?			1
С	Does the well require redevelopment (low flow, turbid)?		7	
	on your professional judgement, is the well construction / location			
o baseu c	appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory requirements?			

Signature and Seal of PE/PG responsible for inspection

2022 Semi-Annual Groundwater Monitoring and Corrective Action Report Georgia Power Company – Plant Mitchell Ash Ponds A, 1, and 2 Putney, Georgia

APPENDIX B

LABORATORY ANALYTICAL AND FIELD SAMPLING REPORTS

								Specific		Dissolved	
		Purge Volume	Time Elapsed	DTW	Drawdown	Temperature	pН	Conductance	Turbidity	Oxygen	ORP
Well ID	Sample Date	(liter)	(secs)	(feet, TOC)	(feet)	(C)	(su)	(uS/cm)	(NTU)	(mg/L)	(mV)
PZ-1D	8/24/2022	9.0	2700	56.61	1.54	26.33	7.49	248.17	3.90	2.61	26.9
PZ-2D	8/24/2022	6.0	1800	38.66	0.10	20.64	8.01	163.03	1.51	3.07	79.6
PZ-2D	10/11/2022	9.5	3000	39.87	0.29	20.33	7.94	134.36	0.96	3.94	0.8
PZ-7D	8/25/2022	8.4	2509	34.95	0.03	21.73	6.98	486.05	1.73	0.83	38.2
PZ-14	8/25/2022	9.0	2700	45.61	0.06	22.45	6.93	455.19	0.67	5.58	45.0
PZ-15	8/25/2022	8.0	2400	32.06	0.21	24.48	7.15	517.74	0.41	0.46	-94.2
PZ-16	8/25/2022	5.0	1500	36.30	0	22.43	7.14	492.83	0.92	1.84	104.3
PZ-17	8/25/2022	6.0	1800	35.11	0.08	22.05	7.05	472.92	4.73	0.12	-29.0
PZ-18	8/25/2022	10.0	3000	31.51	0	22.99	6.76	648.77	0.37	0.18	37.1
PZ-19	8/25/2022	5.0	1500	34.07	0.05	22.68	6.67	858.98	0.15	0.37	124.1
PZ-23A	8/25/2022	5.0	1500	53.18	0.31	24.44	6.76	728.37	2.52	2.08	96.3
PZ-25	8/24/2022	5.0	1500	32.93	0.10	24.01	7.10	466.70	1.40	0.57	-71.5
PZ-25	10/11/2022	8.0	2400	34.76	0.44	24.86	7.13	388.97	1.03	0.22	-133.9
PZ-31	8/24/2022	7.0	2100	42.91	1.24	21.20	7.04	437.37	1.03	4.96	42.7
PZ-32	8/24/2022	7.0	2100	40.68	0.04	20.76	7.34	330.19	0.15	1.97	91.3
PZ-32	10/11/2022	7.0	2100	41.79	0.16	21.18	7.37	271.22	0.94	1.48	45.8
PZ-33	8/24/2022	6.0	1800	52.71	1.22	23.52	7.10	463.96	3.07	0.19	35.8
PZ-57	8/26/2022	7.0	2100	31.14	0.32	23.60	7.09	583.06	2.37	0.21	50.3

October 17, 2022

Michelle Barker WOOD E&I 1075 Big Shanty Rd Suite 100 Kennesaw, GA 30144

RE: Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Dear Michelle Barker:

Enclosed are the analytical results for sample(s) received by the laboratory between August 25, 2022 and August 27, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte
- Pace Analytical Services Peachtree Corners, GA

Revision 1: Issued on 10/17/22 to report the Boron result for sample PZ-14 at a lower dilution.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Nicole D'Oleo

nicole.d'oleo@pacelabs.com (704)875-9092

Micole D'oler

Project Manager

Enclosures

cc: Joju Abraham, Georgia Power-CCR Noelia Gangi, Georgia Power Ben Hodges, Georgia Power Kristen Jurinko Laura Midkiff, Georgia Power Ms. Lauren Petty, Southern Company Rhonda Quinn, WOOD E&I Michael Smilley, Georgia Power Tina Sullivan, ERM Greg Wrenn, WOOD E&I

CERTIFICATIONS

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Pace Analytical Services Charlotte

South Carolina Laboratory ID: 99006 South Carolina Certification #: 99006001

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 South Carolina Drinking Water Cert. #: 99006003

North Carolina Drinking Water Certification #: 37706 Florida/NELAP Certification #: E87627 North Carolina Field Services Certification #: 5342 Kentucky UST Certification #: 84 North Carolina Wastewater Certification #: 12 Louisiana DoH Drinking Water #: LA029

South Carolina Laboratory ID: 99006

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 South Carolina Laboratory ID: 99030 Florida/NELAP Certification #: E87648 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

North Carolina Drinking Water Certification #: 37712

North Carolina Wastewater Certification #: 40

Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092 Florida DOH Certification #: E87315

Georgia DW Inorganics Certification #: 812

North Carolina Certification #: 381

South Carolina Certification #: 98011001

Virginia/VELAP Certification #: 460221

SAMPLE SUMMARY

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92622406001	PZ-1D		08/24/22 11:35	08/25/22 09:40
92622406002	FD-01	Water	08/24/22 00:00	08/25/22 09:40
92622406003	PZ-31	Water	08/24/22 14:00	08/25/22 09:40
92622406004	PZ-33	Water	08/24/22 15:45	08/25/22 09:40
92622406009	FB-01	Water	08/24/22 10:00	08/25/22 14:47
92622406010	PZ-2D	Water	08/24/22 11:32	08/25/22 14:47
92622406011	PZ-32	Water	08/24/22 14:10	08/25/22 14:47
92622406012	PZ-25	Water	08/24/22 15:45	08/25/22 14:47
92622406020	PZ-19	Water	08/25/22 10:28	08/26/22 10:00
92622406021	PZ-16	Water	08/25/22 12:12	08/26/22 10:00
92622406022	PZ-15	Water	08/25/22 14:08	08/26/22 10:00
92622406023	FD-02	Water	08/25/22 00:00	08/26/22 10:00
92622406013	PZ-18	Water	08/25/22 10:35	08/26/22 10:00
92622406014	PZ-17	Water	08/25/22 12:10	08/26/22 10:00
92622406015	PZ-23A	Water	08/25/22 16:08	08/26/22 10:00
92622406016	PZ-7D	Water	08/25/22 14:10	08/26/22 10:00
92622406017	PZ-14	Water	08/25/22 16:00	08/26/22 10:00
92622406018	EB-01	Water	08/26/22 09:15	08/27/22 11:15
92622406019	PZ-57	Water	08/26/22 11:20	08/27/22 11:15

SAMPLE ANALYTE COUNT

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Lab ID	Sample ID	Method	Analysts	Analytes Reported
92622406001	PZ-1D	EPA 6010D	DRB	
		EPA 6020B	KH	13
		EPA 7470A	VB	1
		SM 2540C-2015	BTS	1
		EPA 300.0 Rev 2.1 1993	JCM	3
92622406002	FD-01	EPA 6010D	DRB	1
		EPA 6020B	KH	13
		EPA 7470A	VB	1
		SM 2540C-2015	BTS	1
		EPA 300.0 Rev 2.1 1993	JCM	3
92622406003	PZ-31	EPA 6010D	DRB	1
		EPA 6020B	KH	13
		EPA 7470A	VB	1
		SM 2540C-2015	BTS	1
		EPA 300.0 Rev 2.1 1993	JCM	3
92622406004	PZ-33	EPA 6010D	DRB	1
		EPA 6020B	KH	13
		EPA 7470A	VB	1
		SM 2540C-2015	BTS	1
		EPA 300.0 Rev 2.1 1993	JCM	3
92622406009	FB-01	EPA 6010D	DRB	1
		EPA 6020B	CW1	13
		EPA 7470A	VB	1
		SM 2540C-2015	BTS	1
		EPA 300.0 Rev 2.1 1993	JCM	3
92622406010	PZ-2D	EPA 6010D	DRB	1
		EPA 6020B	CW1	13
		EPA 7470A	VB	1
		SM 2540C-2015	BTS	1
		EPA 300.0 Rev 2.1 1993	JCM	3
92622406011	PZ-32	EPA 6010D	DRB	1
		EPA 6020B	CW1	13
		EPA 7470A	VB	1
		SM 2540C-2015	BTS	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92622406012	PZ-25	EPA 6010D	DRB	1
		EPA 6020B	CW1	13

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Lab ID	Sample ID	Method	Analysts	Analytes Reported
		EPA 7470A		1
		SM 2540C-2015	BTS	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92622406020	PZ-19	EPA 6010D	DRB	1
		EPA 6020B	KH	13
		EPA 7470A	VB	1
		SM 2540C-2015	BTS	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92622406021	PZ-16	EPA 6010D	DRB	1
		EPA 6020B	CW1, KH	13
		EPA 7470A	VB	1
		SM 2540C-2015	BTS	1
		EPA 300.0 Rev 2.1 1993	CDC	3
2622406022	PZ-15	EPA 6010D	DRB	1
		EPA 6020B	CW1, KH	13
		EPA 7470A	VB	1
		SM 2540C-2015	BTS	1
		EPA 300.0 Rev 2.1 1993	CDC	3
2622406023	FD-02	EPA 6010D	DRB	1
		EPA 6020B	CW1, KH	13
		EPA 7470A	VB	1
		SM 2540C-2015	BTS	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92622406013	PZ-18	EPA 6010D	DRB	1
		EPA 6020B	CW1, KH	13
		EPA 7470A	VB	1
		SM 2540C-2015	BTS	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92622406014	PZ-17	EPA 6010D	DRB	1
		EPA 6020B	CW1, KH	13
		EPA 7470A	VB	1
		SM 2540C-2015	BTS	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92622406015	PZ-23A	EPA 6010D	DRB	1
		EPA 6020B	CW1, KH	13
		EPA 7470A	VB	1
		SM 2540C-2015	BTS	1

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Lab ID	Sample ID	Method	Analysts	Analytes Reported
		EPA 300.0 Rev 2.1 1993	CDC	3
92622406016	PZ-7D	EPA 6010D	DRB	1
		EPA 6020B	CW1, KH	13
		EPA 7470A	VB	1
		SM 2540C-2015	BTS	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92622406017	PZ-14	EPA 6010D	DRB	1
		EPA 6020B	CW1, KH	13
		EPA 7470A	VB	1
		SM 2540C-2015	BTS	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92622406018	EB-01	EPA 6010D	DRB	1
		EPA 6020B	CW1	13
		EPA 7470A	VB	1
		SM 2540C-2015	BTS	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92622406019	PZ-57	EPA 6010D	DRB	1
		EPA 6020B	CW1	13
		EPA 7470A	VB	1
		SM 2540C-2015	BTS	1
		EPA 300.0 Rev 2.1 1993	CDC	3

PASI-A = Pace Analytical Services - Asheville PASI-C = Pace Analytical Services - Charlotte

PASI-GA = Pace Analytical Services - Peachtree Corners, GA

SUMMARY OF DETECTION

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2622406001	PZ-1D					
	Performed by	Customer			08/25/22 13:24	
	рН	7.49	Std. Units		08/25/22 13:24	
EPA 6010D	Calcium	45.8	mg/L	1.0	09/08/22 12:42	
PA 6020B	Barium	0.015	mg/L	0.0050	09/12/22 22:08	
PA 6020B	Boron	0.011J	mg/L	0.040	09/12/22 22:08	
PA 6020B	Chromium	0.0025J	mg/L	0.0050	09/12/22 22:08	
PA 6020B	Molybdenum	0.00088J	mg/L	0.010	09/12/22 22:08	
M 2540C-2015	Total Dissolved Solids	139	mg/L	25.0	08/30/22 15:41	
PA 300.0 Rev 2.1 1993	Chloride	2.6	mg/L	1.0	09/04/22 02:06	
PA 300.0 Rev 2.1 1993	Fluoride	0.080J	mg/L	0.10	09/04/22 02:06	
PA 300.0 Rev 2.1 1993	Sulfate	2.2	mg/L	1.0	09/04/22 02:06	
2622406002	FD-01					
	Performed by	Customer			08/25/22 13:25	
	рН	7.49	Std. Units		08/25/22 13:25	
PA 6010D	Calcium	46.4	mg/L	1.0	09/12/22 15:40	M1
PA 6020B	Barium	0.013	mg/L	0.0050	09/12/22 22:14	
PA 6020B	Chromium	0.0023J	mg/L	0.0050	09/12/22 22:14	
PA 6020B	Molybdenum	0.00085J	mg/L	0.010	09/12/22 22:14	
SM 2540C-2015	Total Dissolved Solids	142	mg/L	25.0	08/30/22 15:42	
PA 300.0 Rev 2.1 1993	Chloride	2.6	mg/L	1.0	09/04/22 02:21	
PA 300.0 Rev 2.1 1993	Fluoride	0.076J	mg/L	0.10	09/04/22 02:21	
PA 300.0 Rev 2.1 1993	Sulfate	2.2	mg/L	1.0	09/04/22 02:21	
2622406003	PZ-31					
	Performed by	Customer			08/25/22 13:25	
	рН	7.04	Std. Units		08/25/22 13:25	
PA 6010D	Calcium	95.2	mg/L	1.0	09/12/22 16:00	
PA 6020B	Barium	0.0063	mg/L	0.0050	09/12/22 22:20	
PA 6020B	Chromium	0.0015J	mg/L	0.0050	09/12/22 22:20	
M 2540C-2015	Total Dissolved Solids	261	mg/L	25.0	08/30/22 15:42	
PA 300.0 Rev 2.1 1993	Chloride	3.0	mg/L	1.0	09/04/22 02:36	
PA 300.0 Rev 2.1 1993	Fluoride	0.069J	mg/L	0.10	09/04/22 02:36	
PA 300.0 Rev 2.1 1993	Sulfate	0.56J	mg/L	1.0	09/04/22 02:36	
2622406004	PZ-33					
	Performed by	Customer			08/25/22 13:25	
	рН	7.10	Std. Units		08/25/22 13:25	
PA 6010D	Calcium	96.5	mg/L	1.0	09/12/22 16:04	
PA 6020B	Antimony	0.00082J	mg/L	0.0030	09/12/22 22:43	
PA 6020B	Barium	0.038	mg/L	0.0050	09/12/22 22:43	
PA 6020B	Boron	0.32	mg/L	0.040	09/12/22 22:43	
M 2540C-2015	Total Dissolved Solids	265	mg/L	25.0	08/30/22 15:42	
PA 300.0 Rev 2.1 1993	Chloride	1.8	mg/L	1.0	09/04/22 02:51	
PA 300.0 Rev 2.1 1993	Fluoride	0.092J	mg/L		09/04/22 02:51	
PA 300.0 Rev 2.1 1993	Sulfate	34.7	mg/L	1.0		
2622406010	PZ-2D					
	Performed by	Customer			08/26/22 09:35	

REPORT OF LABORATORY ANALYSIS

SUMMARY OF DETECTION

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

ab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2622406010	PZ-2D					
	рН	8.01	Std. Units		08/26/22 09:35	
PA 6010D	Calcium	27.3	mg/L	1.0	09/22/22 20:27	
PA 6020B	Antimony	0.0011J	mg/L	0.0030	09/22/22 16:33	
PA 6020B	Barium	0.010	mg/L	0.0050	09/22/22 16:33	
PA 6020B	Boron	0.012J	mg/L	0.040	09/22/22 16:33	
PA 6020B	Chromium	0.0066	mg/L	0.0050	09/22/22 16:33	
PA 6020B	Lithium	0.0012J	mg/L	0.030	09/22/22 16:33	
PA 7470A	Mercury	0.00013J	mg/L	0.00020	09/21/22 14:03	
M 2540C-2015	Total Dissolved Solids	287	mg/L	25.0	09/07/22 14:10	H1
PA 300.0 Rev 2.1 1993	Chloride	2.1	mg/L	1.0	09/04/22 04:21	
PA 300.0 Rev 2.1 1993	Fluoride	0.088J	mg/L	0.10	09/04/22 04:21	
PA 300.0 Rev 2.1 1993	Sulfate	2.0	mg/L	1.0	09/04/22 04:21	
2622406011	PZ-32					
	Performed by	Customer			08/26/22 09:35	
	pH	7.34	Std. Units		08/26/22 09:35	
PA 6010D	Calcium	67.1	mg/L	1.0		M1
PA 6020B	Antimony	0.0010J	mg/L	0.0030	09/22/22 16:57	
PA 6020B	Barium	0.019	mg/L	0.0050		
PA 6020B	Boron	0.022J	mg/L	0.040		
PA 7470A	Mercury	0.00014J	mg/L	0.00020	09/21/22 14:05	
M 2540C-2015	Total Dissolved Solids	172	mg/L	25.0	09/07/22 14:10	H1
PA 300.0 Rev 2.1 1993	Chloride	2.7	mg/L	1.0	09/07/22 15:22	
PA 300.0 Rev 2.1 1993	Fluoride	0.058J	mg/L	0.10	09/07/22 15:22	
PA 300.0 Rev 2.1 1993	Sulfate	1.7	mg/L	1.0	09/07/22 15:22	
2622406012	PZ-25		· ·			
	Performed by	Customer			08/26/22 09:36	
	pH	7.10	Std. Units		08/26/22 09:36	
PA 6010D	Calcium	87.6	mg/L	1.0	09/22/22 18:32	
PA 6020B	Barium	0.10	mg/L	0.0050	09/22/22 17:03	
PA 6020B	Boron	0.19	mg/L	0.040		
PA 6020B	Cobalt	0.0016J	mg/L	0.0050	09/22/22 17:03	
PA 6020B	Lithium	0.0073J	mg/L	0.030		
PA 6020B	Thallium	0.00048J	mg/L	0.0010	09/22/22 17:03	
PA 7470A	Mercury	0.00018J	mg/L	0.00020	09/22/22 08:43	H1
M 2540C-2015	Total Dissolved Solids	286	mg/L	25.0	09/07/22 14:10	H1
PA 300.0 Rev 2.1 1993	Chloride	1.8	mg/L		09/07/22 14:10	
PA 300.0 Rev 2.1 1993	Fluoride	0.15	mg/L		09/07/22 16:32	
PA 300.0 Rev 2.1 1993	Sulfate	35.7	mg/L		09/07/22 16:32	
2622406020	PZ-19		3			
	Performed by	Customer			08/26/22 17:04	
		6.67	Std. Units		08/26/22 17:04	
	Hα		Old. Ollilo		55, L5, LL 11.0T	
PA 6010D	pH Calcium		ma/l	1 0	09/12/22 16:34	
	Calcium	156	mg/L mg/l	1.0 0.0050		
PA 6020B	Calcium Barium	156 0.046	mg/L	0.0050	09/12/22 22:49	
PA 6010D PA 6020B PA 6020B PA 6020B	Calcium	156			09/12/22 22:49 09/12/22 22:49	

REPORT OF LABORATORY ANALYSIS

SUMMARY OF DETECTION

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Lab Sample ID	Client Sample ID					
Method	Parameters	Result _	Units	Report Limit	Analyzed .	Qualifier
2622406020	PZ-19					
EPA 6020B	Selenium	0.0019J	mg/L	0.0050	09/12/22 22:49	
EPA 6020B	Thallium	0.00053J	mg/L	0.0010	09/12/22 22:49	
SM 2540C-2015	Total Dissolved Solids	528	mg/L	50.0	08/30/22 15:42	
EPA 300.0 Rev 2.1 1993	Chloride	4.6	mg/L	1.0	09/07/22 20:16	
EPA 300.0 Rev 2.1 1993	Fluoride	0.086J	mg/L	0.10	09/07/22 20:16	
EPA 300.0 Rev 2.1 1993	Sulfate	84.4	mg/L	1.0	09/07/22 20:16	
2622406021	PZ-16					
	Performed by	Customer			08/26/22 17:04	
	pН	7.14	Std. Units		08/26/22 17:04	
PA 6010D	Calcium	92.0	mg/L	1.0	09/12/22 16:39	
EPA 6020B	Barium	0.035	mg/L	0.0050	09/12/22 23:07	
PA 6020B	Boron	0.24	mg/L	0.20	09/15/22 13:37	
PA 6020B	Chromium	0.0012J	mg/L	0.0050	09/12/22 23:07	
SM 2540C-2015	Total Dissolved Solids	90.0	mg/L	25.0	08/30/22 15:42	
EPA 300.0 Rev 2.1 1993	Chloride	6.3	mg/L	1.0	09/07/22 20:30	
EPA 300.0 Rev 2.1 1993	Fluoride	0.058J	mg/L	0.10	09/07/22 20:30	
PA 300.0 Rev 2.1 1993	Sulfate	38.7	mg/L	1.0	09/07/22 20:30	
2622406022	PZ-15					
	Performed by	Customer			08/26/22 17:04	
	рH	7.15	Std. Units		08/26/22 17:04	
PA 6010D	Calcium	96.7	mg/L	1.0	09/12/22 16:44	
PA 6020B	Barium	0.057	mg/L	0.0050	09/12/22 23:13	
PA 6020B	Boron	0.21	mg/L	0.20	09/15/22 13:43	
PA 6020B	Lithium	0.0012J	mg/L	0.030	09/12/22 23:13	
M 2540C-2015	Total Dissolved Solids	319	mg/L	25.0	08/30/22 15:42	
PA 300.0 Rev 2.1 1993	Chloride	6.4	mg/L	1.0	09/07/22 20:44	
EPA 300.0 Rev 2.1 1993	Fluoride	0.074J	mg/L	0.10	09/07/22 20:44	
PA 300.0 Rev 2.1 1993	Sulfate	75.5	mg/L	1.0	09/07/22 20:44	
2622406023	FD-02		Ü			
	Performed by	Customer			08/26/22 17:04	
	pH	6.76	Std. Units		08/26/22 17:04	
PA 6010D	Calcium	147	mg/L	1.0	09/12/22 16:49	
PA 6020B	Barium	0.025	mg/L	0.0050	09/12/22 23:19	
PA 6020B	Boron	0.38	mg/L	0.20	09/15/22 13:49	
PA 6020B	Lithium	0.0033J	mg/L		09/12/22 23:19	
M 2540C-2015	Total Dissolved Solids	432	mg/L		08/30/22 15:42	
PA 300.0 Rev 2.1 1993	Chloride	4.6	mg/L		09/07/22 20:58	
PA 300.0 Rev 2.1 1993	Fluoride	0.054J	mg/L	0.10	09/07/22 20:58	
PA 300.0 Rev 2.1 1993	Sulfate	95.6	mg/L	1.0	09/07/22 20:58	
2622406013	PZ-18		-			
	Performed by	Customer			08/26/22 17:05	
	pH	6.76	Std. Units		08/26/22 17:05	
PA 6010D	Calcium	141	mg/L	1.0	09/12/22 16:53	
PA 6020B	Barium	0.026	mg/L	0.0050	09/12/22 23:25	
		0.0_0	···· <i>ɔ</i> , –	0.0000		

REPORT OF LABORATORY ANALYSIS

SUMMARY OF DETECTION

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
	- D7 40		5 5			
2622406013	PZ-18					
EPA 6020B	Lithium	0.0033J	mg/L	0.030		
SM 2540C-2015	Total Dissolved Solids	446	mg/L	50.0	08/30/22 15:42	
EPA 300.0 Rev 2.1 1993	Chloride	4.6	mg/L	1.0	09/07/22 21:12	
EPA 300.0 Rev 2.1 1993	Fluoride	0.052J	mg/L	0.10	09/07/22 21:12	
PA 300.0 Rev 2.1 1993	Sulfate	96.3	mg/L	1.0	09/07/22 21:12	
2622406014	PZ-17	_				
	Performed by	Customer			08/26/22 17:05	
	pH	7.05	Std. Units		08/26/22 17:05	
PA 6010D	Calcium	99.5	mg/L	1.0		
PA 6020B	Barium	0.061	mg/L	0.0050	09/12/22 23:31	
PA 6020B	Boron	0.19J	mg/L	0.20	09/15/22 14:01	D3
PA 6020B	Lithium	0.0018J	mg/L	0.030	09/12/22 23:31	
PA 6020B	Thallium	0.00037J	mg/L	0.0010	09/12/22 23:31	
SM 2540C-2015	Total Dissolved Solids	321	mg/L	25.0	08/30/22 15:43	
PA 300.0 Rev 2.1 1993	Chloride	3.9	mg/L	1.0	09/07/22 21:26	
PA 300.0 Rev 2.1 1993	Fluoride	0.078J	mg/L	0.10	09/07/22 21:26	
PA 300.0 Rev 2.1 1993	Sulfate	62.7	mg/L	1.0	09/07/22 21:26	
2622406015	PZ-23A					
	Performed by	Customer			08/26/22 17:05	
	рН	6.76	Std. Units		08/26/22 17:05	
PA 6010D	Calcium	145	mg/L	1.0	09/12/22 17:03	
PA 6020B	Barium	0.036	mg/L	0.0050	09/12/22 23:37	
PA 6020B	Boron	0.17J	mg/L	0.20	09/15/22 14:07	D3
PA 6020B	Chromium	0.0022J	mg/L	0.0050	09/12/22 23:37	
PA 6020B	Selenium	0.0023J	mg/L	0.0050	09/12/22 23:37	
M 2540C-2015	Total Dissolved Solids	437	mg/L	25.0	08/30/22 15:43	
PA 300.0 Rev 2.1 1993	Chloride	3.2	mg/L	1.0	09/07/22 22:08	
PA 300.0 Rev 2.1 1993	Fluoride	0.074J	mg/L	0.10	09/07/22 22:08	
PA 300.0 Rev 2.1 1993	Sulfate	45.6	mg/L	1.0	09/07/22 22:08	
2622406016	PZ-7D					
	Performed by	Customer			08/26/22 17:05	
	рН	6.98	Std. Units		08/26/22 17:05	
PA 6010D	Calcium	107	mg/L	1.0	09/12/22 17:08	
PA 6020B	Barium	0.0058	mg/L	0.0050	09/12/22 23:43	
PA 6020B	Boron	0.20	mg/L	0.20	09/15/22 14:13	
PA 6020B	Chromium	0.0024J	mg/L	0.0050	09/12/22 23:43	
PA 6020B	Lithium	0.0030J	mg/L	0.030	09/12/22 23:43	
PA 6020B	Selenium	0.0017J	mg/L		09/12/22 23:43	
SM 2540C-2015	Total Dissolved Solids	325	mg/L	25.0	08/30/22 15:43	
PA 300.0 Rev 2.1 1993	Chloride	4.1	mg/L	1.0	09/07/22 22:50	
PA 300.0 Rev 2.1 1993	Fluoride	0.056J	mg/L	0.10	09/07/22 22:50	
EPA 300.0 Rev 2.1 1993	Sulfate	47.3	mg/L	1.0	09/07/22 22:50	
2622406017	PZ-14					
	Performed by	Customer			08/26/22 17:05	
	pН	6.93	Std. Units		08/26/22 17:05	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SUMMARY OF DETECTION

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Lab Sample ID	Client Sample ID	.		D (11.11		0 117
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92622406017	PZ-14					
EPA 6010D	Calcium	108	mg/L	1.0	09/12/22 17:12	
EPA 6020B	Barium	0.011	mg/L	0.0050	09/12/22 23:49	
EPA 6020B	Boron	0.032J	mg/L	0.040	10/11/22 13:07	
EPA 6020B	Chromium	0.0014J	mg/L	0.0050	09/12/22 23:49	
SM 2540C-2015	Total Dissolved Solids	259	mg/L	25.0	08/30/22 15:47	
EPA 300.0 Rev 2.1 1993	Chloride	4.6	mg/L	1.0	09/07/22 23:32	
EPA 300.0 Rev 2.1 1993	Fluoride	0.051J	mg/L	0.10	09/07/22 23:32	
EPA 300.0 Rev 2.1 1993	Sulfate	10.7	mg/L	1.0	09/07/22 23:32	
92622406018	EB-01					
EPA 6020B	Boron	0.0091J	mg/L	0.040	09/13/22 18:45	
92622406019	PZ-57					
	Performed by	Customer			08/29/22 11:09	
	рН	7.09	Std. Units		08/29/22 11:09	
EPA 6010D	Calcium	95.5	mg/L	1.0	09/12/22 18:15	
EPA 6020B	Barium	0.064	mg/L	0.0050	09/13/22 18:51	
EPA 6020B	Boron	0.18	mg/L	0.040	09/13/22 18:51	
EPA 6020B	Cobalt	0.0012J	mg/L	0.0050	09/13/22 18:51	
EPA 6020B	Lithium	0.0013J	mg/L	0.030	09/13/22 18:51	
SM 2540C-2015	Total Dissolved Solids	358	mg/L	25.0	08/31/22 12:44	
EPA 300.0 Rev 2.1 1993	Chloride	2.4	mg/L	1.0	09/08/22 00:00	
EPA 300.0 Rev 2.1 1993	Fluoride	0.083J	mg/L	0.10	09/08/22 00:00	
EPA 300.0 Rev 2.1 1993	Sulfate	87.2	mg/L	1.0	09/08/22 00:00	

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

Sample: PZ-1D	Lab ID:	92622406001	Collecte	ed: 08/24/22	2 11:35	Received: 08/	25/22 09:40 Ma	atrix: Water	
5 .	5 "	11.2	Report	MDI	55			0404	•
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	Customer				1		08/25/22 13:24		
Н	7.49	Std. Units			1		08/25/22 13:24		
6010D ATL ICP	Analytical	Method: EPA 6	6010D Pre	paration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	€A				
Calcium	45.8	mg/L	1.0	0.12	1	09/07/22 11:21	09/08/22 12:42	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	6020B Prej	paration Met	hod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Antimony	ND	mg/L	0.0030	0.00078	1	09/12/22 10:47	09/12/22 22:08	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0022	1	09/12/22 10:47	09/12/22 22:08	7440-38-2	
Barium	0.015	mg/L	0.0050	0.00067	1	09/12/22 10:47	09/12/22 22:08	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	09/12/22 10:47	09/12/22 22:08	7440-41-7	
Boron	0.011J	mg/L	0.040	0.0086	1	09/12/22 10:47	09/12/22 22:08	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1		09/12/22 22:08		
Chromium	0.0025J	mg/L	0.0050	0.0011	1	09/12/22 10:47	09/12/22 22:08	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1		09/12/22 22:08		
_ead	ND	mg/L	0.0010	0.00089	1	09/12/22 10:47	09/12/22 22:08	7439-92-1	
Lithium	ND	mg/L	0.030	0.00073	1	09/12/22 10:47	09/12/22 22:08	7439-93-2	
Molybdenum	0.00088J	mg/L	0.010	0.00074	1		09/12/22 22:08		
Selenium	ND	mg/L	0.0050	0.0014	1		09/12/22 22:08		
Γhallium	ND	mg/L	0.0010	0.00018	1		09/12/22 22:08		
7470 Mercury	Analytical	Method: EPA 7	7470A Prej	paration Met	hod: EF	PA 7470A			
·	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Mercury	ND	mg/L	0.00020	0.00013	1	09/12/22 15:30	09/13/22 08:48	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2015						
	Pace Ana	lytical Services	- Peachtre	e Corners, C	βA				
Total Dissolved Solids	139	mg/L	25.0	10.0	1		08/30/22 15:41		
800.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
•	Pace Ana	lytical Services	- Asheville						
Chloride	2.6	mg/L	1.0	0.60	1		09/04/22 02:06	16887-00-6	
Fluoride	0.080J	mg/L	0.10	0.050	1		09/04/22 02:06	16984-48-8	
Sulfate	2.2	mg/L	1.0	0.50	1		09/04/22 02:06		

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

Sample: FD-01	Lab ID:	92622406002	Collecte	ed: 08/24/22	2 00:00	Received: 08/	/25/22 09:40 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical Pace Ana	Method: lytical Services	- Charlotte						
Performed by	Customer				1		08/25/22 13:25		
Н	7.49	Std. Units			1		08/25/22 13:25		
010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Calcium	46.4	mg/L	1.0	0.12	1	09/12/22 10:47	09/12/22 15:40	7440-70-2	M1
020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Antimony	ND	mg/L	0.0030	0.00078	1	09/12/22 10:47	09/12/22 22:14	7440-36-0	
rsenic	ND	mg/L	0.0050	0.0022	1	09/12/22 10:47			
Barium	0.013	mg/L	0.0050	0.00067	1		09/12/22 22:14		
Beryllium	ND	mg/L	0.00050	0.000054	1		09/12/22 22:14		
Boron	ND	mg/L	0.040	0.0086	1		09/12/22 22:14		
Cadmium	ND	mg/L	0.00050	0.00011	1		09/12/22 22:14		
Chromium	0.0023J	mg/L	0.0050	0.0011	1		09/12/22 22:14		
Cobalt	ND	mg/L	0.0050	0.00039	1		09/12/22 22:14		
ead	ND	mg/L	0.0010	0.00089	1		09/12/22 22:14		
ithium	ND	mg/L	0.030	0.00073	1		09/12/22 22:14		
Molybdenum	0.00085J	mg/L	0.010	0.00074	1		09/12/22 22:14		
Selenium	ND	mg/L	0.0050	0.0014	1		09/12/22 22:14		
-hallium	ND	mg/L	0.0010	0.00018	1		09/12/22 22:14		
470 Mercury	Analytical	Method: EPA 7	470A Prei	paration Met	hod: EF	PA 7470A			
•	•	lytical Services							
Mercury	ND	mg/L	0.00020	0.00013	1	09/12/22 15:30	09/13/22 08:58	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	•	lytical Services		e Corners, C	βA				
otal Dissolved Solids	142	mg/L	25.0	10.0	1		08/30/22 15:42		
00.0 IC Anions 28 Days	•	Method: EPA 3 lytical Services		2.1 1993					
Chloride	2.6	mg/L	1.0	0.60	1		09/04/22 02:21	16887-00-6	
Fluoride	0.076J	mg/L	0.10	0.050	1		09/04/22 02:21	16984-48-8	
Sulfate	2.2	mg/L	1.0	0.50	1		09/04/22 02:21		

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

Sample: PZ-31	Lab ID:	92622406003	Collecte	ed: 08/24/22	2 14:00	Received: 08/	25/22 09:40 Ma	atrix: Water	
Doromotoro	Dogulto	Llaita	Report	MDI	DE	Dranarad	Analyzad	CACNO	0
Parameters	Results -	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	Customer				1		08/25/22 13:25		
рН	7.04	Std. Units			1		08/25/22 13:25		
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, 0	βA				
Calcium	95.2	mg/L	1.0	0.12	1	09/12/22 10:47	09/12/22 16:00	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	paration Met	hod: EF	PA 3005A			
	•	lytical Services							
Antimony	ND	mg/L	0.0030	0.00078	1	09/12/22 10:47	09/12/22 22:20	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0022	1	09/12/22 10:47			
Barium	0.0063	mg/L	0.0050	0.00067	1	09/12/22 10:47	09/12/22 22:20	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	09/12/22 10:47	09/12/22 22:20	7440-41-7	
Boron	ND	mg/L	0.040	0.0086	1	09/12/22 10:47	09/12/22 22:20	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	09/12/22 10:47	09/12/22 22:20	7440-43-9	
Chromium	0.0015J	mg/L	0.0050	0.0011	1	09/12/22 10:47	09/12/22 22:20	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	09/12/22 10:47	09/12/22 22:20	7440-48-4	
_ead	ND	mg/L	0.0010	0.00089	1	09/12/22 10:47	09/12/22 22:20	7439-92-1	
_ithium	ND	mg/L	0.030	0.00073	1	09/12/22 10:47	09/12/22 22:20	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00074	1	09/12/22 10:47	09/12/22 22:20	7439-98-7	
Selenium	ND	mg/L	0.0050	0.0014	1	09/12/22 10:47	09/12/22 22:20	7782-49-2	
Γhallium	ND	mg/L	0.0010	0.00018	1	09/12/22 10:47	09/12/22 22:20	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prep	paration Met	hod: EF	PA 7470A			
·	Pace Ana	lytical Services	- Peachtre	e Corners, 0	3A				
Mercury	ND	mg/L	0.00020	0.00013	1	09/12/22 15:30	09/13/22 09:01	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Ana	lytical Services	- Peachtre	e Corners, 0	βA				
Total Dissolved Solids	261	mg/L	25.0	10.0	1		08/30/22 15:42		
800.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	3.0	mg/L	1.0	0.60	1		09/04/22 02:36	16887-00-6	
Fluoride	0.069J	mg/L	0.10	0.050	1		09/04/22 02:36		
Sulfate	0.56J	mg/L	1.0	0.50	1		09/04/22 02:36		

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

Sample: PZ-33	Lab ID:	92622406004	Collecte	ed: 08/24/22	2 15:45	Received: 08/	25/22 09:40 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
- arametere									
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	Customer				1		08/25/22 13:25		
pH	7.10	Std. Units			1		08/25/22 13:25		
6010D ATL ICP	Apalytical	Method: EPA 6	010D Bro	paration Mo	hod: E	ολ 2010 λ			
00 10D ATE ICP	•	lytical Services				-A 3010A			
		,		•					
Calcium	96.5	mg/L	1.0	0.12	1	09/12/22 10:47	09/12/22 16:04	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, 0	βA				
Antimony	0.00082J	mg/L	0.0030	0.00078	1	09/12/22 10:47	09/12/22 22:43	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0022	1	09/12/22 10:47			
Barium	0.038	mg/L	0.0050	0.00067	1		09/12/22 22:43		
Beryllium	ND	mg/L	0.00050	0.000054	1		09/12/22 22:43		
Boron	0.32	mg/L	0.040	0.0086	1	09/12/22 10:47	09/12/22 22:43	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	09/12/22 10:47	09/12/22 22:43	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	09/12/22 10:47	09/12/22 22:43	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	09/12/22 10:47	09/12/22 22:43	7440-48-4	
Lead	ND	mg/L	0.0010	0.00089	1	09/12/22 10:47	09/12/22 22:43	7439-92-1	
Lithium	ND	mg/L	0.030	0.00073	1	09/12/22 10:47	09/12/22 22:43	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00074	1	09/12/22 10:47	09/12/22 22:43	7439-98-7	
Selenium	ND	mg/L	0.0050	0.0014	1	09/12/22 10:47	09/12/22 22:43	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00018	1	09/12/22 10:47	09/12/22 22:43	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prei	paration Met	hod: EF	PA 7470A			
•	•	lytical Services							
Mercury	ND	mg/L	0.00020	0.00013	1	09/12/22 15:30	09/13/22 09:04	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540 ∩ -2015						
2340C Total Dissolved Solids	•	lytical Services		a Corners (2.0				
Total Dissolved Solids	265	mg/L	25.0	10.0	1		08/30/22 15:42		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	1.8	mg/L	1.0	0.60	1		09/04/22 02:51	16887-00-6	
Fluoride	0.092J	mg/L	0.10	0.050	1		09/04/22 02:51		
Sulfate	34.7	mg/L	1.0	0.50	1		09/04/22 02:51		

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

Sample: FB-01	Lab ID:	92622406009	Collecte	ed: 08/24/22	2 10:00	Received: 08/	25/22 14:47 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical	Method: EPA 6	010D Prep	paration Me	hod: Ef	PA 3010A			
	Pace Ana	ytical Services	- Peachtre	e Corners, 0	βA				
Calcium	ND	mg/L	1.0	0.12	1	09/21/22 17:50	09/22/22 18:08	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	paration Met	hod: EF	PA 3005A			
	Pace Ana	ytical Services	- Peachtre	e Corners, (SA.				
Antimony	ND	mg/L	0.0030	0.00078	1	09/21/22 17:50	09/22/22 16:27	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0022	1	09/21/22 17:50	09/22/22 16:27	7440-38-2	
Barium	ND	mg/L	0.0050	0.00067	1	09/21/22 17:50	09/22/22 16:27	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	09/21/22 17:50	09/22/22 16:27	7440-41-7	
Boron	ND	mg/L	0.040	0.0086	1	09/21/22 17:50	09/22/22 16:27	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	09/21/22 17:50	09/22/22 16:27	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	09/21/22 17:50	09/22/22 16:27	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	09/21/22 17:50	09/22/22 16:27	7440-48-4	
Lead	ND	mg/L	0.0010	0.00089	1	09/21/22 17:50	09/22/22 16:27	7439-92-1	
Lithium	ND	mg/L	0.030	0.00073	1	09/21/22 17:50	09/22/22 16:27	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00074	1	09/21/22 17:50	09/22/22 16:27	7439-98-7	
Selenium	ND	mg/L	0.0050	0.0014	1	09/21/22 17:50	09/22/22 16:27	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00018	1	09/21/22 17:50	09/22/22 16:27	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prep	paration Met	hod: EF	PA 7470A			
•	Pace Ana	ytical Services	- Peachtre	e Corners, 0	βA				
Mercury	ND	mg/L	0.00020	0.00013	1	09/21/22 09:00	09/21/22 14:00	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	•	ytical Services		e Corners, 0	S A				
Total Dissolved Solids	ND	mg/L	25.0	10.0	1		09/07/22 14:10		H1
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
	Pace Ana	ytical Services	- Asheville						
Chloride	ND	mg/L	1.0	0.60	1		09/04/22 04:06	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/04/22 04:06		
Sulfate	ND	mg/L	1.0	0.50	1		09/04/22 04:06		

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

Sample: PZ-2D	Lab ID:	92622406010	Collecte	ed: 08/24/22	2 11:32	Received: 08/	/25/22 14:47 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical Pace Ana	Method: lytical Services	- Charlotte						
Performed by pH	Customer 8.01	Std. Units			1 1		08/26/22 09:35 08/26/22 09:35		
6010D ATL ICP	•	Method: EPA 6 lytical Services				PA 3010A			
Calcium	27.3	mg/L	1.0	0.12	1	09/21/22 17:50	09/22/22 20:27	7440-70-2	
6020 MET ICPMS	•	Method: EPA 6 lytical Services				PA 3005A			
Antimony Arsenic	0.0011J ND	mg/L mg/L	0.0030 0.0050	0.00078 0.0022	1 1	09/21/22 17:50 09/21/22 17:50	09/22/22 16:33 09/22/22 16:33		
Barium Beryllium	0.010 ND	mg/L mg/L	0.0050 0.00050	0.00067 0.000054	1 1	09/21/22 17:50	09/22/22 16:33 09/22/22 16:33	7440-41-7	
Boron Cadmium	0.012J ND	mg/L mg/L	0.040	0.0086	1	09/21/22 17:50	09/22/22 16:33 09/22/22 16:33	7440-43-9	
Chromium Cobalt	0.0066 ND	mg/L mg/L	0.0050	0.0011	1	09/21/22 17:50	09/22/22 16:33 09/22/22 16:33	7440-48-4	
Lead Lithium Molybdenum	ND 0.0012J ND	mg/L mg/L mg/L	0.0010 0.030 0.010	0.00089 0.00073 0.00074	1 1 1	09/21/22 17:50	09/22/22 16:33 09/22/22 16:33 09/22/22 16:33	7439-93-2	
Selenium Thallium	ND ND	mg/L mg/L	0.0050 0.0010	0.00074 0.0014 0.00018	1 1	09/21/22 17:50		7782-49-2	
7470 Mercury	Analytical	Method: EPA 7 lytical Services	470A Pre	paration Met	hod: EF				
Mercury	0.00013J	mg/L	0.00020	0.00013	1	09/21/22 09:00	09/21/22 14:03	7439-97-6	
2540C Total Dissolved Solids	•	Method: SM 25 lytical Services			ΘA				
Total Dissolved Solids	287	mg/L	25.0	10.0	1		09/07/22 14:10		H1
300.0 IC Anions 28 Days	•	Method: EPA 3 lytical Services		2.1 1993					
Chloride Fluoride Sulfate	2.1 0.088J 2.0	mg/L mg/L mg/L	1.0 0.10 1.0	0.60 0.050 0.50	1 1 1		09/04/22 04:21 09/04/22 04:21 09/04/22 04:21	16984-48-8	

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

Sample: PZ-32	Lab ID:	92622406011	Collecte	ed: 08/24/22	2 14:10	Received: 08/	/25/22 14:47 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	s - Charlotte						
Performed by	Customer				1		08/26/22 09:35		
рН	7.34	Std. Units			1		08/26/22 09:35		
6010D ATL ICP	Analytical	Method: EPA	6010D Pre	paration Met	hod: El	PA 3010A			
	Pace Ana	lytical Services	s - Peachtre	e Corners, C	βA				
Calcium	67.1	mg/L	1.0	0.12	1	09/21/22 17:50	09/22/22 18:13	7440-70-2	M1
6020 MET ICPMS	Analytical	Method: EPA	6020B Prep	paration Met	hod: Ef	PA 3005A			
	Pace Ana	lytical Services	s - Peachtre	e Corners, C	SA.				
Antimony	0.0010J	mg/L	0.0030	0.00078	1	09/21/22 17:50	09/22/22 16:57	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0022	1	09/21/22 17:50	09/22/22 16:57		
Barium	0.019	mg/L	0.0050	0.00067	1	09/21/22 17:50			
Beryllium	ND	mg/L	0.00050	0.000054	1		09/22/22 16:57		
Boron	0.022J	mg/L	0.040	0.0086	1		09/22/22 16:57	_	
Cadmium	ND	mg/L	0.00050	0.00011	1		09/22/22 16:57		
Chromium	ND	mg/L	0.0050	0.00011	1	09/21/22 17:50			
Cobalt	ND	mg/L	0.0050	0.00039	1	09/21/22 17:50			
Lead	ND	mg/L	0.0030	0.00089	1	09/21/22 17:50			
Lithium	ND	mg/L	0.030	0.00073	1		09/22/22 16:57		
Molybdenum	ND ND	mg/L	0.030	0.00073	1	09/21/22 17:50			
Selenium	ND ND	mg/L	0.0050	0.00074	1	09/21/22 17:50	09/22/22 16:57		
Thallium	ND ND	mg/L	0.0030	0.0014	1		09/22/22 16:57		
		Ü					09/22/22 10:57	7440-20-0	
7470 Mercury	-	Method: EPA				PA 7470A			
	Pace Ana	lytical Services	s - Peachtre	e Corners, C	iΑ				
Mercury	0.00014J	mg/L	0.00020	0.00013	1	09/21/22 09:00	09/21/22 14:05	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C-2015						
	Pace Ana	lytical Services	s - Peachtre	e Corners, C	SA.				
Total Dissolved Solids	172	mg/L	25.0	10.0	1		09/07/22 14:10		H1
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
-	Pace Ana	lytical Services	s - Asheville						
Chloride	2.7	mg/L	1.0	0.60	1		09/07/22 15:22	16887-00-6	
Fluoride	0.058J	mg/L	0.10	0.050	1		09/07/22 15:22		
Sulfate	1.7	mg/L	1.0	0.50	1		09/07/22 15:22		

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

Sample: PZ-25	Lab ID:	92622406012	Collecte	ed: 08/24/2	2 15:45	Received: 08/	25/22 14:47 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical Pace Ana	Method: lytical Services	- Charlotte	•					
Performed by pH	Customer 7.10	Std. Units			1 1		08/26/22 09:36 08/26/22 09:36		
6010D ATL ICP	•	Method: EPA 6 lytical Services		•		PA 3010A			
Calcium	87.6	mg/L	1.0	0.12	1	09/21/22 17:50	09/22/22 18:32	7440-70-2	
6020 MET ICPMS	•	Method: EPA 6 lytical Services				PA 3005A			
Antimony Arsenic	ND ND	mg/L mg/L	0.0030 0.0050	0.00078 0.0022	1 1	09/21/22 17:50 09/21/22 17:50	09/22/22 17:03 09/22/22 17:03		
Barium Beryllium	0.10 ND	mg/L mg/L	0.0050 0.00050	0.00067 0.000054	1 1	09/21/22 17:50	09/22/22 17:03 09/22/22 17:03	7440-41-7	
Boron Cadmium	0.19 ND	mg/L mg/L	0.040	0.0086	1	09/21/22 17:50	09/22/22 17:03 09/22/22 17:03	7440-43-9	
Chromium Cobalt Lead	ND 0.0016J ND	mg/L mg/L	0.0050	0.0011	1 1 1		09/22/22 17:03 09/22/22 17:03 09/22/22 17:03	7440-48-4	
Lithium Molybdenum	0.0073J ND	mg/L mg/L mg/L	0.0010 0.030 0.010	0.00089 0.00073 0.00074	1 1 1	09/21/22 17:50	09/22/22 17:03 09/22/22 17:03 09/22/22 17:03	7439-93-2	
Selenium Thallium	ND 0.00048J	mg/L mg/L	0.0050 0.0010	0.0014	1 1	09/21/22 17:50	09/22/22 17:03 09/22/22 17:03	7782-49-2	
7470 Mercury	•	Method: EPA 7				PA 7470A			
Mercury	0.00018J	mg/L	0.00020	0.00013	1	09/21/22 11:00	09/22/22 08:43	7439-97-6	H1
2540C Total Dissolved Solids	•	Method: SM 29 lytical Services			ΘA				
Total Dissolved Solids	286	mg/L	25.0	10.0	1		09/07/22 14:10		H1
300.0 IC Anions 28 Days	•	Method: EPA 3 lytical Services							
Chloride Fluoride	1.8 0.15	mg/L mg/L	1.0 0.10	0.60 0.050	1 1		09/07/22 16:32 09/07/22 16:32	16984-48-8	
Sulfate	35.7	mg/L	1.0	0.50	1		09/07/22 16:32	14808-79-8	

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

Sample: PZ-19	Lab ID:	92622406020	Collecte	ed: 08/25/22	2 10:28	Received: 08/	/26/22 10:00 N	fatrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte)					
Performed by	Customer				1		08/26/22 17:04	4	
рН	6.67	Std. Units			1		08/26/22 17:04		
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Met	hod: Ef	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Calcium	156	mg/L	1.0	0.12	1	09/12/22 10:47	09/12/22 16:34	4 7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Antimony	ND	mg/L	0.0030	0.00078	1	09/12/22 10:47	09/12/22 22:49	9 7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0022	1	09/12/22 10:47			
Barium	0.046	mg/L	0.0050	0.00067	1	09/12/22 10:47			
Beryllium	ND	mg/L	0.00050	0.000054	1	09/12/22 10:47			
Boron	0.58	mg/L	0.040	0.0086	1	09/12/22 10:47			
Cadmium	ND	mg/L	0.00050	0.00011	1	09/12/22 10:47	09/12/22 22:49	9 7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	09/12/22 10:47			
Cobalt	ND	mg/L	0.0050	0.00039	1	09/12/22 10:47	09/12/22 22:49	9 7440-48-4	
Lead	ND	mg/L	0.0010	0.00089	1	09/12/22 10:47	09/12/22 22:49	9 7439-92-1	
Lithium	0.012J	mg/L	0.030	0.00073	1	09/12/22 10:47	09/12/22 22:49	9 7439-93-2	
Molybdenum	0.0017J	mg/L	0.010	0.00074	1	09/12/22 10:47	09/12/22 22:49	9 7439-98-7	
Selenium	0.0019J	mg/L	0.0050	0.0014	1	09/12/22 10:47	09/12/22 22:49	9 7782-49-2	
Thallium	0.00053J	mg/L	0.0010	0.00018	1	09/12/22 10:47			
7470 Mercury	Analytical	Method: EPA 7	470A Prej	paration Met	hod: EF	PA 7470A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	βA				
Mercury	ND	mg/L	0.00020	0.00013	1	09/12/22 15:30	09/13/22 09:1	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Total Dissolved Solids	528	mg/L	50.0	20.0	1		08/30/22 15:42	2	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	4.6	mg/L	1.0	0.60	1		09/07/22 20:10	6 16887-00-6	
Fluoride	0.086J	mg/L	0.10	0.050	1		09/07/22 20:10		
Sulfate	84.4	mg/L	1.0	0.50	1		09/07/22 20:10		

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

Sample: PZ-16	Lab ID:	92622406021	Collecte	ed: 08/25/2	2 12:12	Received: 08/	26/22 10:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical Pace Ana	Method: lytical Services	- Charlotte	.					
Performed by	Customer				1		08/26/22 17:04		
Н	7.14	Std. Units			1		08/26/22 17:04		
6010D ATL ICP	Analytical	Method: EPA 6	6010D Pre	paration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, (βA				
Calcium	92.0	mg/L	1.0	0.12	1	09/12/22 10:47	09/12/22 16:39	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
	•	lytical Services							
Antimony	ND	mg/L	0.0030	0.00078	1	09/12/22 10:47	09/12/22 23:07	7440-36-0	
Arsenic	ND ND	mg/L	0.0050	0.00078	1		09/12/22 23:07		
Barium	0.035	mg/L	0.0050	0.00067	1		09/12/22 23:07		
Beryllium	ND	mg/L	0.00050	0.000054	1		09/12/22 23:07		
Boron	0.24	mg/L	0.20	0.043	5		09/15/22 13:37		
Cadmium	ND	mg/L	0.00050	0.00011	1		09/12/22 23:07		
Chromium	0.0012J	mg/L	0.0050	0.0011	1		09/12/22 23:07		
Cobalt	ND	mg/L	0.0050	0.00039	1		09/12/22 23:07		
_ead	ND	mg/L	0.0010	0.00089	1		09/12/22 23:07		
Lithium	ND	mg/L	0.030	0.00073	1		09/12/22 23:07		
Molybdenum	ND	mg/L	0.010	0.00074	1		09/12/22 23:07		
Selenium	ND	mg/L	0.0050	0.0014	1		09/12/22 23:07		
Thallium	ND	mg/L	0.0010	0.00018	1	09/12/22 10:47	09/12/22 23:07	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	7470A Prei	paration Met	hod: EF	PA 7470A			
,	•	lytical Services							
Mercury	ND	mg/L	0.00020	0.00013	1	09/12/22 15:30	09/13/22 09:14	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2015						
	Pace Ana	lytical Services	- Peachtre	e Corners, 0	ЭΑ				
Total Dissolved Solids	90.0	mg/L	25.0	10.0	1		08/30/22 15:42		
300.0 IC Anions 28 Days	•	Method: EPA 3							
Chloride	6.3	mg/L	1.0	0.60	1		09/07/22 20:30	16887-00-6	
Fluoride	0.058J	mg/L	0.10	0.050	1		09/07/22 20:30		
Sulfate	38.7	mg/L	1.0	0.50	1		09/07/22 20:30		

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

Sample: PZ-15	Lab ID:	92622406022	Collecte	d: 08/25/2	2 14:08	Received: 08/	26/22 10:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	Customer				1		08/26/22 17:04		
pH	7.15	Std. Units			1		08/26/22 17:04		
COLOR ATL ICR	Analytical	Method: EPA 6	010D Bros	ocration Ma	had: El	DA 2010A			
6010D ATL ICP	•	lytical Services				A 3010A			
		•		•					
Calcium	96.7	mg/L	1.0	0.12	1	09/12/22 10:47	09/12/22 16:44	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	paration Met	hod: EF	PA 3005A			
	•	lytical Services							
Antimony	ND	mg/L	0.0030	0.00078	1	09/12/22 10:47	09/12/22 23:13	7440-36-0	
Arsenic	ND ND	mg/L	0.0050	0.00078	1		09/12/22 23:13		
Barium	0.057	mg/L	0.0050	0.00067	1		09/12/22 23:13		
Beryllium	ND	mg/L	0.00050	0.000054	1		09/12/22 23:13		
Boron	0.21	mg/L	0.20	0.043	5		09/15/22 13:43		
Cadmium	ND	mg/L	0.00050	0.00011	1		09/12/22 23:13		
Chromium	ND	mg/L	0.0050	0.0011	1		09/12/22 23:13		
Cobalt	ND	mg/L	0.0050	0.00039	1	09/12/22 10:47	09/12/22 23:13	7440-48-4	
_ead	ND	mg/L	0.0010	0.00089	1	09/12/22 10:47	09/12/22 23:13	7439-92-1	
Lithium	0.0012J	mg/L	0.030	0.00073	1	09/12/22 10:47	09/12/22 23:13	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00074	1	09/12/22 10:47	09/12/22 23:13	7439-98-7	
Selenium	ND	mg/L	0.0050	0.0014	1	09/12/22 10:47	09/12/22 23:13	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00018	1	09/12/22 10:47	09/12/22 23:13	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	'47∩A Prer	naration Met	hod: FF	PA 7470Α			
1470 Merodry	•	lytical Services				717 17 071			
				•		00/40/00 45 00	00/40/00 00 47	7400 07 0	
Mercury	ND	mg/L	0.00020	0.00013	1	09/12/22 15:30	09/13/22 09:17	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Ana	lytical Services	- Peachtre	e Corners, 0	βA				
Total Dissolved Solids	319	mg/L	25.0	10.0	1		08/30/22 15:42		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	.1 1993					
	•	lytical Services							
Chloride	6.4	mg/L	1.0	0.60	1		09/07/22 20:44	16887 00 6	
Fluoride	0.4 0.074J	mg/L	0.10	0.60	1		09/07/22 20:44		
Sulfate	75.5	mg/L	1.0	0.050	1		09/07/22 20:44		

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

Sample: FD-02	Lab ID:	92622406023	Collecte	ed: 08/25/22	2 00:00	Received: 08/	26/22 10:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Date	Analytical	Mathadi					, .		
Field Data	Analytical Pace Ana	lytical Services	- Charlotte						
Performed by	Customer				1		08/26/22 17:04		
ЭН	6.76	Std. Units			1		08/26/22 17:04		
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Met	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	ЭΑ				
Calcium	147	mg/L	1.0	0.12	1	09/12/22 10:47	09/12/22 16:49	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	ЭΑ				
Antimony	ND	mg/L	0.0030	0.00078	1	09/12/22 10:47	09/12/22 23:19	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0022	1	09/12/22 10:47			
Barium	0.025	mg/L	0.0050	0.00067	1	09/12/22 10:47	09/12/22 23:19	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1		09/12/22 23:19		
Boron	0.38	mg/L	0.20	0.043	5	09/12/22 10:47	09/15/22 13:49	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	09/12/22 10:47	09/12/22 23:19	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1		09/12/22 23:19		
Cobalt	ND	mg/L	0.0050	0.00039	1		09/12/22 23:19		
_ead	ND	mg/L	0.0010	0.00089	1		09/12/22 23:19		
Lithium	0.0033J	mg/L	0.030	0.00073	1	09/12/22 10:47	09/12/22 23:19	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00074	1		09/12/22 23:19		
Selenium	ND	mg/L	0.0050	0.0014	1		09/12/22 23:19		
Thallium	ND	mg/L	0.0010	0.00018	1		09/12/22 23:19		
7470 Mercury	Analytical	Method: EPA 7	470A Prei	paration Met	hod: EF	PA 7470A			
,	•	lytical Services							
Mercury	ND	mg/L	0.00020	0.00013	1	09/12/22 15:30	09/13/22 09:19	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Ana	lytical Services	- Peachtre	e Corners, C	βA				
Total Dissolved Solids	432	mg/L	50.0	20.0	1		08/30/22 15:42		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	4.6	mg/L	1.0	0.60	1		09/07/22 20:58	16887-00-6	
Fluoride	0.054J	mg/L	0.10	0.050	1		09/07/22 20:58		
Sulfate	95.6	mg/L	1.0	0.50	1		09/07/22 20:58		

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

Sample: PZ-18	Lab ID:	92622406013	Collecte	d: 08/25/22	2 10:35	Received: 08/	26/22 10:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical Pace Ana	Method: lytical Services	- Charlotte						
Performed by	Customer				1		08/26/22 17:05		
рН	6.76	Std. Units			1		08/26/22 17:05		
6010D ATL ICP	Analytical	Method: EPA 6	010D Prep	aration Met	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtree	e Corners, C	3A				
Calcium	141	mg/L	1.0	0.12	1	09/12/22 10:47	09/12/22 16:53	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtree	e Corners, C	3A				
Antimony	ND	mg/L	0.0030	0.00078	1	09/12/22 10:47	09/12/22 23:25	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0022	1	09/12/22 10:47	09/12/22 23:25		
Barium	0.026	mg/L	0.0050	0.00067	1		09/12/22 23:25		
Beryllium	ND	mg/L	0.00050	0.000054	1		09/12/22 23:25		
Boron	0.39	mg/L	0.20	0.043	5	09/12/22 10:47	09/15/22 13:55	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	09/12/22 10:47	09/12/22 23:25	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1		09/12/22 23:25		
Cobalt	ND	mg/L	0.0050	0.00039	1		09/12/22 23:25		
Lead	ND	mg/L	0.0010	0.00089	1	09/12/22 10:47	09/12/22 23:25	7439-92-1	
Lithium	0.0033J	mg/L	0.030	0.00073	1	09/12/22 10:47	09/12/22 23:25	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00074	1		09/12/22 23:25		
Selenium	ND	mg/L	0.0050	0.0014	1		09/12/22 23:25		
Thallium	ND	mg/L	0.0010	0.00018	1	09/12/22 10:47	09/12/22 23:25	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	'470A Prep	aration Met	hod: EF	PA 7470A			
-	Pace Ana	lytical Services	- Peachtree	e Corners, C	βA				
Mercury	ND	mg/L	0.00020	0.00013	1	09/12/22 15:30	09/13/22 09:22	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Ana	lytical Services	- Peachtree	e Corners, C	3A				
Total Dissolved Solids	446	mg/L	50.0	20.0	1		08/30/22 15:42		
300.0 IC Anions 28 Days	•	Method: EPA 3 lytical Services		.1 1993					
Chloride	4.6	mg/L	1.0	0.60	1		09/07/22 21:12	16887-00-6	
Fluoride	0.052J	mg/L	0.10	0.050	1		09/07/22 21:12		
Sulfate	96.3	mg/L	1.0	0.50	1		09/07/22 21:12		

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

Sample: PZ-17	Lab ID:	92622406014	Collecte	d: 08/25/22	2 12:10	Received: 08/	/26/22 10:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical Pace Ana	Method: lytical Services	- Charlotte						
Performed by	Customer				1		08/26/22 17:05		
ρΗ	7.05	Std. Units			1		08/26/22 17:05		
6010D ATL ICP	Analytical	Method: EPA 6	010D Prep	paration Me	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, 0	GΑ				
Calcium	99.5	mg/L	1.0	0.12	1	09/12/22 10:47	09/12/22 16:58	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	thod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, 0	GΑ				
Antimony	ND	mg/L	0.0030	0.00078	1	09/12/22 10:47	09/12/22 23:31	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0022	1	09/12/22 10:47			
Barium	0.061	mg/L	0.0050	0.00067	1	09/12/22 10:47	09/12/22 23:31	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1		09/12/22 23:31		
Boron	0.19J	mg/L	0.20	0.043	5	09/12/22 10:47	09/15/22 14:01	7440-42-8	D3
Cadmium	ND	mg/L	0.00050	0.00011	1	09/12/22 10:47	09/12/22 23:31	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1		09/12/22 23:31		
Cobalt	ND	mg/L	0.0050	0.00039	1		09/12/22 23:31		
Lead	ND	mg/L	0.0010	0.00089	1	09/12/22 10:47	09/12/22 23:31	7439-92-1	
Lithium	0.0018J	mg/L	0.030	0.00073	1	09/12/22 10:47	09/12/22 23:31	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00074	1		09/12/22 23:31		
Selenium	ND	mg/L	0.0050	0.0014	1		09/12/22 23:31		
Thallium	0.00037J	mg/L	0.0010	0.00018	1	09/12/22 10:47	09/12/22 23:31	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prec	aration Met	thod: EF	PA 7470A			
,,	-	lytical Services							
Mercury	ND	mg/L	0.00020	0.00013	1	09/12/22 15:30	09/13/22 09:25	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	•	lytical Services		e Corners, 0	GΑ				
Total Dissolved Solids	321	mg/L	25.0	10.0	1		08/30/22 15:43		
300.0 IC Anions 28 Days	-	Method: EPA 3 lytical Services		.1 1993					
Chloride	3.9	mg/L	1.0	0.60	1		09/07/22 21:26	16887-00-6	
Fluoride	0.078J	mg/L	0.10	0.050	1		09/07/22 21:26		
Sulfate	62.7	mg/L	1.0	0.50	1		09/07/22 21:26		

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

Sample: PZ-23A	Lab ID:	92622406015	Collecte	ed: 08/25/22	2 16:08	Received: 08/	26/22 10:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	s - Charlotte	;					
Performed by	Customer				1		08/26/22 17:05		
pH	6.76	Std. Units			1		08/26/22 17:05		
6010D ATL ICP	Analytical	Method: EPA	6010D Pre	paration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	s - Peachtre	e Corners, C	βA				
Calcium	145	mg/L	1.0	0.12	1	09/12/22 10:47	09/12/22 17:03	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Ana	lytical Services	s - Peachtre	e Corners, C	βA				
Antimony	ND	mg/L	0.0030	0.00078	1	09/12/22 10:47	09/12/22 23:37	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0022	1	09/12/22 10:47	09/12/22 23:37	7440-38-2	
Barium	0.036	mg/L	0.0050	0.00067	1	09/12/22 10:47	09/12/22 23:37	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	09/12/22 10:47	09/12/22 23:37	7440-41-7	
Boron	0.17J	mg/L	0.20	0.043	5	09/12/22 10:47	09/15/22 14:07	7440-42-8	D3
Cadmium	ND	mg/L	0.00050	0.00011	1	09/12/22 10:47	09/12/22 23:37	7440-43-9	
Chromium	0.0022J	mg/L	0.0050	0.0011	1	09/12/22 10:47	09/12/22 23:37	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	09/12/22 10:47	09/12/22 23:37	7440-48-4	
Lead	ND	mg/L	0.0010	0.00089	1	09/12/22 10:47	09/12/22 23:37	7439-92-1	
Lithium	ND	mg/L	0.030	0.00073	1	09/12/22 10:47	09/12/22 23:37	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00074	1	09/12/22 10:47	09/12/22 23:37	7439-98-7	
Selenium	0.0023J	mg/L	0.0050	0.0014	1	09/12/22 10:47	09/12/22 23:37	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00018	1	09/12/22 10:47	09/12/22 23:37	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Pre	paration Met	hod: EF	PA 7470A			
•	Pace Ana	lytical Services	s - Peachtre	e Corners, C	βA				
Mercury	ND	mg/L	0.00020	0.00013	1	09/12/22 15:30	09/13/22 09:27	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2015						
	Pace Ana	lytical Services	s - Peachtre	e Corners, C	θA				
Total Dissolved Solids	437	mg/L	25.0	10.0	1		08/30/22 15:43		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	s - Asheville						
Chloride	3.2	mg/L	1.0	0.60	1		09/07/22 22:08	16887-00-6	
Fluoride	0.074J	mg/L	0.10	0.050	1		09/07/22 22:08	16984-48-8	
Sulfate	45.6	mg/L	1.0	0.50	1		09/07/22 22:08	14808-79-8	

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

Sample: PZ-7D	Lab ID:	92622406016	Collecte	d: 08/25/22	2 14:10	Received: 08/	26/22 10:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
. aramotoro									
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	Customer				1		08/26/22 17:05		
pΗ	6.98	Std. Units			1		08/26/22 17:05		
6010D ATL ICP	Apolytical	Method: EPA 6	:010D Pror	aration Mot	hod: EE	0Λ 2010Λ			
00 10D ATE ICP	•	lytical Services				A 30 10A			
		•		•					
Calcium	107	mg/L	1.0	0.12	1	09/12/22 10:47	09/12/22 17:08	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	βA				
Antimony	ND	mg/L	0.0030	0.00078	1	09/12/22 10:47	09/12/22 23:43	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0022	1	09/12/22 10:47			
Barium	0.0058	mg/L	0.0050	0.00067	1		09/12/22 23:43		
Beryllium	ND	mg/L	0.00050	0.000054	1		09/12/22 23:43		
Boron	0.20	mg/L	0.20	0.043	5	09/12/22 10:47	09/15/22 14:13	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	09/12/22 10:47	09/12/22 23:43	7440-43-9	
Chromium	0.0024J	mg/L	0.0050	0.0011	1	09/12/22 10:47	09/12/22 23:43	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	09/12/22 10:47	09/12/22 23:43	7440-48-4	
Lead	ND	mg/L	0.0010	0.00089	1	09/12/22 10:47	09/12/22 23:43	7439-92-1	
Lithium	0.0030J	mg/L	0.030	0.00073	1	09/12/22 10:47	09/12/22 23:43	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00074	1	09/12/22 10:47	09/12/22 23:43	7439-98-7	
Selenium	0.0017J	mg/L	0.0050	0.0014	1	09/12/22 10:47	09/12/22 23:43	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00018	1	09/12/22 10:47	09/12/22 23:43	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prep	aration Met	hod: EF	'A 7470A			
,,,	•	lytical Services							
Mercury	ND	mg/L	0.00020	0.00013	1	09/12/22 15:30	09/13/22 09:30	7439-97-6	
2540C Total Dissolved Solids	Apolytical	Method: SM 25	540C 2015						
2540C Total Dissolved Solids	•			o Cornora (٠,				
		lytical Services							
Total Dissolved Solids	325	mg/L	25.0	10.0	1		08/30/22 15:43		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	4.1	mg/L	1.0	0.60	1		09/07/22 22:50	16887-00-6	
Fluoride	0.056J	mg/L	0.10	0.050	1		09/07/22 22:50		
Sulfate	47.3	mg/L	1.0	0.50	1		09/07/22 22:50		

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

Sample: PZ-14	Lab ID:	92622406017	Collecte	d: 08/25/22	2 16:00	Received: 08/	/26/22 10:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical Pace Ana	Method: lytical Services	- Charlotte						
Performed by	Customer				1		08/26/22 17:05		
Н	6.93	Std. Units			1		08/26/22 17:05		
6010D ATL ICP	Analytical	Method: EPA 6	010D Prep	paration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	€A				
Calcium	108	mg/L	1.0	0.12	1	09/12/22 10:47	09/12/22 17:12	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prec	paration Met	hod: EF	PA 3005A			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	lytical Services	•						
Antimony	ND	mg/L	0.0030	0.00078	1	09/12/22 10:47	09/12/22 23:49	7440-36-0	
Arsenic	ND ND	mg/L	0.0050	0.00076	1	09/12/22 10:47			
Barium	0.011	mg/L	0.0050	0.00067	1		09/12/22 23:49		
Beryllium	ND	mg/L	0.00050	0.000054	1		09/12/22 23:49		
Boron	0.032J	mg/L	0.040	0.0086	1		10/11/22 13:07		
Cadmium	ND	mg/L	0.00050	0.00011	1		09/12/22 23:49		
Chromium	0.0014J	mg/L	0.0050	0.0011	1		09/12/22 23:49		
Cobalt	ND	mg/L	0.0050	0.00039	1		09/12/22 23:49		
_ead	ND	mg/L	0.0010	0.00089	1		09/12/22 23:49		
Lithium	ND	mg/L	0.030	0.00073	1		09/12/22 23:49		
Molybdenum	ND	mg/L	0.010	0.00074	1		09/12/22 23:49		
Selenium	ND	mg/L	0.0050	0.0014	1		09/12/22 23:49		
Γhallium	ND	mg/L	0.0010	0.00018	1		09/12/22 23:49		
7470 Mercury	Analytical	Method: EPA 7	470A Prep	aration Met	hod: EF	'A 7470A			
,	•	lytical Services							
Mercury	ND	mg/L	0.00020	0.00013	1	09/12/22 15:30	09/13/22 09:32	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	•	lytical Services		e Corners, C	βA				
Total Dissolved Solids	259	mg/L	25.0	10.0	1		08/30/22 15:47		
300.0 IC Anions 28 Days	•	Method: EPA 3 lytical Services		.1 1993					
Chloride	4.6	mg/L	1.0	0.60	1		09/07/22 23:32	16887-00-6	
Fluoride	0.051J	mg/L	0.10	0.050	1		09/07/22 23:32		
Sulfate	10.7	mg/L	1.0	0.50	1		09/07/22 23:32		

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

Sample: EB-01	Lab ID:	92622406018	3 Collecte	ed: 08/26/2	2 09:15	Received: 08/	27/22 11:15 Ma	atrix: Water	
Demonstrat	Danilla	11-9-	Report	MDI	D.E.	Decreed	A I I	040 N-	0
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical	Method: EPA	6010D Pre	paration Me	thod: El	PA 3010A			
	Pace Analy	ytical Services	s - Peachtre	e Corners, 0	GA				
Calcium	ND	mg/L	1.0	0.12	1	09/12/22 10:47	09/12/22 17:17	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Me	thod: Ef	PA 3005A			
	Pace Analy	ytical Service:	s - Peachtre	e Corners, 0	GA				
Antimony	ND	mg/L	0.0030	0.00078	1	09/12/22 18:08	09/13/22 18:45	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0022	1	09/12/22 18:08	09/13/22 18:45	7440-38-2	
Barium	ND	mg/L	0.0050	0.00067	1	09/12/22 18:08	09/13/22 18:45	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	09/12/22 18:08	09/13/22 18:45	7440-41-7	
Boron	0.0091J	mg/L	0.040	0.0086	1	09/12/22 18:08	09/13/22 18:45	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	09/12/22 18:08	09/13/22 18:45	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	09/12/22 18:08	09/13/22 18:45	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	09/12/22 18:08	09/13/22 18:45	7440-48-4	
Lead	ND	mg/L	0.0010	0.00089	1	09/12/22 18:08	09/13/22 18:45	7439-92-1	
Lithium	ND	mg/L	0.030	0.00073	1	09/12/22 18:08	09/13/22 18:45	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00074	1	09/12/22 18:08	09/13/22 18:45	7439-98-7	
Selenium	ND	mg/L	0.0050	0.0014	1	09/12/22 18:08	09/13/22 18:45	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00018	1	09/12/22 18:08	09/13/22 18:45	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Prej	paration Met	thod: EF	PA 7470A			
·	Pace Analy	ytical Services	s - Peachtre	e Corners, 0	GA				
Mercury	ND	mg/L	0.00020	0.00013	1	09/12/22 15:30	09/13/22 09:40	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C-2015						
	•	ytical Services			GA				
Total Dissolved Solids	ND	mg/L	25.0	10.0	1		08/31/22 12:44		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
-	Pace Analy	ytical Services	s - Asheville						
Chloride	ND	mg/L	1.0	0.60	1		09/07/22 23:46	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		09/07/22 23:46	16984-48-8	
Sulfate	ND	mg/L	1.0	0.50	1		09/07/22 23:46	14808-79-8	

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

Sample: PZ-57	Lab ID:	92622406019	Collecte	ed: 08/26/22	2 11:20	Received: 08/	27/22 11:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	Customer				1		08/29/22 11:09		
pH	7.09	Std. Units			1		08/29/22 11:09		
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Met	hod: Ef	PA 3010A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	S A				
Calcium	95.5	mg/L	1.0	0.12	1	09/12/22 10:47	09/12/22 18:15	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	S A				
Antimony	ND	mg/L	0.0030	0.00078	1	09/12/22 18:08	09/13/22 18:51	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0022	1	09/12/22 18:08	09/13/22 18:51	7440-38-2	
Barium	0.064	mg/L	0.0050	0.00067	1	09/12/22 18:08	09/13/22 18:51	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	09/12/22 18:08	09/13/22 18:51	7440-41-7	
Boron	0.18	mg/L	0.040	0.0086	1	09/12/22 18:08	09/13/22 18:51	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	09/12/22 18:08	09/13/22 18:51	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	09/12/22 18:08	09/13/22 18:51		
Cobalt	0.0012J	mg/L	0.0050	0.00039	1	09/12/22 18:08	09/13/22 18:51		
Lead	ND	mg/L	0.0010	0.00089	1		09/13/22 18:51		
_ithium	0.0013J	mg/L	0.030	0.00073	1	09/12/22 18:08	09/13/22 18:51		
Molybdenum	ND	mg/L	0.010	0.00074	1	09/12/22 18:08			
Selenium	ND	mg/L	0.0050	0.0014	1	09/12/22 18:08	09/13/22 18:51		
Thallium	ND	mg/L	0.0010	0.00018	1	09/12/22 18:08	09/13/22 18:51	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Pre	paration Met	hod: EF	PA 7470A			
•	-	ytical Services							
Mercury	ND	mg/L	0.00020	0.00013	1	09/12/22 15:30	09/13/22 09:43	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2015						
	Pace Anal	ytical Services	- Peachtre	e Corners, C	SA.				
Total Dissolved Solids	358	mg/L	25.0	10.0	1		08/31/22 12:44		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	2.4	mg/L	1.0	0.60	1		09/08/22 00:00	16887-00-6	
Fluoride	0.083J	mg/L	0.10	0.050	1		09/08/22 00:00	16984-48-8	
Sulfate	87.2	mg/L	1.0	0.50	1		09/08/22 00:00	14808-79-8	

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

QC Batch: 721529 Analysis Method: EPA 6010D QC Batch Method: **EPA 3010A** Analysis Description: 6010D ATL

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92622406001

METHOD BLANK: 3759360 Matrix: Water

Associated Lab Samples: 92622406001

Blank Reporting MDL Qualifiers Parameter Units Result Limit Analyzed

Calcium ND 1.0 0.12 09/07/22 16:39 mg/L

LABORATORY CONTROL SAMPLE: 3759361

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Calcium mg/L 1.1 109 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3759362 3759363

MSD MS

92623057001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits 183000 20 M1 Calcium mg/L 178 178 -461 -474 75-125 ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Calcium

Date: 10/17/2022 08:08 AM

QC Batch: 722653 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010D ATL

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92622406002, 92622406003, 92622406004, 92622406013, 92622406014, 92622406015, 92622406016,

92622406017, 92622406018, 92622406019, 92622406020, 92622406021, 92622406022, 92622406023

METHOD BLANK: 3765178 Matrix: Water

Associated Lab Samples: 92622406002, 92622406003, 92622406004, 92622406013, 92622406014, 92622406015, 92622406016,

92622406017, 92622406018, 92622406019, 92622406020, 92622406021, 92622406022, 92622406023

Blank Reporting

 Parameter
 Units
 Result
 Limit
 MDL
 Analyzed
 Qualifiers

 Calcium
 mg/L
 ND
 1.0
 0.12
 09/12/22 15:31

LABORATORY CONTROL SAMPLE: 3765179

LCS LCS % Rec Spike Limits Qualifiers Parameter Units Conc. Result % Rec Calcium mg/L 1.1 106 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3765180 3765181

MS MSD

92622406002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual 2 20 M1 46.4 1 48.9 49.9 249 352 75-125 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

QC Batch: 724852 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010D ATL

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92622406009, 92622406010, 92622406011, 92622406012

METHOD BLANK: 3776437 Matrix: Water
Associated Lab Samples: 92622406009, 92622406010, 92622406011, 92622406012

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

Calcium mg/L ND 1.0 0.12 09/22/22 17:49

LABORATORY CONTROL SAMPLE: 3776438

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Calcium 0.97J 97 80-120 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3776441 3776442

MS MSD

92622406011 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Conc. Limits 20 M1 Calcium mg/L 67.1 68.1 69.3 100 212 75-125

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

QC Batch: 722656 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92622406001, 92622406002, 92622406003, 92622406004, 92622406013, 92622406014, 92622406015,

92622406016, 92622406017, 92622406020, 92622406021, 92622406022, 92622406023

METHOD BLANK: 3765186 Matrix: Water

Associated Lab Samples: 92622406001, 92622406002, 92622406003, 92622406004, 92622406013, 92622406014, 92622406015,

92622406016, 92622406017, 92622406020, 92622406021, 92622406022, 92622406023

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	mg/L	ND	0.0030	0.00078	09/12/22 21:56	
Arsenic	mg/L	0.0023J	0.0050	0.0022	09/12/22 21:56	
Barium	mg/L	ND	0.0050	0.00067	09/12/22 21:56	
Beryllium	mg/L	ND	0.00050	0.000054	09/12/22 21:56	
Boron	mg/L	ND	0.040	0.0086	09/12/22 21:56	
Cadmium	mg/L	ND	0.00050	0.00011	09/12/22 21:56	
Chromium	mg/L	ND	0.0050	0.0011	09/12/22 21:56	
Cobalt	mg/L	ND	0.0050	0.00039	09/12/22 21:56	
Lead	mg/L	ND	0.0010	0.00089	09/12/22 21:56	
Lithium	mg/L	ND	0.030	0.00073	09/12/22 21:56	
Molybdenum	mg/L	ND	0.010	0.00074	09/12/22 21:56	
Selenium	mg/L	ND	0.0050	0.0014	09/12/22 21:56	
Thallium	mg/L	ND	0.0010	0.00018	09/12/22 21:56	

LABORATORY CONTROL S	SAMPLE:	3765187										
5			Spike	LC		LCS	% R					
Parameter		Units	Conc.	Res	sult ————	% Rec	Lim	its (Qualifiers			
Antimony		mg/L	0.	1	0.11	106	6	80-120				
Arsenic		mg/L	0.	1	0.10	104	1	80-120				
Barium		mg/L	0.	1	0.10	101	l i	80-120				
Beryllium		mg/L	0.	1	0.10	103	3	80-120				
Boron		mg/L		1	1.0	103	3	80-120				
Cadmium		mg/L	0.	1	0.10	104	1	80-120				
Chromium		mg/L	0.	1	0.11	107	7	80-120				
Cobalt		mg/L	0.	1	0.10	101	l i	80-120				
Lead		mg/L	0.	1	0.10	101	l i	80-120				
Lithium		mg/L	0.	1	0.11	105	5	80-120				
Molybdenum		mg/L	0.	1	0.10	103	3	80-120				
Selenium		mg/L	0.	1	0.10	100)	80-120				
Thallium		mg/L	0.	1	0.10	105	5	80-120				
MATRIX SPIKE & MATRIX S	SPIKE DUPL	ICATE: 3765		MOD	3765189)						
		00000400000	MS	MSD	MC	MCD	MC	MCD	0/ D		N.4	
Parameter	Units	92622406003 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qua
Antimony	 mg/L	 ND	0.1	0.1	0.10	0.11	103	109	75-125		20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

MATRIX SPIKE & MATRIX	SPIKE DUPLI	CATE: 3765	188		3765189							
Parameter	Units	92622406003 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Arsenic	mg/L	ND ND	0.1	0.1	0.10	0.10	100	102	75-125	2	20	
Barium	mg/L	0.0063	0.1	0.1	0.10	0.11	97	104	75-125	6	20	
Beryllium	mg/L	ND	0.1	0.1	0.094	0.097	94	97	75-125	4	20	
Boron	mg/L	ND	1	1	0.91	0.96	91	95	75-125	5	20	
Cadmium	mg/L	ND	0.1	0.1	0.099	0.10	98	103	75-125	4	20	
Chromium	mg/L	0.0015J	0.1	0.1	0.096	0.097	95	96	75-125	1	20	
Cobalt	mg/L	ND	0.1	0.1	0.095	0.095	95	95	75-125	0	20	
Lead	mg/L	ND	0.1	0.1	0.097	0.099	97	99	75-125	1	20	
Lithium	mg/L	ND	0.1	0.1	0.098	0.10	97	102	75-125	5	20	
Molybdenum	mg/L	ND	0.1	0.1	0.10	0.10	100	104	75-125	4	20	
Selenium	mg/L	ND	0.1	0.1	0.099	0.10	99	102	75-125	3	20	
Thallium	mg/L	ND	0.1	0.1	0.10	0.10	100	100	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

QC Batch: 722711 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92622406018, 92622406019

METHOD BLANK: 3765581 Matrix: Water

Associated Lab Samples: 92622406018, 92622406019

·		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	 mg/L	0.00086J	0.0030	0.00078	09/13/22 18:33	
Arsenic	mg/L	ND	0.0050	0.0022	09/13/22 18:33	
Barium	mg/L	ND	0.0050	0.00067	09/13/22 18:33	
Beryllium	mg/L	ND	0.00050	0.000054	09/13/22 18:33	
Boron	mg/L	ND	0.040	0.0086	09/13/22 18:33	
Cadmium	mg/L	ND	0.00050	0.00011	09/13/22 18:33	
Chromium	mg/L	ND	0.0050	0.0011	09/13/22 18:33	
Cobalt	mg/L	ND	0.0050	0.00039	09/13/22 18:33	
Lead	mg/L	ND	0.0010	0.00089	09/13/22 18:33	
Lithium	mg/L	ND	0.030	0.00073	09/13/22 18:33	
Molybdenum	mg/L	ND	0.010	0.00074	09/13/22 18:33	
Selenium	mg/L	ND	0.0050	0.0014	09/13/22 18:33	
Thallium	mg/L	ND	0.0010	0.00018	09/13/22 18:33	

LABORATORY CONTROL SAMPLE:	3765582	0 "			o. 5	
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.1	0.11	111	80-120	
Arsenic	mg/L	0.1	0.10	101	80-120	
Barium	mg/L	0.1	0.10	103	80-120	
Beryllium	mg/L	0.1	0.099	99	80-120	
Boron	mg/L	1	0.99	99	80-120	
Cadmium	mg/L	0.1	0.10	100	80-120	
Chromium	mg/L	0.1	0.10	101	80-120	
Cobalt	mg/L	0.1	0.099	99	80-120	
Lead	mg/L	0.1	0.098	98	80-120	
Lithium	mg/L	0.1	0.098	98	80-120	
Molybdenum	mg/L	0.1	0.11	106	80-120	
Selenium	mg/L	0.1	0.096	96	80-120	
Thallium	mg/L	0.1	0.095	95	80-120	

MATRIX SPIKE & MATRIX S	PIKE DUPL	ICATE: 3765	583		3765584							
		92622406019	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	ND	0.1	0.1	0.11	0.11	111	109	75-125	1	20	
Arsenic	mg/L	ND	0.1	0.1	0.10	0.10	101	101	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

			MS	MSD								
	9	2622406019	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	mg/L	0.064	0.1	0.1	0.17	0.17	108	103	75-125	3	20	
Beryllium	mg/L	ND	0.1	0.1	0.096	0.097	96	97	75-125	1	20	
Boron	mg/L	0.18	1	1	1.2	1.2	101	99	75-125	2	20	
Cadmium	mg/L	ND	0.1	0.1	0.099	0.099	98	99	75-125	1	20	
Chromium	mg/L	ND	0.1	0.1	0.10	0.10	100	100	75-125	1	20	
Cobalt	mg/L	0.0012J	0.1	0.1	0.099	0.099	98	97	75-125	1	20	
Lead	mg/L	ND	0.1	0.1	0.094	0.096	94	96	75-125	2	20	
Lithium	mg/L	0.0013J	0.1	0.1	0.096	0.099	94	97	75-125	3	20	
Molybdenum	mg/L	ND	0.1	0.1	0.11	0.10	106	103	75-125	2	20	
Selenium	mg/L	ND	0.1	0.1	0.097	0.097	97	96	75-125	0	20	
Thallium	mg/L	ND	0.1	0.1	0.095	0.095	95	95	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

QC Batch: 724857 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92622406009, 92622406010, 92622406011, 92622406012

METHOD BLANK: 3776475 Matrix: Water
Associated Lab Samples: 92622406009, 92622406010, 92622406011, 92622406012

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
	OIIIIS			IVIDL	Analyzeu	Qualifiers
Antimony	mg/L	ND	0.0030	0.00078	09/22/22 16:16	
Arsenic	mg/L	ND	0.0050	0.0022	09/22/22 16:16	
Barium	mg/L	ND	0.0050	0.00067	09/22/22 16:16	
Beryllium	mg/L	ND	0.00050	0.000054	09/22/22 16:16	
Boron	mg/L	ND	0.040	0.0086	09/22/22 16:16	
Cadmium	mg/L	ND	0.00050	0.00011	09/22/22 16:16	
Chromium	mg/L	ND	0.0050	0.0011	09/22/22 16:16	
Cobalt	mg/L	ND	0.0050	0.00039	09/22/22 16:16	
Lead	mg/L	ND	0.0010	0.00089	09/22/22 16:16	
Lithium	mg/L	ND	0.030	0.00073	09/22/22 16:16	
Molybdenum	mg/L	ND	0.010	0.00074	09/22/22 16:16	
Selenium	mg/L	ND	0.0050	0.0014	09/22/22 16:16	
Thallium	mg/L	ND	0.0010	0.00018	09/22/22 16:16	

LABORATORY CONTROL SAMPLE:	3776476					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.1	0.10	103	80-120	
Arsenic	mg/L	0.1	0.096	96	80-120	
Barium	mg/L	0.1	0.096	96	80-120	
Beryllium	mg/L	0.1	0.098	98	80-120	
Boron	mg/L	1	1.0	100	80-120	
Cadmium	mg/L	0.1	0.098	98	80-120	
Chromium	mg/L	0.1	0.098	98	80-120	
Cobalt	mg/L	0.1	0.097	97	80-120	
Lead	mg/L	0.1	0.097	97	80-120	
Lithium	mg/L	0.1	0.098	98	80-120	
Molybdenum	mg/L	0.1	0.10	100	80-120	
Selenium	mg/L	0.1	0.095	95	80-120	
Thallium	mg/L	0.1	0.097	97	80-120	

MATRIX SPIKE & MATRIX SF	PIKE DUPL	ICATE: 3776	477		3776478							
		92622406010	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	0.0011J	0.1	0.1	0.10	0.10	99	104	75-125	5	20	
Arsenic	mg/L	ND	0.1	0.1	0.093	0.098	93	98	75-125	5	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

MATRIX SPIKE & MATRIX	SPIKE DUPLIC	CATE: 3776	477		3776478							
Parameter	9 Units	2622406010 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Barium	mg/L	0.010	0.1	0.1	0.10	0.11	89	96	75-125	6	20	
Beryllium	mg/L	ND	0.1	0.1	0.096	0.097	96	97	75-125	1	20	
Boron	mg/L	0.012J	1	1	1.0	1.0	100	103	75-125	3	20	
Cadmium	mg/L	ND	0.1	0.1	0.094	0.095	94	95	75-125	1	20	
Chromium	mg/L	0.0066	0.1	0.1	0.10	0.10	96	96	75-125	0	20	
Cobalt	mg/L	ND	0.1	0.1	0.096	0.096	96	96	75-125	0	20	
Lead	mg/L	ND	0.1	0.1	0.094	0.093	94	92	75-125	2	20	
Lithium	mg/L	0.0012J	0.1	0.1	0.096	0.098	95	97	75-125	2	20	
Molybdenum	mg/L	ND	0.1	0.1	0.099	0.099	99	99	75-125	0	20	
Selenium	mg/L	ND	0.1	0.1	0.093	0.095	93	95	75-125	2	20	
Thallium	mg/L	ND	0.1	0.1	0.095	0.095	95	95	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

QC Batch: 729120 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92622406017

METHOD BLANK: 3797015 Matrix: Water

Associated Lab Samples: 92622406017

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Boron mg/L ND 0.040 0.0086 10/11/22 12:54

LABORATORY CONTROL SAMPLE: 3797016

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Boron mg/L 1.1 106 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3797017 3797018

MS MSD

92622406017 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Conc. Limits 0.032J 0.99 20 Boron mg/L 1.0 95 98 75-125 3

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

QC Batch: 722636 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92622406001, 92622406002, 92622406003, 92622406004, 92622406013, 92622406014, 92622406015,

92622406016, 92622406017, 92622406018, 92622406019, 92622406020, 92622406021, 92622406022,

92622406023

METHOD BLANK: 3765117 Matrix: Water

Associated Lab Samples: 92622406001, 92622406002, 92622406003, 92622406004, 92622406013, 92622406014, 92622406015,

92622406016, 92622406017, 92622406018, 92622406019, 92622406020, 92622406021, 92622406022, 92622406023 Blank Reporting Qualifiers Parameter Units Result Limit MDL Analyzed Mercury ND 0.00020 0.00013 09/13/22 08:43 mg/L LABORATORY CONTROL SAMPLE: 3765118 Spike LCS LCS % Rec % Rec Parameter Units Conc. Result Limits Qualifiers Mercury mg/L 0.0025 0.0024 97 80-120 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3765119 3765120 MS MSD 92622406001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Mercury ND 0.0025 0.0025 0.0022 0.0023 89 91 75-125 2 20 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

QC Batch: 724415 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92622406009, 92622406010, 92622406011

METHOD BLANK: 3774316 Matrix: Water

Associated Lab Samples: 92622406009, 92622406010, 92622406011

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Mercury mg/L ND 0.00020 0.00013 09/21/22 12:52

LABORATORY CONTROL SAMPLE: 3774317

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Mercury 0.0025 0.0026 102 80-120 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3774318 3774319

MS MSD

92623533008 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec **RPD** RPD Qual Result % Rec Limits ND 0.0025 Mercury mg/L 0.0025 0.0024 0.0026 97 103 75-125 6 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Mercury

Date: 10/17/2022 08:08 AM

QC Batch: 724420 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92622406012

METHOD BLANK: 3774337 Matrix: Water

Associated Lab Samples: 92622406012

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Mercury mg/L ND 0.00020 0.00013 09/21/22 14:35

LABORATORY CONTROL SAMPLE: 3774338

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Mercury mg/L 0.0025 0.0027 109 80-120

0.0025

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3774339 3774340

mg/L

ND

MSD MS 92625866027 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits

0.0023

0.0024

91

94

75-125

0.0025

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

20

3

Mitchell 2022 2nd SA-Revised Report Project:

92622406 Pace Project No.:

Total Dissolved Solids

Total Dissolved Solids

Date: 10/17/2022 08:08 AM

QC Batch: Analysis Method: SM 2540C-2015 720456

QC Batch Method: SM 2540C-2015 Analysis Description: 2540C Total Dissolved Solids

> Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92622406001, 92622406002, 92622406003, 92622406004, 92622406013, 92622406014, 92622406015,

92622406016, 92622406017, 92622406020, 92622406021, 92622406022, 92622406023

METHOD BLANK: 3754176 Matrix: Water

mg/L

mg/L

92622406001, 92622406002, 92622406003, 92622406004, 92622406013, 92622406014, 92622406015, Associated Lab Samples:

92622406016, 92622406017, 92622406020, 92622406021, 92622406022, 92622406023

Blank Reporting Units Limit MDL Qualifiers Parameter Result Analyzed mg/L **Total Dissolved Solids** ND 25.0 10.0 08/30/22 15:41 LABORATORY CONTROL SAMPLE: 3754177

LCS LCS % Rec Spike Parameter Units % Rec Limits Qualifiers Conc. Result **Total Dissolved Solids** mg/L 400 385 96 80-120

SAMPLE DUPLICATE: 3754178 92622406001 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 139 146 5 25

SAMPLE DUPLICATE: 3754179 92622406015 Dup Max RPD Parameter Units Result Result RPD Qualifiers

437

445

2

25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

QC Batch: 720606 Analysis Method: SM 2540C-2015

QC Batch Method: SM 2540C-2015 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92622406018, 92622406019

METHOD BLANK: 3754817 Matrix: Water

Associated Lab Samples: 92622406018, 92622406019

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L ND 25.0 10.0 08/31/22 12:39

LABORATORY CONTROL SAMPLE: 3754818

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 400 384 96 80-120

SAMPLE DUPLICATE: 3754819

92622591001 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 65.0 **Total Dissolved Solids** mg/L 78.0 18 25

SAMPLE DUPLICATE: 3755118

Date: 10/17/2022 08:08 AM

92622993001 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 45.0 mg/L 51.0 12 25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

QC Batch: 721840 Analysis Method: SM 2540C-2015

QC Batch Method: SM 2540C-2015 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92622406009, 92622406010, 92622406011, 92622406012

METHOD BLANK: 3760948 Matrix: Water

Associated Lab Samples: 92622406009, 92622406010, 92622406011, 92622406012

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L ND 25.0 10.0 09/07/22 14:10

LABORATORY CONTROL SAMPLE: 3760949

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 400 380 95 80-120

SAMPLE DUPLICATE: 3760951

Parameter Units Result Result RPD RPD Qualifiers

Total Dissolved Solids mg/L 218 216 1 10

SAMPLE DUPLICATE: 3780502

Date: 10/17/2022 08:08 AM

Parameter Units Result Result RPD RPD Qualifiers

Total Dissolved Solids mg/L ND ND 10 H1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Mitchell 2022 2nd SA-Revised Report

I ADODATORY CONTROL SAMPLE: 2757657

Date: 10/17/2022 08:08 AM

Pace Project No.: 92622406

QC Batch: 721131 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92622406001, 92622406002, 92622406003, 92622406004, 92622406009, 92622406010

METHOD BLANK: 3757656 Matrix: Water

Associated Lab Samples: 92622406001, 92622406002, 92622406003, 92622406004, 92622406009, 92622406010

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	09/03/22 20:38	
Fluoride	mg/L	ND	0.10	0.050	09/03/22 20:38	
Sulfate	mg/L	ND	1.0	0.50	09/03/22 20:38	

LABORATORY CONTROL SAMPLE:	3/3/63/					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	52.3	105	90-110	
Fluoride	mg/L	2.5	2.7	107	90-110	
Sulfate	mg/L	50	51.4	103	90-110	

MATRIX SPIKE & MATRIX SP	3757659											
			MS	MSD								
		92621182011	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	0.82J	50	50	49.4	50.1	97	99	90-110	1	10	
Fluoride	mg/L	0.15	2.5	2.5	2.6	2.6	98	99	90-110	1	10	
Sulfate	mg/L	3.3	50	50	51.4	52.3	96	98	90-110	2	10	

MATRIX SPIKE & MATRIX SP												
			MS	MSD								
		92621182021	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	6.2	50	50	55.1	55.4	98	98	90-110	0	10	
Fluoride	mg/L	0.12	2.5	2.5	2.5	2.6	97	98	90-110	1	10	
Sulfate	mg/L	0.84J	50	50	48.6	48.9	95	96	90-110	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

QC Batch: 721658 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92622406011, 92622406012, 92622406013, 92622406014, 92622406015, 92622406020, 92622406021,

92622406022, 92622406023

METHOD BLANK: 3760016 Matrix: Water

Associated Lab Samples: 92622406011, 92622406012, 92622406013, 92622406014, 92622406015, 92622406020, 92622406021,

92622406022, 92622406023

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	09/07/22 14:35	
Fluoride	mg/L	ND	0.10	0.050	09/07/22 14:35	
Sulfate	mg/L	ND	1.0	0.50	09/07/22 14:35	

LABORATORY CONTROL SAMPLE:	3760017					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	49.0	98	90-110	
Fluoride	mg/L	2.5	2.7	108	90-110	
Sulfate	mg/L	50	49.8	100	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3760		3760019								
			MS	MSD								
		92622406011	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	2.7	50	50	55.5	55.2	105	105	90-110	0	10	
Fluoride	mg/L	0.058J	2.5	2.5	2.4	2.4	93	93	90-110	1	10	
Sulfate	mg/L	1.7	50	50	54.3	54.0	105	105	90-110	0	10	

MATRIX SPIKE & MATRIX SP		3760021										
			MS	MSD								
		92621445013	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	ND	50	50	53.0	52.7	106	105	90-110	1	10	_
Fluoride	mg/L	ND	2.5	2.5	2.5	2.5	100	100	90-110	0	10	
Sulfate	mg/L	ND	50	50	52.8	52.5	106	105	90-110	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Mitchell 2022 2nd SA-Revised Report

LABORATORY CONTROL CAMPLE: 2760040

Date: 10/17/2022 08:08 AM

Pace Project No.: 92622406

QC Batch: 721661 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92622406016, 92622406017, 92622406018, 92622406019

METHOD BLANK: 3760039 Matrix: Water

Associated Lab Samples: 92622406016, 92622406017, 92622406018, 92622406019

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND ND	1.0	0.60	09/07/22 22:22	
Fluoride	mg/L	ND	0.10	0.050	09/07/22 22:22	
Sulfate	mg/L	ND	1.0	0.50	09/07/22 22:22	

LABORATORT CONTROL SAMPLE.	3760040					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	49.9	100	90-110	
Fluoride	mg/L	2.5	2.3	91	90-110	
Sulfate	mg/L	50	49.6	99	90-110	

MATRIX SPIKE & MATRIX SP		3760042										
			MS	MSD								
		92622406016	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	4.1	50	50	57.1	56.7	106	105	90-110	1	10	
Fluoride	mg/L	0.056J	2.5	2.5	2.4	2.4	93	93	90-110	0	10	
Sulfate	mg/L	47.3	50	50	98.1	99.8	101	105	90-110	2	10	

MATRIX SPIKE & MATRIX SP		3760044										
			MS	MSD								
		92623226003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	7.9	50	50	61.5	61.2	107	107	90-110	1	10	
Fluoride	mg/L	ND	2.5	2.5	2.4	2.4	96	95	90-110	1	10	
Sulfate	mg/L	0.78J	50	50	54.0	53.6	106	106	90-110	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 10/17/2022 08:08 AM

D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

H1 Analysis conducted outside the EPA method holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

2822406002 FD-01 2822406030 P2-31 2822406031 P2-30 2822406010 P2-20 2822406011 P2-32 2822406021 P2-19 2822406022 P2-16 2822406033 FD-02 2822406014 P2-17 2822406015 P2-23A 2822406016 P2-70 2822406017 P2-18 2822406018 P2-17 2822406019 P2-23A 2822406010 P2-23A 2822406011 P2-14 2822406010 P2-17 2822406011 P2-10 2822406010 P2-27 2822406011 P2-10 2822406002 FD-01 EPA 3010A 72258 2822406003 P2-31 EPA 3010A 72258 2822406004 P2-33 EPA 3010A 72258 2822406009 FB-01 EPA 3010A 724852 2822406000 P2-21 EPA 3010A 724852 2822406000	Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
RE22406001 P.2-33 P.2-31 P.2-35 P.3-25	2622406001	PZ-1D				
R822406010 P.2-33 R822406011 P.2-32 R822406012 P.2-25 R822406013 P.2-19 R822406021 P.2-16 R822406023 F.D-02 R822406033 F.D-02 R822406014 P.2-17 R822406015 P.2-23A R822406016 P.2-7D R822406017 P.2-14 R822406019 P.2-57 R822406001 P.2-1D EPA 3010A 721529 EPA 6010D 721846 R822406001 P.2-1D EPA 3010A 722585 EPA 6010D 722708 R822406001 P.2-1D EPA 3010A 722585 EPA 6010D 722708 R822406002 F.D-01 EPA 3010A 722585 EPA 6010D 722708 R822406003 P.2-31 EPA 3010A 722653 EPA 6010D 722708 R822406004 P.2-33 EPA 3010A 724852 EPA 6010D 724979 R822406010 P.2-22 EPA 3010A 724852 EPA 6010D 72	2622406002					
2822406011 P.2-2D 2822406012 P.2-25 2822406011 P.2-16 2822406012 P.2-16 2822406013 P.2-16 2822406013 P.2-18 2822406013 P.2-18 2822406014 P.2-17 2822406015 P.2-23A 2822406016 P.2-70 2822406017 P.2-14 2822406019 P.2-57 2622406001 P.2-1D EPA 3010A 722653 EPA 6010D 721846 2822406002 F.D-01 EPA 3010A 722653 EPA 6010D 722708 2822406001 P.2-1D EPA 3010A 722653 EPA 6010D 722708 2822406002 F.D-01 EPA 3010A 722653 EPA 6010D 722708 2822406003 P.2-31 EPA 3010A 722653 EPA 6010D 722708 2822406004 P.2-33 EPA 3010A 724852 EPA 6010D 724979 2822406010 P.2-2D EPA 3010A 724852 EPA 6010D 72	2622406003	PZ-31				
2822406011 P.2-32 2822406012 P.2-76 2822406021 P.2-16 2822406023 FD-02 2822406033 FD-02 2822406014 P.2-17 2822406015 P.2-23A 2822406016 P.2-7D 2822406017 P.2-14 2822406019 P.2-57 2822406001 P.2-10 EPA 3010A 722653 EPA 6010D 722708 2822406001 P.2-10 EPA 3010A 722653 EPA 6010D 722708 2822406002 FD-01 EPA 3010A 722653 EPA 6010D 722708 2822406003 P.2-31 EPA 3010A 722653 EPA 6010D 722708 2822406004 P.2-33 EPA 3010A 722653 EPA 6010D 724708 2822406010 P.2-20 EPA 3010A 724852 EPA 6010D 724979 2822406011 P.2-22 EPA 3010A 724852 EPA 6010D 724979 2822406011 P.2-23 EPA 3010A 724852 E	2622406004	PZ-33				
2822406012 P.2-25 2822406020 P.2-16 2822406021 P.2-16 2822406022 P.2-15 2822406033 FD-02 2822406014 P.2-17 2822406015 P.2-33A 2822406016 P.2-7D 2822406017 P.2-14 2822406019 P.2-57 2822406010 P.2-10 EPA 3010A 722653 EPA 6010D 722708 2822406001 P.2-10 EPA 3010A 722653 EPA 6010D 722708 2822406002 FD-01 EPA 3010A 722653 EPA 6010D 722708 2822406003 P.2-31 EPA 3010A 722653 EPA 6010D 722708 2822406004 P.2-33 EPA 3010A 722653 EPA 6010D 722708 2822406009 FB-01 EPA 3010A 724852 EPA 6010D 724979 2822406010 P.2-2D EPA 3010A 724852 EPA 6010D 724979 2822406011 P.2-32 EPA 3010A 724852 E	2622406010	PZ-2D				
2822406020 P2-19 2822406021 P2-16 2822406023 FD-02 2822406013 P2-18 2822406014 P2-17 2822406015 P2-23A 2822406016 P2-7D 2822406017 P2-14 2822406019 P2-57 2822406002 FD-01 EPA 3010A 722653 EPA 6010D 722708 2822406003 P2-31 EPA 3010A 722653 EPA 6010D 722708 2822406004 P2-33 EPA 3010A 722653 EPA 6010D 722708 2822406009 FB-01 EPA 3010A 722653 EPA 6010D 722708 2822406009 FB-01 EPA 3010A 722653 EPA 6010D 722708 2822406010 P2-33 EPA 3010A 724852 EPA 6010D 724979 2822406011 P2-23 EPA 3010A 724852 EPA 6010D 724979 2822406011 P2-23 EPA 3010A 724852 EPA 6010D 724979 2822406012	2622406011	PZ-32				
RE22406012 PZ-16 PZ-15 PZ-15 PZ-15 PZ-15 PZ-15 PZ-16 PZ-17 PZ-18	2622406012	PZ-25				
2822406023 P.2-16 2822406013 P.2-18 2822406014 P.2-17 2822406015 P.2-23A 2822406016 P.2-7D 2822406017 P.2-14 2822406001 P.2-1D EPA 3010A 721529 EPA 6010D 721846 2822406002 F.D-01 EPA 3010A 722653 EPA 6010D 722708 2822406003 P.2-31 EPA 3010A 722653 EPA 6010D 722708 2822406004 P.2-33 EPA 3010A 722653 EPA 6010D 722708 2822406009 P.3-31 EPA 3010A 722653 EPA 6010D 722708 2822406009 P.3-31 EPA 3010A 722653 EPA 6010D 722708 2822406001 P.2-32 EPA 3010A 722653 EPA 6010D 722708 2822406001 P.2-33 EPA 3010A 722653 EPA 6010D 722708 2822406010 P.2-32 EPA 3010A 724852 EPA 6010D 724979 2822406011 P.2-32 EPA 3010A 724852 EPA 6010D 724979 2822406011 P.2-32 EPA 3010A 724852 EPA 6010D 724979 2822406011 P.2-32 EPA 3010A 724852 EPA 6010D 724979 2822406012 P.2-15 EPA 3010A 722653 EPA 6010D 722708 2822406020 P.2-19 EPA 3010A 722653 EPA 6010D 722708 2822406021 P.2-16 EPA 3010A 722653 EPA 6010D 722708 2822406013 P.2-16 EPA 3010A 722653 EPA 6010D 722708 2822406013 P.2-16 EPA 3010A 722653 EPA 6010D 722708 2822406013 P.2-18 EPA 3010A 722653 EPA 6010D 722708 2822406013 P.2-18 EPA 3010A 722653 EPA 6010D 722708 2822406014 P.2-17 EPA 3010A 722653 EPA 6010D 722708 2822406015 P.2-270 EPA 3010A 722653 EPA 6010D 722708 2822406016 P.2-70 EPA 3010A 722653 EPA 6010D 722708 2822406016 P.2-70 EPA 3010A 722653 EPA 6010D 722708 2822406017 P.2-14 EPA 3010A 722653 EPA 6010D 722708 2822406019 P.2-57 EPA 3010A 722656 EPA 6020B 722744 2822406001 P.2-10 EPA 3005A 722656 EPA 6020B 722744 2822406001 P.2-10 EPA 3005A 724857 EPA 6020B 722448 2822406001 P	2622406020	PZ-19				
R822406013	2622406021	PZ-16				
2822406013 P2-18 2822406015 P2-23A 2822406016 P2-7D 2822406017 P2-14 2822406017 P2-15 2822406017 P2-10 EPA 3010A 721529 EPA 6010D 721846 2822406002 FD-01 EPA 3010A 722683 EPA 6010D 722708 2822406003 P2-31 EPA 3010A 722683 EPA 6010D 722708 2822406009 FB-01 EPA 3010A 722683 EPA 6010D 722708 282240601 P2-20 EPA 3010A 724852 EPA 6010D 724979 282240601 P2-20 EPA 3010A 724852 EPA 6010D 724979 282240601 P2-25 EPA 3010A 724852 EPA 6010D 724979 2822406012 P2-25 EPA 3010A 724852 EPA 6010D 724979 2822406012 P2-25 EPA 3010A 724852 EPA 6010D 724979 2822406012 P2-25 EPA 3010A 724852 EPA 6010D 722708 2822406020 P2-19 EPA 3010A 722653 EPA 6010D 722708 2822406021 P2-16 EPA 3010A 722653 EPA 6010D 722708 2822406021 P2-15 EPA 3010A 722653 EPA 6010D 722708 2822406021 P2-16 EPA 3010A 722653 EPA 6010D 722708 2822406013 P2-18 EPA 3010A 722653 EPA 6010D 722708 2822406014 P2-17 EPA 3010A 722653 EPA 6010D 722708 2822406014 P2-17 EPA 3010A 722653 EPA 6010D 722708 2822406016 P2-7D EPA 3010A 722653 EPA 6010D 722708 2822406016 P2-7D EPA 3010A 722653 EPA 6010D 722708 2822406017 P2-14 EPA 3010A 722653 EPA 6010D 722708 2822406019 P2-57 EPA 3010A 722653 EPA 6010D 722708 2822406019 P2-31 EPA 3005A 722656 EPA 6020B 722744 2822406001 P2-31 EPA 3005A 722656 EPA 6020B 722744 2822406001 P2-32 EPA 3005A 724857 EPA 6020B 722744 2822406001 P2-32 EPA 3005A 724857 EPA 6020B 722748 2822406011 P2-32 EPA 3005A 724857 EPA 6020B 724880 2822406011 P2-32 EPA 3005A 724857 EPA 6020B 724880 2822406011 P2-32 EPA 3005A 724857 EPA 6020B 724880	2622406022	PZ-15				
2822406014 PZ-17 2622406015 PZ-23A 2622406017 PZ-14 2622406019 PZ-57 2622406019 PZ-57 2622406019 PZ-57 2622406001 PZ-1D EPA 3010A 721529 EPA 6010D 721846 2622406003 PZ-31 EPA 3010A 722653 EPA 6010D 722708 2622406004 PZ-33 EPA 3010A 722653 EPA 6010D 722708 2622406004 PZ-33 EPA 3010A 722653 EPA 6010D 722708 2622406009 FB-01 EPA 3010A 724852 EPA 6010D 722708 2622406009 FB-01 EPA 3010A 724852 EPA 6010D 724979 2622406010 PZ-2D EPA 3010A 724852 EPA 6010D 724979 2622406011 PZ-32 EPA 3010A 724852 EPA 6010D 724979 2622406012 PZ-25 EPA 3010A 724852 EPA 6010D 724979 2622406012 PZ-16 EPA 3010A 724852 EPA 6010D 722708 2622406020 PZ-19 EPA 3010A 722653 EPA 6010D 722708 2622406021 PZ-16 EPA 3010A 722653 EPA 6010D 722708 2622406023 FD-02 EPA 3010A 722653 EPA 6010D 722708 2622406013 PZ-18 EPA 3010A 722653 EPA 6010D 722708 2622406013 PZ-18 EPA 3010A 722653 EPA 6010D 722708 2622406014 PZ-17 EPA 3010A 722653 EPA 6010D 722708 2622406015 PZ-23A EPA 3010A 722653 EPA 6010D 722708 2622406016 PZ-7D EPA 3010A 722653 EPA 6010D 722708 2622406016 PZ-7D EPA 3010A 722653 EPA 6010D 722708 2622406016 PZ-7D EPA 3010A 722653 EPA 6010D 722708 2622406017 PZ-14 EPA 3010A 722653 EPA 6010D 722708 2622406019 PZ-57 EPA 3010A 722653 EPA 6010D 722708 2622406010 PZ-233 EPA 3010A 722653 EPA 6010D 722708 2622406011 PZ-33 EPA 3010A 722653 EPA 6010D 722708 2622406010 PZ-24 EPA 3010A 722653 EPA 6010D 722708 2622406010 PZ-24 EPA 3010A 722653 EPA 6010D 722708 2622406010 PZ-33 EPA 3010A 722653 EPA 6010D 722708 2622406010 PZ-34 EPA 3010A 722653 EPA 6010D 722708 2622406010 PZ-35 EPA 3005A 722656 EPA 6020B 722744 2622406001 PZ-32 EPA 3005A 724857 EPA 6020B 724980 262	2622406023	FD-02				
2822406015 PZ-23A 2822406016 PZ-TD 2822406017 PZ-14 2822406019 PZ-57 2822406010 PZ-TD EPA 3010A 721529 EPA 6010D 721846 2822406002 FD-01 EPA 3010A 722653 EPA 6010D 722708 2822406003 PZ-31 EPA 3010A 722653 EPA 6010D 722708 2822406004 PZ-33 EPA 3010A 722653 EPA 6010D 722708 2822406009 FB-01 EPA 3010A 724852 EPA 6010D 724979 2822406010 PZ-32 EPA 3010A 724852 EPA 6010D 724979 2822406011 PZ-32 EPA 3010A 724852 EPA 6010D 724979 2822406012 PZ-25 EPA 3010A 724852 EPA 6010D 724979 2822406012 PZ-16 EPA 3010A 722653 EPA 6010D 722708 2822406020 PZ-19 EPA 3010A 722653 EPA 6010D 722708 2822406031	2622406013	PZ-18				
2822406016 PZ-7D 2622406017 PZ-14 2622406019 PZ-57 2822406001 PZ-1D EPA 3010A 721529 EPA 6010D 721846 2622406002 FD-01 EPA 3010A 722653 EPA 6010D 722708 2622406003 PZ-31 EPA 3010A 722653 EPA 6010D 722708 2622406004 PZ-33 EPA 3010A 722653 EPA 6010D 722708 2622406009 FB-01 EPA 3010A 724852 EPA 6010D 724979 2622406010 PZ-2D EPA 3010A 724852 EPA 6010D 724979 2622406011 PZ-32 EPA 3010A 724852 EPA 6010D 724979 2622406012 PZ-25 EPA 3010A 724852 EPA 6010D 724979 2622406020 PZ-19 EPA 3010A 722653 EPA 6010D 722708 2622406021 PZ-16 EPA 3010A 722653 EPA 6010D 722708 2622406021 PZ-16 EPA 3010A 722653	2622406014	PZ-17				
2822406017 PZ-14 2622406019 PZ-57 2622406001 PZ-1D EPA 3010A 721529 EPA 6010D 721846 2622406002 FD-01 EPA 3010A 722653 EPA 6010D 722708 2622406003 PZ-31 EPA 3010A 722653 EPA 6010D 722708 2622406004 PZ-33 EPA 3010A 722653 EPA 6010D 724979 2622406010 PZ-2D EPA 3010A 724852 EPA 6010D 724979 2622406011 PZ-32 EPA 3010A 724852 EPA 6010D 724979 2622406011 PZ-32 EPA 3010A 724852 EPA 6010D 724979 2622406012 PZ-25 EPA 3010A 724852 EPA 6010D 724979 2622406020 PZ-19 EPA 3010A 722653 EPA 6010D 722708 2622406021 PZ-16 EPA 3010A 722653 EPA 6010D 722708 2622406022 PZ-15 EPA 3010A 722653 EPA 6010D 722708	2622406015					
28622406019 PZ-57 28622406001 PZ-1D EPA 3010A 721529 EPA 6010D 721846 28622406002 FD-01 EPA 3010A 722653 EPA 6010D 722708 28622406003 PZ-31 EPA 3010A 722653 EPA 6010D 722708 28622406004 PZ-33 EPA 3010A 722653 EPA 6010D 722708 28622406009 FB-01 EPA 3010A 724852 EPA 6010D 724979 28622406010 PZ-2D EPA 3010A 724852 EPA 6010D 724979 28622406011 PZ-25 EPA 3010A 724852 EPA 6010D 724979 28622406012 PZ-25 EPA 3010A 724852 EPA 6010D 724979 28622406020 PZ-19 EPA 3010A 722653 EPA 6010D 722708 28622406021 PZ-16 EPA 3010A 722653 EPA 6010D 722708 28622406012 PZ-15 EPA 3010A 722653 EPA 6010D 722708 28622406012 PZ-18 <	2622406016					
2822406001 PZ-1D EPA 3010A 721529 EPA 6010D 721846 2822406002 FD-01 EPA 3010A 722653 EPA 6010D 722708 2822406003 PZ-31 EPA 3010A 722653 EPA 6010D 722708 2822406004 PZ-33 EPA 3010A 722653 EPA 6010D 722708 2822406009 FB-01 EPA 3010A 724852 EPA 6010D 724979 2822406010 PZ-2D EPA 3010A 724852 EPA 6010D 724979 2822406011 PZ-32 EPA 3010A 724852 EPA 6010D 724979 2822406012 PZ-25 EPA 3010A 724852 EPA 6010D 724979 2822406020 PZ-19 EPA 3010A 722653 EPA 6010D 722708 2822406021 PZ-16 EPA 3010A 722653 EPA 6010D 722708 2822406021 PZ-15 EPA 3010A 722653 EPA 6010D 722708 2822406021 PZ-15 EPA 3010A 722653 EPA 6010D 72	2622406017					
2622406002 FD-01 EPA 3010A 722653 EPA 6010D 722708 2622406003 PZ-31 EPA 3010A 722653 EPA 6010D 722708 2622406004 PZ-33 EPA 3010A 722653 EPA 6010D 722708 2622406009 FB-01 EPA 3010A 724852 EPA 6010D 724979 2622406010 PZ-2D EPA 3010A 724852 EPA 6010D 724979 2622406011 PZ-32 EPA 3010A 724852 EPA 6010D 724979 2622406012 PZ-25 EPA 3010A 724852 EPA 6010D 724979 2622406020 PZ-19 EPA 3010A 722653 EPA 6010D 722708 2622406021 PZ-16 EPA 3010A 722653 EPA 6010D 722708 2622406021 PZ-15 EPA 3010A 722653 EPA 6010D 722708 2622406023 FD-02 EPA 3010A 722653 EPA 6010D 722708 2622406013 PZ-18 EPA 3010A 722653 EPA 6010D 72	2622406019	PZ-57				
2622406003 PZ-31 EPA 3010A 722653 EPA 6010D 722708 2622406004 PZ-33 EPA 3010A 722653 EPA 6010D 722708 2622406009 FB-01 EPA 3010A 724852 EPA 6010D 724979 2622406010 PZ-2D EPA 3010A 724852 EPA 6010D 724979 2622406011 PZ-32 EPA 3010A 724852 EPA 6010D 724979 2622406012 PZ-25 EPA 3010A 724852 EPA 6010D 724979 2622406020 PZ-19 EPA 3010A 722653 EPA 6010D 722708 2622406021 PZ-16 EPA 3010A 722653 EPA 6010D 722708 2622406023 FD-02 EPA 3010A 722653 EPA 6010D 722708 2622406013 PZ-18 EPA 3010A 722653 EPA 6010D 722708 2622406014 PZ-17 EPA 3010A 722653 EPA 6010D 722708 2622406014 PZ-17 EPA 3010A 722653 EPA 6010D 72	2622406001	PZ-1D	EPA 3010A	721529	EPA 6010D	721846
2622406004 PZ-33 EPA 3010A 722653 EPA 6010D 722708 2622406009 FB-01 EPA 3010A 724852 EPA 6010D 724979 2622406010 PZ-2D EPA 3010A 724852 EPA 6010D 724979 2622406011 PZ-32 EPA 3010A 724852 EPA 6010D 724979 2622406012 PZ-25 EPA 3010A 724852 EPA 6010D 724979 2622406020 PZ-19 EPA 3010A 722653 EPA 6010D 722708 2622406021 PZ-16 EPA 3010A 722653 EPA 6010D 722708 2622406021 PZ-15 EPA 3010A 722653 EPA 6010D 722708 2622406022 PZ-15 EPA 3010A 722653 EPA 6010D 722708 2622406023 FD-02 EPA 3010A 722653 EPA 6010D 722708 2622406013 PZ-18 EPA 3010A 722653 EPA 6010D 722708 2622406014 PZ-17 EPA 3010A 722653 EPA 6010D 72	2622406002	FD-01	EPA 3010A	722653	EPA 6010D	722708
2622406009 FB-01 EPA 3010A 724852 EPA 6010D 724979 2622406010 PZ-2D EPA 3010A 724852 EPA 6010D 724979 2622406011 PZ-32 EPA 3010A 724852 EPA 6010D 724979 2622406012 PZ-25 EPA 3010A 724852 EPA 6010D 724979 2622406020 PZ-19 EPA 3010A 722653 EPA 6010D 722708 2622406021 PZ-16 EPA 3010A 722653 EPA 6010D 722708 2622406021 PZ-15 EPA 3010A 722653 EPA 6010D 722708 2622406023 FD-02 EPA 3010A 722653 EPA 6010D 722708 2622406013 PZ-18 EPA 3010A 722653 EPA 6010D 722708 2622406014 PZ-17 EPA 3010A 722653 EPA 6010D 722708 2622406015 PZ-23A EPA 3010A 722653 EPA 6010D 722708 2622406016 PZ-7D EPA 3010A 722653 EPA 6010D 7	2622406003	PZ-31	EPA 3010A	722653	EPA 6010D	722708
2622406010 PZ-2D EPA 3010A 724852 EPA 6010D 724979 2622406011 PZ-32 EPA 3010A 724852 EPA 6010D 724979 2622406012 PZ-25 EPA 3010A 724852 EPA 6010D 724979 2622406020 PZ-19 EPA 3010A 722653 EPA 6010D 722708 2622406021 PZ-16 EPA 3010A 722653 EPA 6010D 722708 2622406022 PZ-15 EPA 3010A 722653 EPA 6010D 722708 2622406023 FD-02 EPA 3010A 722653 EPA 6010D 722708 2622406013 PZ-18 EPA 3010A 722653 EPA 6010D 722708 2622406014 PZ-17 EPA 3010A 722653 EPA 6010D 722708 2622406015 PZ-23A EPA 3010A 722653 EPA 6010D 722708 2622406016 PZ-7D EPA 3010A 722653 EPA 6010D 722708 2622406017 PZ-14 EPA 3010A 722653 EPA 6010D 7	2622406004	PZ-33	EPA 3010A	722653	EPA 6010D	722708
2622406011 PZ-32 EPA 3010A 724852 EPA 6010D 724979 2622406012 PZ-25 EPA 3010A 724852 EPA 6010D 724979 2622406020 PZ-19 EPA 3010A 722653 EPA 6010D 722708 2622406021 PZ-16 EPA 3010A 722653 EPA 6010D 722708 2622406022 PZ-15 EPA 3010A 722653 EPA 6010D 722708 2622406023 FD-02 EPA 3010A 722653 EPA 6010D 722708 2622406013 PZ-18 EPA 3010A 722653 EPA 6010D 722708 2622406014 PZ-17 EPA 3010A 722653 EPA 6010D 722708 2622406015 PZ-23A EPA 3010A 722653 EPA 6010D 722708 2622406016 PZ-7D EPA 3010A 722653 EPA 6010D 722708 2622406017 PZ-14 EPA 3010A 722653 EPA 6010D 722708 2622406019 PZ-57 EPA 3010A 722653 EPA 6010D 7	2622406009					
2622406012 PZ-25 EPA 3010A 724852 EPA 6010D 724979 2622406020 PZ-19 EPA 3010A 722653 EPA 6010D 722708 2622406021 PZ-16 EPA 3010A 722653 EPA 6010D 722708 2622406022 PZ-15 EPA 3010A 722653 EPA 6010D 722708 2622406013 PZ-18 EPA 3010A 722653 EPA 6010D 722708 2622406014 PZ-17 EPA 3010A 722653 EPA 6010D 722708 2622406015 PZ-23A EPA 3010A 722653 EPA 6010D 722708 2622406016 PZ-7D EPA 3010A 722653 EPA 6010D 722708 2622406017 PZ-14 EPA 3010A 722653 EPA 6010D 722708 2622406018 EB-01 EPA 3010A 722653 EPA 6010D 722708 2622406019 PZ-57 EPA 3010A 722653 EPA 6010D 722708 2622406019 PZ-1D EPA 3005A 722653 EPA 6010D 7	2622406010					
2622406020 PZ-19 EPA 3010A 722653 EPA 6010D 722708 2622406021 PZ-16 EPA 3010A 722653 EPA 6010D 722708 2622406022 PZ-15 EPA 3010A 722653 EPA 6010D 722708 2622406023 FD-02 EPA 3010A 722653 EPA 6010D 722708 2622406013 PZ-18 EPA 3010A 722653 EPA 6010D 722708 2622406014 PZ-17 EPA 3010A 722653 EPA 6010D 722708 2622406015 PZ-23A EPA 3010A 722653 EPA 6010D 722708 2622406016 PZ-7D EPA 3010A 722653 EPA 6010D 722708 2622406017 PZ-14 EPA 3010A 722653 EPA 6010D 722708 2622406018 EB-01 EPA 3010A 722653 EPA 6010D 722708 2622406019 PZ-57 EPA 3010A 722653 EPA 6010D 722708 2622406001 PZ-1D EPA 3005A 722656 EPA 6020B 7						
2622406021 PZ-16 EPA 3010A 722653 EPA 6010D 722708 2622406022 PZ-15 EPA 3010A 722653 EPA 6010D 722708 2622406023 FD-02 EPA 3010A 722653 EPA 6010D 722708 2622406013 PZ-18 EPA 3010A 722653 EPA 6010D 722708 2622406014 PZ-17 EPA 3010A 722653 EPA 6010D 722708 2622406015 PZ-23A EPA 3010A 722653 EPA 6010D 722708 2622406016 PZ-7D EPA 3010A 722653 EPA 6010D 722708 2622406017 PZ-14 EPA 3010A 722653 EPA 6010D 722708 2622406018 EB-01 EPA 3010A 722653 EPA 6010D 722708 2622406019 PZ-57 EPA 3010A 722653 EPA 6010D 722708 2622406001 PZ-1D EPA 3005A 722656 EPA 6020B 722744 2622406002 FD-01 EPA 3005A 722656 EPA 6020B 7	2622406012	PZ-25	EPA 3010A	724852	EPA 6010D	724979
2622406022 PZ-15 EPA 3010A 722653 EPA 6010D 722708 2622406023 FD-02 EPA 3010A 722653 EPA 6010D 722708 2622406013 PZ-18 EPA 3010A 722653 EPA 6010D 722708 2622406014 PZ-17 EPA 3010A 722653 EPA 6010D 722708 2622406015 PZ-23A EPA 3010A 722653 EPA 6010D 722708 2622406016 PZ-7D EPA 3010A 722653 EPA 6010D 722708 2622406017 PZ-14 EPA 3010A 722653 EPA 6010D 722708 2622406018 EB-01 EPA 3010A 722653 EPA 6010D 722708 2622406019 PZ-57 EPA 3010A 722653 EPA 6010D 722708 2622406019 PZ-1D EPA 3005A 722653 EPA 6010D 722708 2622406001 PZ-1D EPA 3005A 722656 EPA 6020B 722744 2622406002 FD-01 EPA 3005A 722656 EPA 6020B 7	2622406020					
2622406023 FD-02 EPA 3010A 722653 EPA 6010D 722708 2622406013 PZ-18 EPA 3010A 722653 EPA 6010D 722708 2622406014 PZ-17 EPA 3010A 722653 EPA 6010D 722708 2622406015 PZ-23A EPA 3010A 722653 EPA 6010D 722708 2622406016 PZ-7D EPA 3010A 722653 EPA 6010D 722708 2622406017 PZ-14 EPA 3010A 722653 EPA 6010D 722708 2622406018 EB-01 EPA 3010A 722653 EPA 6010D 722708 2622406019 PZ-57 EPA 3010A 722653 EPA 6010D 722708 2622406001 PZ-1D EPA 3005A 722653 EPA 6010D 722708 2622406002 FD-01 EPA 3005A 722656 EPA 6020B 722744 2622406003 PZ-31 EPA 3005A 722656 EPA 6020B 722744 2622406004 PZ-33 EPA 3005A 724857 EPA 6020B 7	2622406021					
2622406013 PZ-18 EPA 3010A 722653 EPA 6010D 722708 2622406014 PZ-17 EPA 3010A 722653 EPA 6010D 722708 2622406015 PZ-23A EPA 3010A 722653 EPA 6010D 722708 2622406016 PZ-7D EPA 3010A 722653 EPA 6010D 722708 2622406017 PZ-14 EPA 3010A 722653 EPA 6010D 722708 2622406018 EB-01 EPA 3010A 722653 EPA 6010D 722708 2622406019 PZ-57 EPA 3010A 722653 EPA 6010D 722708 2622406001 PZ-1D EPA 3005A 722653 EPA 6020B 722744 2622406002 FD-01 EPA 3005A 722656 EPA 6020B 722744 2622406003 PZ-31 EPA 3005A 722656 EPA 6020B 722744 2622406004 PZ-33 EPA 3005A 724857 EPA 6020B 724980 2622406009 FB-01 EPA 3005A 724857 EPA 6020B 7					EPA 6010D	
2622406014 PZ-17 EPA 3010A 722653 EPA 6010D 722708 2622406015 PZ-23A EPA 3010A 722653 EPA 6010D 722708 2622406016 PZ-7D EPA 3010A 722653 EPA 6010D 722708 2622406017 PZ-14 EPA 3010A 722653 EPA 6010D 722708 2622406018 EB-01 EPA 3010A 722653 EPA 6010D 722708 2622406019 PZ-57 EPA 3010A 722653 EPA 6010D 722708 2622406001 PZ-1D EPA 3005A 722656 EPA 6020B 722744 2622406002 FD-01 EPA 3005A 722656 EPA 6020B 722744 2622406003 PZ-31 EPA 3005A 722656 EPA 6020B 722744 2622406004 PZ-33 EPA 3005A 724857 EPA 6020B 724980 2622406010 PZ-2D EPA 3005A 724857 EPA 6020B 724980 2622406011 PZ-32 EPA 3005A 724857 EPA 6020B 7						
2622406015 PZ-23A EPA 3010A 722653 EPA 6010D 722708 2622406016 PZ-7D EPA 3010A 722653 EPA 6010D 722708 2622406017 PZ-14 EPA 3010A 722653 EPA 6010D 722708 2622406018 EB-01 EPA 3010A 722653 EPA 6010D 722708 2622406019 PZ-57 EPA 3010A 722653 EPA 6010D 722708 2622406001 PZ-1D EPA 3005A 722656 EPA 6020B 722744 2622406002 FD-01 EPA 3005A 722656 EPA 6020B 722744 2622406003 PZ-31 EPA 3005A 722656 EPA 6020B 722744 2622406004 PZ-33 EPA 3005A 722656 EPA 6020B 722744 2622406009 FB-01 EPA 3005A 724857 EPA 6020B 724980 2622406010 PZ-2D EPA 3005A 724857 EPA 6020B 724980 2622406011 PZ-32 EPA 3005A 724857 EPA 6020B 7						
2622406016 PZ-7D EPA 3010A 722653 EPA 6010D 722708 2622406017 PZ-14 EPA 3010A 722653 EPA 6010D 722708 2622406018 EB-01 EPA 3010A 722653 EPA 6010D 722708 2622406019 PZ-57 EPA 3010A 722653 EPA 6010D 722708 2622406001 PZ-1D EPA 3005A 722656 EPA 6020B 722744 2622406002 FD-01 EPA 3005A 722656 EPA 6020B 722744 2622406003 PZ-31 EPA 3005A 722656 EPA 6020B 722744 2622406004 PZ-33 EPA 3005A 724857 EPA 6020B 724980 2622406010 PZ-2D EPA 3005A 724857 EPA 6020B 724980 2622406011 PZ-32 EPA 3005A 724857 EPA 6020B 724980 2622406012 PZ-25 EPA 3005A 724857 EPA 6020B 724980						
2622406017 PZ-14 EPA 3010A 722653 EPA 6010D 722708 2622406018 EB-01 EPA 3010A 722653 EPA 6010D 722708 2622406019 PZ-57 EPA 3010A 722653 EPA 6010D 722708 2622406001 PZ-1D EPA 3005A 722656 EPA 6020B 722744 2622406002 FD-01 EPA 3005A 722656 EPA 6020B 722744 2622406003 PZ-31 EPA 3005A 722656 EPA 6020B 722744 2622406004 PZ-33 EPA 3005A 722656 EPA 6020B 722744 2622406009 FB-01 EPA 3005A 724857 EPA 6020B 724980 2622406010 PZ-2D EPA 3005A 724857 EPA 6020B 724980 2622406011 PZ-32 EPA 3005A 724857 EPA 6020B 724980 2622406012 PZ-25 EPA 3005A 724857 EPA 6020B 724980						
2622406018 EB-01 EPA 3010A 722653 EPA 6010D 722708 2622406019 PZ-57 EPA 3010A 722653 EPA 6010D 722708 2622406001 PZ-1D EPA 3005A 722656 EPA 6020B 722744 2622406002 FD-01 EPA 3005A 722656 EPA 6020B 722744 2622406003 PZ-31 EPA 3005A 722656 EPA 6020B 722744 2622406004 PZ-33 EPA 3005A 722656 EPA 6020B 722744 2622406009 FB-01 EPA 3005A 724857 EPA 6020B 724980 2622406010 PZ-2D EPA 3005A 724857 EPA 6020B 724980 2622406011 PZ-32 EPA 3005A 724857 EPA 6020B 724980 2622406012 PZ-25 EPA 3005A 724857 EPA 6020B 724980						
2622406019 PZ-57 EPA 3010A 722653 EPA 6010D 722708 2622406001 PZ-1D EPA 3005A 722656 EPA 6020B 722744 2622406002 FD-01 EPA 3005A 722656 EPA 6020B 722744 2622406003 PZ-31 EPA 3005A 722656 EPA 6020B 722744 2622406004 PZ-33 EPA 3005A 722656 EPA 6020B 722744 2622406009 FB-01 EPA 3005A 724857 EPA 6020B 724980 2622406010 PZ-2D EPA 3005A 724857 EPA 6020B 724980 2622406011 PZ-32 EPA 3005A 724857 EPA 6020B 724980 2622406012 PZ-25 EPA 3005A 724857 EPA 6020B 724980						
2622406001 PZ-1D EPA 3005A 722656 EPA 6020B 722744 2622406002 FD-01 EPA 3005A 722656 EPA 6020B 722744 2622406003 PZ-31 EPA 3005A 722656 EPA 6020B 722744 2622406004 PZ-33 EPA 3005A 722656 EPA 6020B 722744 2622406009 FB-01 EPA 3005A 724857 EPA 6020B 724980 2622406010 PZ-2D EPA 3005A 724857 EPA 6020B 724980 2622406011 PZ-32 EPA 3005A 724857 EPA 6020B 724980 2622406012 PZ-25 EPA 3005A 724857 EPA 6020B 724980						
2622406002 FD-01 EPA 3005A 722656 EPA 6020B 722744 2622406003 PZ-31 EPA 3005A 722656 EPA 6020B 722744 2622406004 PZ-33 EPA 3005A 722656 EPA 6020B 722744 2622406009 FB-01 EPA 3005A 724857 EPA 6020B 724980 2622406010 PZ-2D EPA 3005A 724857 EPA 6020B 724980 2622406011 PZ-32 EPA 3005A 724857 EPA 6020B 724980 2622406012 PZ-25 EPA 3005A 724857 EPA 6020B 724980	2622406019		EPA 3010A	/22653	EPA 6010D	722708
2622406003 PZ-31 EPA 3005A 722656 EPA 6020B 722744 2622406004 PZ-33 EPA 3005A 722656 EPA 6020B 722744 2622406009 FB-01 EPA 3005A 724857 EPA 6020B 724980 2622406010 PZ-2D EPA 3005A 724857 EPA 6020B 724980 2622406011 PZ-32 EPA 3005A 724857 EPA 6020B 724980 2622406012 PZ-25 EPA 3005A 724857 EPA 6020B 724980						
2622406004 PZ-33 EPA 3005A 722656 EPA 6020B 722744 2622406009 FB-01 EPA 3005A 724857 EPA 6020B 724980 2622406010 PZ-2D EPA 3005A 724857 EPA 6020B 724980 2622406011 PZ-32 EPA 3005A 724857 EPA 6020B 724980 2622406012 PZ-25 EPA 3005A 724857 EPA 6020B 724980	2622406002		EPA 3005A		EPA 6020B	
2622406009 FB-01 EPA 3005A 724857 EPA 6020B 724980 2622406010 PZ-2D EPA 3005A 724857 EPA 6020B 724980 2622406011 PZ-32 EPA 3005A 724857 EPA 6020B 724980 2622406012 PZ-25 EPA 3005A 724857 EPA 6020B 724980						
PZ-2D EPA 3005A 724857 EPA 6020B 724980 PZ-32 EPA 3005A 724857 EPA 6020B 724980 PZ-25 EPA 3005A 724857 EPA 6020B 724980 PZ-25 EPA 3005A 724857 EPA 6020B 724980	2622406004	PZ-33	EPA 3005A	722656	EPA 6020B	722744
PZ-32 EPA 3005A 724857 EPA 6020B 724980 PZ-25 EPA 3005A 724857 EPA 6020B 724980 PZ-25 EPA 3005A 724857 EPA 6020B 724980						
PZ-25 EPA 3005A 724857 EPA 6020B 724980	2622406010		EPA 3005A	724857	EPA 6020B	724980
	2622406011	PZ-32	EPA 3005A	724857	EPA 6020B	724980
PZ-19 EPA 3005A 722656 EPA 6020B 722744	:622406012	PZ-25	EPA 3005A	724857	EPA 6020B	724980
	622406020	PZ-19	EPA 3005A	722656	EPA 6020B	722744

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

Lab ID Sample ID 92622406021 PZ-16 92622406022 PZ-15		QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92622406021	PZ-16	EPA 3005A	722656	EPA 6020B	722744
92622406022	PZ-15	EPA 3005A	722656	EPA 6020B	722744
92622406023	FD-02	EPA 3005A	722656	EPA 6020B	722744
2622406013	PZ-18	EPA 3005A	722656	EPA 6020B	722744
2622406014	PZ-17	EPA 3005A	722656	EPA 6020B	722744
2622406015	PZ-23A	EPA 3005A	722656	EPA 6020B	722744
2622406016	PZ-7D	EPA 3005A	722656	EPA 6020B	722744
2622406017	PZ-14	EPA 3005A	722656	EPA 6020B	722744
2622406017	PZ-14	EPA 3005A	729120	EPA 6020B	729196
2622406018	EB-01	EPA 3005A	722711	EPA 6020B	722836
2622406019	PZ-57	EPA 3005A	722711	EPA 6020B	722836
92622406001	PZ-1D	EPA 7470A	722636	EPA 7470A	722845
2622406002	FD-01	EPA 7470A	722636	EPA 7470A	722845
2622406003	PZ-31	EPA 7470A	722636	EPA 7470A	722845
2622406004	PZ-33	EPA 7470A	722636	EPA 7470A	722845
2622406009	FB-01	EPA 7470A	724415	EPA 7470A	724676
2622406010	PZ-2D	EPA 7470A	724415	EPA 7470A	724676
2622406011	PZ-32	EPA 7470A	724415	EPA 7470A	724676
2622406012	PZ-25	EPA 7470A	724420	EPA 7470A	724771
2622406020	PZ-19	EPA 7470A	722636	EPA 7470A	722845
2622406021	PZ-16	EPA 7470A	722636	EPA 7470A	722845
2622406022	PZ-15	EPA 7470A	722636	EPA 7470A	722845
2622406023	FD-02	EPA 7470A	722636	EPA 7470A	722845
2622406013	PZ-18	EPA 7470A	722636	EPA 7470A	722845
2622406014	PZ-17	EPA 7470A	722636	EPA 7470A	722845
2622406015	PZ-23A	EPA 7470A	722636	EPA 7470A	722845
2622406016	PZ-7D	EPA 7470A	722636	EPA 7470A	722845
2622406017	PZ-14	EPA 7470A	722636	EPA 7470A	722845
2622406018	EB-01	EPA 7470A	722636	EPA 7470A	722845
2622406019	PZ-57	EPA 7470A	722636	EPA 7470A	722845
2622406001	PZ-1D	SM 2540C-2015	720456		
2622406002	FD-01	SM 2540C-2015	720456		
2622406003	PZ-31	SM 2540C-2015	720456		
2622406004	PZ-33	SM 2540C-2015	720456		
2622406009	FB-01	SM 2540C-2015	721840		
2622406010	PZ-2D	SM 2540C-2015	721840		
2622406011	PZ-32	SM 2540C-2015	721840		
2622406012	PZ-25	SM 2540C-2015	721840		
2622406020	PZ-19	SM 2540C-2015	720456		
2622406021	PZ-16	SM 2540C-2015	720456		
2622406022	PZ-15	SM 2540C-2015	720456		
2622406023	FD-02	SM 2540C-2015	720456		
2622406013	PZ-18	SM 2540C-2015	720456		
2622406014	PZ-17	SM 2540C-2015	720456		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Mitchell 2022 2nd SA-Revised Report

Pace Project No.: 92622406

Date: 10/17/2022 08:08 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92622406015	PZ-23A	SM 2540C-2015	720456		
92622406016	PZ-7D	SM 2540C-2015	720456		
92622406017	PZ-14	SM 2540C-2015	720456		
92622406018	EB-01	SM 2540C-2015	720606		
92622406019	PZ-57	SM 2540C-2015	720606		
92622406001	PZ-1D	EPA 300.0 Rev 2.1 1993	721131		
92622406002	FD-01	EPA 300.0 Rev 2.1 1993	721131		
92622406003	PZ-31	EPA 300.0 Rev 2.1 1993	721131		
92622406004	PZ-33	EPA 300.0 Rev 2.1 1993	721131		
2622406009	FB-01	EPA 300.0 Rev 2.1 1993	721131		
92622406010	PZ-2D	EPA 300.0 Rev 2.1 1993	721131		
92622406011	PZ-32	EPA 300.0 Rev 2.1 1993	721658		
92622406012	PZ-25	EPA 300.0 Rev 2.1 1993	721658		
2622406020	PZ-19	EPA 300.0 Rev 2.1 1993	721658		
92622406021	PZ-16	EPA 300.0 Rev 2.1 1993	721658		
92622406022	PZ-15	EPA 300.0 Rev 2.1 1993	721658		
2622406023	FD-02	EPA 300.0 Rev 2.1 1993	721658		
2622406013	PZ-18	EPA 300.0 Rev 2.1 1993	721658		
92622406014	PZ-17	EPA 300.0 Rev 2.1 1993	721658		
92622406015	PZ-23A	EPA 300.0 Rev 2.1 1993	721658		
92622406016	PZ-7D	EPA 300.0 Rev 2.1 1993	721661		
92622406017	PZ-14	EPA 300.0 Rev 2.1 1993	721661		
92622406018	EB-01	EPA 300.0 Rev 2.1 1993	721661		
92622406019	PZ-57	EPA 300.0 Rev 2.1 1993	721661		

/	Pace
1-	1 acc
-7.0	Bucke Stars

	Effective Date: 05/12/202					
	iving samples:					
heville	Eden Greenwood	Huntersvi	lle 🗌	Raleigh[Atlanta Kernersv	ille
Sample Conditi	ion Client Name:				WO#:92622406	
Upon Receipt	ParA	POWER		Р	Proje	
urier:	■Fed Ex	UPS USPS	-	Clie	ent	
Commercial	Pace	Other		<u> </u>	92622406	
stody Seal Pres	anti Dia	Seals Intact?		-		
tody Seal Pres	ent?	Seals Intact?	Thes	∐No	Date/Initials Person Examining Contents: 5/2	5/2
	Полити	—				C
king Material:	Bubble Wrap	Bubble Bags	None	☐ Ott	ther Biological Tissue Frozen? Yes No NA	
ermometer:	DE 083	2.5.20				
	T a Correction	Type of Ic	_	Wet Blu	llue None	
oler Temp:	5-8_ Add/Subt	ract (°C) D.0)		Temp should be above freezing to 6°C	
oler Temp Corr	ected (°C):	58			Samples out of temp criteria. Samples on ice, cooling has begun	g pro
	ioil (N/A, water sample)	320			nas begon	
	ginate in a quarantine zone wit	nin the United States	: CA, NY,	or SC	Did samples originate from a foreign source (internationa	ly,
(check maps)? [YesNo	10091			including Hawaii and Puerto Rico)? Yes No Comments/Discrepancy:	-
Chain of Custo	ody Present?	W res	□No	□N/A	1	
Samples Arriv	red within Hold Time?	₽Yes	□No	□N/A	2.	
Short Hold Ti	me Analysis (<72 hr.)?	□Yes	ØN6	□N/A	3.	
Rush Turn Are	ound Time Requested?	□Yes	ONO	□N/A	4.	
Sufficient Vol	ume?	□Yes	□No	□N/A	5.	
Correct Conta		□Yes	□No	□N/A	6.	
	ainers Used?	Yes	□No	□N/A	-	
Containers Int	lysis: Samples Field Filtered?	⊒∕es	□No	□N/A □N/A	7,	
	s Match COC?	□Yes -□Yes	□No	□N/A	8.	
			Line	Lines.	2.	
-Includes D	Date/Time/ID/Analysis Matrix	W				
Headsnace in	VOA Vials (>5-6mm)?	□Yes	□No	□N7A	10.	
Trip Blank Pre		□Yes	□No	ØR/A	11.	
	stody Seals Present?	□Yes	□No	□N/A		
Trip Blank Cus					Field Data Required? Yes	No
Trip Blank Cus						
					Lat ID of colit contribute.	
	I/RESOLUTION				Lot ID of split containers:	
MMENTS/SAMPLE	n/RESOLUTION		-3	ι	Lot ID of split containers: pH Strip Lot# 10D4511	
MMENTS/SAMPLE	I/RESOLUTION		-3	L		
MMENTS/SAMPLE	i/resolution		-3	·		

Page 54 of 75

Date:

Project Manager SRF Review:

Effective Date: 05/12/2022

'Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

***Check all unpreserved Nitrates for chlorine

Projec 40#: 9262240

PM: NMG

Due Date: 09/09/22

CLIENT: GA-GA Power

Item#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mt Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP45-125 mL Plastic H2504 (pH < 2) (Ci-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP42125 mL Plastic ZN Acetate & NaOH (>9)	BP48-125 mL Plastic NaOH (pH > 12) (Cl·)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (Cl-)	AG1H-1 liter Amber HCI (pH < 2)	AG3U-250 mt Amber Unpreserved (N/A) (CI-)	AG15-1 liter Aniber H25O4 (pH < 2)	AG3S-250 nil Aniber H2SO4 (pH < 2)	DG94-250 mL Amber NH4Cl (N/A)(Cl·)	DG9H-10 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-10 mL VOA Unpreserved (N/A)	DG9V-40 mL VOA H3PO4 (N/A)	DG9S-40 mL VOA H2SO4 (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A - lab)	SP2T-250 mL Sterile Plastic (N/A - lab)	BRIN	BP3R-250 mL Plastic (NH2)2504 (9.3-9.7)	AGOU-100 mL Amber Unpreserved (N/A) (CL)	VSGU-20 mL Scintillation vials (N/A)	DGSU-40 mL Amber Unpreserved vials (N/A)
1	1	1	1		1	N	1	1			1		1	1	1									2	1			
2	1		1		1	1	1	1			1		1	1	1									2	1			
3	1	1)		1	X	1	1			1		1	1	1				1					2	1			
4	1	1	1		1	1	1	1			1		1	1	1									2	1			
5	1				1	1	1	1			X		1	1	1									1	1			П
6	1				1	1	1	1			1		1	1	1			1						1	1			
7	1				1	1	1	1			1		1	1	1			T						1	1			
8	1				1	1	1	1			1		1	1	1		1.	1						1	1			Ħ
9	1	-	1		1	1	1	/		1	1		1	1	1	1	-	T			1		1	1	1	1		Ħ
10	1				1	1	1	1			1		1	1	1									1	1	1		
11	1	1			1	1	1	1			1	-	1	1	1	1						-		1	1			1
12	1	1	1		1	1	1	1	1		1	-	1	1	1	1			-	+	-		1	1	1			+

	pH Ac	ljustment Log for Pres	erved Samples			
Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot#	
		7				
						-
						-
	Type of Preservative		The state of the s		Type of Preservative pH upon receipt Date preservation adjusted Time preservation Amount of Preservative	Type of Preservative pH upon receipt Date preservation adjusted Time preservation Amount of Preservative Lot#

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Section A

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info.pacelabs.com/hubfs/pas-standard-terms.pdf

Section C

				24	23	13	21	8	19	18	17	16	5	14	13	ITEM#		7	Reque	Phone	Suite 1	Address	Compa
			ADDITIONAL COMMENTS						ED #	\$5.15	7	4780000-94-18-Z4-1IW	MIT-PZ-31-WG-2020824	MIT-APA12-FD-601-W6-20126924	735 MIT-PZ-10-WG-20220824	SAMPLE ID One Character per box. (A-Z, 0-9/,-) Sample ids must be unique			2	(770)421-3382 Fax	10	ss 1075 Big Sharrly Road	Required Client Information: Company: Wood E&I (GA Power)
		Demi	RELIN				WT	WT	WT	WI	WT	-20220824 WT	5-2020824 WT	01-196-20220924 WT	-2022087 A	Write Water Will Photocic Photocic Photocic Photocic Photocic Photocic Surface Surface Surface Surface Are Are Are To Thause To The Surface Surface Surface Are Are Are Are Are Are Are Are Are Ar			-	Project Name:	?I I		Required Project Information:
(6) TH		Alberry ()	RELINQUISHED BY I AFFILIATION													SAMPLE TYPE G=GRAB START DATE TIME			22 160 170.	Mitchell 2022	Syst	and a	ject Information:
PRINT Name of SAMPLER: DESIGNATURE SIGNATURE OF SMILER:		1 Doom 1	ATION DATE									V 1545	1400	DIMPA -	apula	END END	COLLECTED		.2202	0 h	c Backer	-	
Pr		2081 mals	TE TIME									S S	S S	5	5 X	SAMPLE TEMP AT COLLEC OF CONTAINERS Unpreserved	TION		Pace Profile #:				hyoice int
aist thousand	in and a second	Charl	ACCEPTE									Х	×	X	×	H2SO4 HNO3 HCI NaOH Na2S2O3 Methanol	Preservatives		Pace Profile # 10834			Name	hyoice Information:
1Ev		Henry	TED BY I AFFILIATION						×		×	×			×	Other Analyses Test CI, F, SO4 TDS	Y/N	70	o oleo@pacelabs.com				
er Gailen		1548	DATE				×		_	×	×	×			×	App III/IV Metals RAD 9315/9320		equested Analysis Fi	n.				
8/24/22		etto a	E TIME															Analysis Filtered (Y/N)	OUT STREET, ST		7250		Pa
TEMP in C Received on lice (Y/N) Custody Seated Cooler (Y/N) Samples Intact			SAMPLE CONDITIONS									17-18 e	2H=7.04		0H=7.49	Residual Chlorine (Y/N)			State / Location GA	and the second s	Regulatory Agency		Page: / 1 Of 1

1	Pace
1	HARTH SERVE

Effective Date: 05/12/2022	

Custody Seal Present?	6	WO#: 92622406		Ralei	ille 🗌	Huntersy	Sample Condition Upon Receipt C 10 10
B 2 33 9 + 4 40 9 9 9 9 9 9 9 9 9	09/09/22	PM: NMG Due Date: 09/					ELEG EX TOPS
Cooler Temp:	en?		ther			498 ubble Bags	8/2 [3394 king Material: □Bubble Wrap □Bub
Chain of Custody Present? Chain of Custody Present? Samples Arrived within Hold Time? Short Hold Time Analysis (<72 hr.)? Rush Turn Around Time Requested? Sufficient Volume? Correct Containers Used? -Pace Sample Labels Match COC? Sample Labels Match COC?		Temp should be above freezing to 6°C Samples out of temp criteria. Samples on ice, c has begun	ue			9	ler Temp: Add/Subtract (°C): A Regulated Soil (\sum N/A, water sample) Did samples originate in a quarantine zone within the left.
Chain of Custody Present?	ternationally,	including Hawaii and Puerto Rico)? Yes No	_	-			check maps): Lives LiNo
Samples Arrived within Hold Time? Short Hold Time Analysis (<72 hr.)? Rush Turn Around Time Requested? Sufficient Volume? Sufficient Volume? Correct Containers Used? Pace Containers Used? Containers Used? Containers Intact? Dissolved analysis: Samples Field Filtered? Sample Labels Match COC? Includes Date/Time/ID/Analysis Matrix: Headspace in VOA Vials (>5-6mm)? Trip Blank Present? Tyes No No N/A 10. Trip Blank Custody Seals Present? Tyes No No N/A 11. Trip Blank Custody Seals Present? Trip Blank Custody Seals Present? TNOTIFICATION/RESOLUTION Date/Time: Togett Manager SCURF Review: Date: Date:		Comments/Discrepancy:		Con	Пы-	Filar	Chain of Custody Present?
Short Hold Time Analysis (<72 hr.)?				3337		-	
Rush Turn Around Time Requested? Yes			100		/		
Sufficient Volume?							
Correct Containers Used? -Pace Containers Used? -Pace Containers Used? -Pace Containers Intact? -Pace Containers Used? -Pace Containers Used. -Pace Containers Used. -Pace Containers Used. -Pace Containe			4.	□N/A	□No	∐Yes	
Cortect Containers Used? -Pace Containers Used Used Used Used Used Used Used Use			5.	□N/A	□No	Yes	
Containers Intact?					□No	Yes	
Dissolved analysis: Samples Field Filtered? Yes No M/A 8. Sample Labels Match COC? Yes No M/A 9. -Includes Date/Time/ID/Analysis Matrix:			1				
Sample Labels Match COC? Yes			7.	□N/A	□No	Yes	
-Includes Date/Time/ID/Analysis Matrix: Headspace in VOA Vials (>5-6mm)? Trip Blank Present? Trip Blank Custody Seals Present? MENTS/SAMPLE DISCREPANCY Lot ID of split containers: PH Strip Lot# 10D4611 Ph Strip Lot# 10D4611 Date/Time:			8.	M/A	□No	□Yes	
Headspace in VOA Vials (>5-6mm)? Trip Blank Present? Trip Blank Custody Seals Present? MENTS/SAMPLE DISCREPANCY Pield Data Required? Lot ID of split containers: PH Strip Lot# 10D4611 Ph Strip Lot# 10D4611 Date/Time:			9.	□N/A	□No	ÆYes 1 . /	
Trip Blank Present?						W	
Trip Blank Custody Seals Present? Trip Blank Custody Seals Present? MENTS/SAMPLE DISCREPANCY Field Data Required? []Y. Lot ID of split containers: PH Strip Lot# 10D4611 Ph Contacted: Date/Time:	-		10	IDNA	□No	□Yes	Headspace in VOA Vials (>5-6mm)?
Field Data Required?			_				rip blank Present?
Field Data Required?				/	DNo	Пуес	Trip Blank Custody Seals Present?
pH Strip Lot# 10D4611 on contacted: Date/Time: Date:]Yes □No	Field Data Required? Yes				<u> </u>	ENTS/SAMPLE DISCREPANCY
pH Strip Lot# 10D4611 on contacted: Date/Time: Date:							
on contacted: Date/Time: roject Manager SCURF Review: Date:			t ID of				OTIFICATION/RESOLUTION
roject Manager SCURF Review: Date:		ph Strip Lot# 10D4611					
Date:				ate/Time:	0		contacted:
	***	Date:					iect Manager SCURF Review:
Toject Manager SKF Review:	-						ect Manager SRF Review:
Date:	_	Date:	-	-			The state of the s

Effective Date: 05/12/2022

WO#: 92622406

Proj PM: NMG

Due Date: 09/09/22

CLIENT: GA-GA Power

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

- **Bottom half of box is to list number of bottles
- ***Check all unpreserved Nitrates for chlorine

ltem#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mt Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H25O4 (pH < 2) {Cl-}	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic 2N Acetate & NaOH (>9)	BP4B-125 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (Cl-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG15-1 liter Amber H2SO4 (pH < 2)	AG35-250 mL Amber H2504 (pH < 2)	DG94-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA NA2S2O3 (N/A)	VG9U-40 mL VOA Unpreserved (N/A)	DG9V-40 mL VOA H3PO4 (N/A)	DG95-40 mL VOA H2504 (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A - lab)	SP2T-250 mt. Sterile Plastic (N/A - lab)	SVIN	BP3R-250 ml. Plastic (NH2)2504 (9.3-9.7)	AGOU-100 mL Amber Unpreserved (N/A) (G-)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1	1		(1	K	1	1			1		1	1	1									X				
2	1	1	1		1	V	1	1			1		1	1	1									Z	1			
3	1	1	1		1	V	1	1			1		1	1	1				- 1					X	/			
4	1	1	1		1	Y	1	1			1		1	1	1									V	1			
5	1				1	1	1	1			1		1	1	/									1	1			
6	1				1	1	1	1			/		1	1	1									/	1			
7	1				1	1	1	1			1		1	1	1									1	1			
8	1				1	1	1	1			1		1	1	1									1	1			
9	1				1	1	/	1			/		1	1	1									/	1			
10	1				1	1	1	1			1		/	1	1									1	1			
11	1				1	1	1	1			1		1	1	1									1	1			
12	1				1	1	1	1			1		1	1	1									1	/			

		pH Ac	justment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

Required Client Information: Company Wood E&I (GA Address 10 9 ITEM # uite 100. Kennesaw GA 30144 daniel.howard2@woodplc.com MIT-PZ-25-WG-20120824 * MIT-PZ-21-WG-20220824 770,421 3382 |Fex 1075 Big Shanty Road Wood E&I (GA Power) Sample Ids must be unique One Character per box. (A-Z, 0-9/, -) MIT-APA12-FR-11-NO-7220214 SAMPLE ID WIT-PZ-32-WG-20220824 ADDITIONAL COMMENTS Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info.pacetabs.ccm/hubfs/pas-standard-terms.pdf MATRIX
Constant Water
Water
Water
Water
Water
Product
Sed/Solid
On
Whye
Arr
Other
Traspe Copy To. Deniel Howard

Copy To. Rhanda Amina

Michille Barker

Purchase Order # Required Project Information: Section B oject # 6122/6070.3202 RELINQUISHED BY / AFFILIATION Mary Wood 3 S M S ş 1 15 S S MATRIX CODE (see valid codes to left) SAMPLE TYPE (G=GRAB C=COMP) START SAMPLER NAME AND SIGNATURE COLLECTED SIGNATURNO SAMPLER PRINT Name of SAMPLER: OFFICE PARTIE END BIXYDU FEGO 1410 1132 DATE SAMPLE TEMP AT COLLECTION Danie S W # OF CONTAINERS Attention: Company Name: Pace Project Manager: Pace Quote: Address invoice information TIME Unpreserved H2SO4 Chris XX HNO3 Preservatives HÇI 1083 NaOH ACCEPTED BY / AFFILIATION Na2S2O3 Methanol Other Analyses Test Y/N DATE SIGNATOR 4/ CI, F, SO4 × TOS × × × App III/IV Metals × RAD 9315/9320 Analysis Filtered DATE TIME Page : Regulatory Agency TEMP in C State / Location Residual Chlorine (Y/N) Received on OH= 7.10 10.8=#4 HE.7.34 SAMPLE CONDITIONS (Y/N) Custody Sealed Cooler ç (Y/N) Samples (Y/N)

Pace
1-1 400
TANALL II ASALLE

Effective Date: 05/12/2022

Sample Condition Client Name: Upon Receipt	Huntersvill	e 📋	Raleigh	n∐ Proje∈	
ourier: Fed Ex UPS Pace 8/2493	□USPS □Other:	ヒン	□ci		PM: NMG Due Date: 09/09/22 CLIENT: GA-GA Power
acking Material: Bubble Wrap Bremometer; Bl21 43 poler Temp: 48 5 1		S 3 None		ither Nue	Biological Tissue Frozen? Yes No N/A None Temp should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling processors to begun
Did samples originate in a quarantine zone within th (check maps)? Yes No	e United States:	CA, NY,	or SC		Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)? ☐Yes ☐No
Chain of Custody Present?	7			+-	Comments/Discrepancy:
Samples Arrived within Hold Time?	☐ fes	□No	□N/A	1.	
THE STORY OF THE CANAL THE STORY	Ves	□No	□N/A	2.	
Short Hold Time Analysis (<72 hr.)?	□Yes	Ato	□N/A	3.	
Rush Turn Around Time Requested?	□Yes	MO	□N/A	4.	
Sufficient Volume?	Pres	□No	□N/A	5.	
Correct Containers Used?	ØYes .	□Na	□N/A	6.	
-Pace Containers Used?	Yes	Пио	□N/A		14
Containers Intact?	Tves	□No	□N/A	7.	
Dissolved analysis: Samples Field Filtered?	Yes	□No	₽M/A	8.	
Sample Labels Match COC?	Tyes 11/	□No	□n/a	9,	
-Includes Date/Time/ID/Analysis Matrix:	V V			1.	
Headspace in VOA Vials (>5-6mm)?	□Yes	□No	PMA	10.	•
Trip Blank Present?	□Yes	□No	DIMA	11.	
Trip Blank Custody Seals Present?	□Yes	□No	, DATA		
MMENTS/SAMPLE DISCREPANCY					Field Data Required? ☐Yes ☐No
NT NOTIFICATION/RESOLUTION				Lot ID	of split containers:
NT NOTIFICATION VICES TO NOT				-	pH Strip Lot# 10D4611
rson contacted:			Date/Time	e:	
Project Manager SCURF Review:					Date:
Troject Manager Scott Neview.	i i i i i i i i i i i i i i i i i i i				vate:

Effective Date: 05/12/2022

*Check mark top half of box if pH and/or dechlorination is verified and Project

within the acceptance range for preservation samples. Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

***Check all unpreserved Nitrates for chlorine

WO#: 92622406

PM: NMG

09/09/22

CLIENT: GA-GA Power

Item#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	8P4S-125 mL Plastic H2504 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	8P48-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG35-250 mL Amber H2504 (pH < 2)	DG94-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unpreserved (N/A)	DG9V-40 ml, VOA H3PO4 (N/A)	DG95-40 mL VOA H25O4 (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		. BP3R-250 mL Plastic (NH2)25O4 (9.3-9.7)	AG0U-100 mL Amber Unpreserved (N/A) (CI-)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1	1	1	1		1	1	1	1			1		1	1	1									X	1			
2	1	1	1		1	1	N	1			1		1	1	1									X	1			
3	1	1	1		1	1	1	1			1		1	1	1				,					7	1			
4	1	1	П		1	1.	1	1			1		1	1	1			ħ	17		M			7	X,			
5	1		T		1	1	1	/			1		1	1	1									1	1			
6	1	1	1		1	1	1	/			1		1	1	/									A	X			
7	/	1			1	1	1	1			/		1	1	/									2º	X			
8	/	1	1		1	1	1	1			1		1	1	/				ļ.,					Lo	1			
9	1	1	1		1	14	1	1			1		1	1	/									7.	1			
10	1	1	Ė		1	1	1	/			/		1	1	1									1	/			
11	1	1			1	1	1	1			1		1	1	1		-	-					-	1	1			
12	1		T		1	1	1	/			1		1	1	1									1	1			

		pH Ac	ljustment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #
				7.		

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Address Section A Required Client Information: ð 9 ITEM # ü uite 100, Kennesaw, GA 30144 N daniel.howard2@woodplc.com MIT-PZ-16-WG-20220825 (770)421-3382 Wood E&I (GA Power) 1075 Big Shanty Road Sample Ids must be unique MIT-PZ-15-WG-20220825 MTT-PZ-19-14G-20220825 One Character per box. (A-Z, 0-9/, -) SAMPLE ID ADDITIONAL COMMENTS Standerd Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info pacelabs.com/hub/s/pas-standard-terms.pdf MATRIX
Drinking Water
Waste Water
Waste Water
Product
Sow/Solid
Oil
Wipe
Au
Tissue Copy To Rhands G hha Project #: 4122160170, 2201 Required Project Information: roject Name: I O Y A O K D WAY DO RELINCUISHED BY / AFFILIATION ٤ 3 3 3 S S 3 3 3 3 3 MATRIX CODE (see valid codes to left) 1 town I Wash SAMPLETYPE (G=GRAB C=COMP) START SAMPLER NAME AND SIGNATURE SIGNATINGE OF SAMPLES PRINT Name of SAMPLER! COLLECTED 3/2/ 42/ 1402 \$125tz 1212 14 m 1028 DATE The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. CHAIN-OF-CUSTODY / Analyti¢al Request Document END 8/25/82 DATE SAMPLE TEMP AT COLLECTION Mary Attention: Company Name X 0181 OF CONTAINERS Address Pace Project Manager Pace Quote TIME Unpreserved H2SO4 X HNO3 Preservatives HCI 10834 NaOH ACCEPTED BY / AFFILLATION Ne2S2O3 THEOLO CO Methanol lecoppacelabs con YIN Analyses Test CI, F, SO4 DATE Signed: 8/25/2 TOS Guil × × × × App III/IV Metals RAO 9315/9320 DATE TIME Page: TEMP in C Regulatory Agency State / Location Residual Chlorine (Y/N) Received on SAMPLE CONDITI 04=7 DH= 6.67 9件= 7.14 99mlszb (Y/N) Custody Sealed Coole ENG (Y/N) Samples (Y/N)

	~
	~
1	Pace
1-	1 acc
-1	-

Effective Date: 05/12/2022

Asheville Eden Greenwood	Huntersvil	le 📗	Raleigh		Mechanicsville Atlanta Kornorceille
Sample Condition Client Name:	200		ı	Proj	WO#: 92622406
Courier: Ped Ex UPS Commercial Pace	USPS Other		Cla	ent	PM: NMG Due Date: 09/09/22 CLIENT: GA-GA Power
Custody Seal Present? Yes No Sea 8/2-1 4.3 Packing Material: Bubble Wrap B Thermometer: B/2-1 4.3 Cooler Temp: Corrected (°C): 4.85./ USDA Regulated Soll (N/A, water sample) Did samples originate in a quarantine zone within the	c) 0.0 5,4		Wet □B	ther	Biological Tissue Frozen? Biological Tissue Frozen? Yes No N/A None Temp should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling process has begun
(check maps)? Yes No	e Officed States:	CA, NT,	or sc		Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)? ☐Yes ☐No
Chain of Custody Present?	Dies	П»-	□N/a	1.	Comments/Discrepancy:
Samples Arrived within Hold Time?	Ves	□No	□N/A	2.	Y
Short Hold Time Analysis (<72 hr.)?	☐Yes		□N/A	17.5	
Rush Turn Around Time Requested?	☐Yes	ANO ANO	□N/A	3.	
			□n/a		77
Sufficient Volume?	₽Yes	□No	□N/A	5.	
Correct Containers Used? -Pace Containers Used?	Yes /	□Na □No	□N/A	6.	
Containers Intact?	Tes	□No	□N/A	7.	16st
Dissolved analysis: Samples Field Filtered?	□Yes	□No	DA/A	8.	
Sample Labels Match COC?	Tyes	□No	□N/A	9.	
-Includes Date/Time/ID/Analysis Matrix:	W				
Headspace in VOA Vials (>5-6mm)?	□Yes	□No	PAA	10	·
Trip Blank Present?	□Yes	ONO	DAYA	11	
Trip Blank Custody Seals Present?	□Yes	□No	, DMA		
OMMENTS/SAMPLE DISCREPANCY					Field Data Required? ☐Yes ☐No
			ı	ot ID	of split containers:
IENT NOTIFICATION/RESOLUTION					pH Strip Lot# 10D4611
Person contacted:			Date/Time	;	
Project Manager SCURF Review:					Date:
Project Manager SRF Review:					Date:

Effective Date: 05/12/2022

WO#: 92622406

PM: NMG

09/09/22

CLIENT: GA-GA Power

*Check mark top half of box if pH and/or dechlorination is verified and Project within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

- **Bottom half of box is to list number of bottles
- ***Check all unpreserved Nitrates for chlorine

Item#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP45-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	8P48-125 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2504 (pH < 2)	DG94-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unpreserved (N/A)	DG9V-40 mL VOA H3POA (N/A)	DG95-40 mL VOA H2504 (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		893R-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AGDU-100 mL Amber Unpreserved (N/A) (CI-)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1	1	1	1		1	1	1	1			1		1	1	1									X				
2	1	1)		1	1		/			/		1	1	1									X	1			
3	1	1	1		1	1		1			/		1	/	/				- 4					X	1			
4	1	1	Ī		1	1	1	/			1		/	1	/									5	1			
5	/	1	1		1	1	1	1			/		1	/	1									4	(
6	/	i	1		1	1	1	/			/		1	/	/									A	X			
7	/	i	i		1	1		1			/		1	/	1									20	(
8	1	1	1		/	1	1	1			/		1	/	1									20	1			
9	1	1	1		1	1	1	1			/		1	/	1									2	1			
10	1	-			1	1	1	1			/		1	1	1									7	1			
11	/				1	1	1	/			1		1	/	/			-							/			
12	1				1	1	1	/			1		1	/	/									1	1			

		pH Ac	ljustment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #
		********		70	****	
		,-				-

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

				12	1	10	8	8	7	6	Ø,		w	2	1000	ITEM#			Varhas	Phone:	Email	Suite 100	Compa	Section A
			ADDITIONAL COMMENTS	3	1	201	24	1247	228	42.35	14.25T	22-16	EDE-MIT-P7-17-WG-20120815	100 MTT- PZ-18-WG-20220815	12 80 THE STATE SALVE TOWN TO SALVE TO	SAMPLE ID One Character per box. (A-Z, 0-9 /, -) Sample ids must be unique			Tanda	21-3382	daniel howard2@woodpic.com	Suite 100 Kennessaw GA 30144		Face: Submitting a sa n A red Client Information:
		Dea	は無いる。		4	V	V						-	_			00 gg		Project # 612 2 160170. 7207	Project Name	Purchase Order #	Copy To	Report To: Daniel Howard	CHAIN-OF-CUSTODY / Analyti The Chain-of-Custody is a LEGAL DOCUMENT Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions Section B Section C
			SINDM	¥.	3	4	4	\$	\$	M	WT	WT	M	*	M	MATRIX CODE (and valid or SAMPLE TYPE (G=GRAB		_	22	Mil	1	3	Daniel H	constit
18			RELINQUISHED BY! AFFILIATION													START DATE T			16017	Ichell 2022 2r	Delle	Stoods Gains	doward	utes acknow
PRINT		100	NOUTAN											BA	-	TIME	COLLECTED		0.2	AS D	-		I	vedgm
Name Name		(Wash	12										thish	125/2	845	DATE	CTED	1	202	1	1	5	1	The C
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER:		glissha	DATE										stista 1210	15/201035	1	TIME					-			CHAIN-OF-CUSTODY / Analyti The Chain-of-Custody is a LEGAL DOCUMENT ent and acceptance of the Pace Terms and Conditions Section C
PLER:		2	ᆏ										9	5	•	SAMPLE TEMP AT COLLECT	ION	+		J.			1	of-Cus
۾ اي		1 2											bi	C	5	# OF CONTAINERS		1	Pa	Pa	À	S	P T	Stody
		18/18	3ML										×	×	X	Unpreserved		1	Pace Profile #:	Pace Project Manager	Add/ess.	Company Name:	Invoice Information:	dy is a L the Pace Section C
																H2SO4			Side 8	ote	1	y Nar	a on	° 5 E O
5		16	•		-				-	-			X	X	×	HNO3	Pre			dana		9	Tatio	SWE SWINS
		his			-	-	-		-	-	-					HCI	Preservatives		10834	8			ă	and Do
			8	-		-	-			\dashv	\dashv			-		NaOH Na2S2O3	ative			,				CON CON
100		10	ACCEPTE		-			1	\neg							Methanol	- W		10000			1		N Signal
運		1.1	TOT											_	-	Other		H	-	_		+	+	
		1	BYTAFFLATION													#Analyses Test	YIN	Н	moughacaidos com	1				I rele
		1	Ę					_	-	-	_	_	_	-	×	CI, F, SO4		11	900			1		eq
	İ	18			-	_		_	_	_	_	-			×	TDS		2	300		П			L fiel
では強な		1	925	_	_	_	-	_	-	_	_	_	_	_	×	App III/IV Metals RAD 9315/9320	_	18	1			1	1	St I
						-	1		\dashv	1	-					RAU 9315/9320	-	100						Cela I
		13	靨		7						1						\vdash	uested Analysis Filtered (Y/N)				1		cal Request Document All relevant fields must be completed accurately. found at https://info.pacelabs.com/hubfs/pas-standard-terms.pdf
		4	DATE					1.1											1				1	me omp
- 19	4	12	游		_													1	T	П	1		•	nt letec
を変え		1	肾.		_	-			\dashv	-	4	_						3	15	11	500,5			acc
1		DZ.	TIME		-	-	-	-	-	-	-		-	-				7	19	П	8			
-	-	1-2	15-87 million	-	-+	-	\dashv	-	+	-	-	-	-	4	_				Ü	П	¥,		P	and tely
in C			200							-1		_	_		-	Day 4 at Chi		Ц	St	П	2		Page :	егт
red on		+	S	-	T	-			1	T	-1	V		. J	-	Residual Chlorina (Y/N)	100		State / Location		Regulatory Agency		ľ	<u>a</u>
	- [SAMPLE CONDIT			1						+	2	2 1			711.5	,	OCL		3		_	
Зу		+	8			1						1	11	L	F				3		3			1
			9	_		_		_	_	_	_		15					S	图	П			Q	
-			ONUS				1					6	5	ント	i		198	質点	25.00		14.0			
Nes			W4	- 1	- 1						F	(FT 18	7	1		16 M	2	18	H	2			1

Required Client Information: 22 22 Section A 23 19 Requested Due Date: 3suite 100, Kennesew, GA 30144 4 20 18 17 6 15 13 ITEM # danuel.howard2@woodplc.com 77.1 --- MIT-PZ-7D-W 6-2012 0825 --- MIT-72-23A-NG-2020825 AT1-PZ-P+NG-2020825 Wood E&I (GA Power) 1075 Big Shanty Road Sample Ids must be unique One Character per box.
(A-Z, 0-9/, -) SAMPLE ID ADDITIONAL COMMENTS Standar Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info.paceabs.com/hubfs/pas-standard-lerms.pdf MATRIX Drinking Water Water Water Water Water Water Product Soul/Solid Dil Wilpe Air Other Required Project Information:
Report To: Daniel Howard
Copy To: A Constant Project Name Milchell 2022 2nd SA Project # 6 13216 0 176, 2202 Purchase Order # David Howalf Wood & 1810 RELINQUISHED BY I AFFILIATION 3 ş ž ž ş 3 3 MATRIX CODE (see valid codes to left) SAMPLE TYPE (G=GRAB C=COMP) START SAMPLER NAME AND SIGNATURE COLLECTED SIGNATIONE OF SAMPLES PRINT Name of SAMPLER: Shid 22 17 10 SUSTE 160 Shaled 1600 DATE The Chain-of-Custody is a LEGAL DOCUMENT All relevant fields must be completed accurately CHAIN-OF-CUSTODY / Analytical Request Document GNB DATE SAMPLE TEMP AT COLLECTION Company Name # OF CONTAINERS Pace Project Manager Pace Quote: Attention. dan TIME Unpreserved H2SO4 EL LONGT HN03 Preservatives Mark. HCI NaOH ACCEPTED BY / AFFILIATION Na2\$203 nicole Methanol dieo@pacsiabs.com Other Analyses Test Y/N Ever Couillea CI. F. SQ4 DATE Signed: × TDS App III/IV Metals RAD 9315/9320 8/25/22 DATE THE Page: TEMP in C Regulatory Agency State / Location Residual Chlorine (Y/N) Received on SAMPLE CONDITIONS 86.9=HO N. 9-40 M=6.93 (Y/N) Custody Sealed Coote (YIN) Samples Intact (Y/N)

	0
1	Pace
1	teneten trace

Effective Date: 05/12/2022

Asheville Eden Greenwood	Huntersville	Raleigh	Mechanicsville Atlanta Kernersville
Sample Condition Upon Receipt Client Name:	Power	Pro	PM: NMG Due Date: 09/09/09
Courier: Gred Ex JUPS Commercial Pace	USPS Other:	Client	CLIENT: GA-GA Power
812	als Intact? (19394 5	□No	Date/Initials Person Examining Contents:
Thermometer:	Bubble Bags None	Othe	Biological Tissue Frozen? ☐Yes ☐No ☐N/A
Cooler Temp: Correction Face Cooler Temp Corrected (°C): USDA Regulated Soil (\sum N/A, water sample)	tor: 0.0	Wet □Blue	□None Temp should be above freezing to 6°C □Samples out of temp criteria. Samples on ice, cooling process has begun
Oid samples originate in a quarantine zone within the (check maps)? Yes No	ne United States: CA, NY,	or SC	Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)? ☐ Yes ☐ No
			Comments/Discrepancy:
Chain of Custody Present?	→ Tes □No		1.
Samples Arrived within Hold Time?	☐Yes ☐No	□N/A	2,
Short Hold Time Analysis (<72 hr.)?	□Yes □M6	□N/A	3.
Rush Turn Around Time Requested?	□Yes □No	□N/A	4,
Sufficient Volume?	Ø7e5 □No	□N/A	5.
Correct Containers Used? -Pace Containers Used?	□Yes □No □Yes □No		5.
Containers Intact?	□ les □ No		7.
Dissolved analysis: Samples Field Filtered?	□Yes □No	/	8.
Sample Labels Match COC?	□Yes □No		9.
-Includes Date/Time/ID/Analysis Matrix:	W		
Headspace in VOA Vials (>5-6mm)?	Dvar Dua	1.6	10
Trip Blank Present?	☐Yes ☐No☐Yes ☐No	1.6	10. 11.
Trip Blank Custody Seals Present?		/	770
OMMENTS/SAMPLE DISCREPANCY	∐Yes □Na	EMA	Field Data Required? ☐Yes ☐No
		Lot	ID of split containers:
LIENT NOTIFICATION/RESOLUTION			pH Strip Lot# 10D4611
Person contacted:		Date/Time:	
Project Manager SCURF Review:			Date:
Project Manager SRF Review:			Date:

Effective Date: 05/12/2022

Check mark top half of box if pH and/or dechlorination is verified and

within the acceptance range for preservation samples. cceptions; VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LEHg.

*Bottom half of box is to list number of bottles

**Check all unpreserved Nitrates for chlorine

WO#: 92622406

Project PM: NM

Due Date: 09/09/22

CLIENT: GA-GA Power

1	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP45-125 mL Plastic H2504 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP427125 mL Plastic ZN Acetate & NaOH (>9)	BP48-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass Jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl [pH < 2]	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG15-1 liter Amber H2SO4 (pH < 2)	AG35-250 mL Amber H2SO4 (pH < 2)	DG94-250 mL Amber NH4CI (N/A)(CI-)	DG9H-40 mt vOA HCL (N/A)	VG9T-40 mL VOA Na252O3 (N/A)	VG9U-10 mLV0A Unpreserved (N/A)	DG9V-40 mL VOA H3PO4 (N/A)	DG95-40 mL VOA H2504 (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mt. Sterile Plastic (N/A - (3t))	SP2T-250 mL Sterile Plastic (N/A - 1913)	BRIN	8P38-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AG0U-100 inL Amber Unpreserved (N/A) (CL)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1	1	1	1		1	1	1	1			1		1	1	1	İ								1				
2	1	1	1		1	1	1	1			1		1	1	1					*			1	2				
3	1				1	1	1	1			1		18,	1	N		İ		1		- Company			1	1			
4	1				1	1	1	1			1		1	1	1									N				
5	1				1	1	1	1			1		N	1	K		Ī					Î	1	13	K			
6	1				1	1	X	1			1		1	1	I					İ	İ		İ					
7	1				1	1	1	1			1		1	1	1			İ	İ	İ		1	1	1	1			
8	1				1	1	1	1	1	1	1		1	1	1	1	1.		1	1		1	1	1				-
9	1				1	1	1	1			1	1	1	1	1		*		1.				1	1	1			
10	1				1	1	1	1			1	1	1	1	1			1	1	1				1	1		1	
11	1				1	1	1	1	1		1	1	1	1	1				-	1		1		1	1	1	1.	1
12	1				1	1	1	1			1			1	1									1	1			

Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation	Amount of Preservative	Lot #
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		adjusted	added	
	****				***	
					14:141	
						<u> </u>

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Cert lication Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers

Requested Due Date Standard Required Client Information: = 6 ddress 12 uite 100, Kennesaw, GA 30144 ompany. 9 ITEM # daniel howard2@woodplc.com 4 --- MIT-APAN-EB-01-WQ-20220826 Wood E&I (GA Power) 1075 Big Shanly Road MIT-PZ-57-HESNG-10220826 Sample lds must be unique One Character per box. (A-Z, 0-9/, -) SAMPLE ID ADDITIONAL COMMENTS Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info.pacelabs.com/hub/s/pas-standard-lerms.pdf MATRIX
Drinking Water
Waste Water
Waste Water
Waste Wife
Waste Wife
Au
Other
Tisser Project # 6/22/60/70 . 2202 Purchase Order Сору То Report To: Daniel Howard Required Project Information: 338858 AMA BO Janus Hrm. 4/Wood 8/26/22 RELINGUISHED BY I AFFILIATION S \$ Mahelle Barker 3 3 3 \$ \$ 3 3 3 M MATRIX CODE (see valid codes to left) SAMPLE TYPE (G=GRAB C=COMP) START SAMPLER NAME AND SIGNATURE SIGNATURE of SAMPLER. Hand COLLECTED PRINT Name of SAMPLER: 8/26/22 1120 Slucha OF IS DATE CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. END DATE SAMPLE TEMP AT COLLECTION Attention:
Company Name: Ġκ # OF CONTAINERS Address 1600 Pace Project Manager Pace Quote TIME Unpreserved H2504 ниоз Preservatives HCI 10834 NaOH Howar ACCEPTED BY I AFFILIATION Na2S2O3 nicole d'oleo@pacelabs.com Melhanol Other Analyses Test Y/N CL F. SO4 DATE Signed: TOS × × App III/IV Metals RAD 9315/9320 DATE TIME Page : TEMP in C Regulatory Agency Residual Chlorine (Y/N) Received on SAMPLE CONDITIONS の出に (Y/N) Sealed Q 20 (Y/N) Samples (Y/N)

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

				ADDITIONAL COMMENTS					Đ-ĐT	¥-15-	A de	# PZ-33	# PZ-31	TD-O	PZ-1D	(A.Z. 0.91,-) (A.Z. nust be unique Pason Sample lds must be unique Pason	Water Water World Wuld Plestick Sourfoold On	Majeri		Due Date 3 - And 6 - A	de com	1075 Big Sharity Road (ennessw. GA 30144		
	1		Hand	2												15 OF SE	5 E ± M € 8	CODE		Project # 6 22 60170.	Purchase Order #	Copy to	Report To	Required Project information:
				RELINGUISHED BY LAFFILIATION			TW	IV	IW	N.	T.	THE C	MG	事の	10	MATRIX CODE	(see valid cod	es to (eft)		93		Mhandalla.	Daniel Howard	Jec.
			1	HSIN					-	-		6	.0	6)	(1)	SAMPLE TYPE	(G=GRAB C=	COMP)	1	2		3	HO!	100
	1		Howar	ED BY												DATE	m			0 10	1	10	vard	iatio
7	S.		5	TAFF		-		-	+	-	\vdash	\vdash	-				START			J		96		1
PR	MPL		8	LIAT												TIME	-	COL		2160170.	6	7		l
PRINT Name of SAMPLER:	SAMPLER NAME AND SIGNATURE		Wood	NO							1	-		10	100			COLLECTED			1 3	CHIAN TOP		
PRINT Name of SAMPLER:	AME		2	3								5		8/24/22	8/24/22	DATE	m	ED		2202	1	2		l
of S	AND		100	4						1		G	7	1	1135		END			2			-	
AMPL	SIGN		8/24/02	DATE								1545	400	1	G	TIME							-	
ER	UTA		2										100			SAMPLE TEMP	AT COLLECTIO	NO.						
ジ	RE		1800	1								6	5		5	# OF CONTAINE	RS	1		Pace Profile # 108	Pace Quote	Company Name Address	Attention	medice midimation.
			00	HIME						1_		×	×	×	×	Unpreserved				Profi	Quoi	sarry I	tion	00
	1	-	-	_						-	-		10	56	~	H2S04		-		le #	6	Valle		1
-						-		-	-	-	-	×	×	×.	>.	HNO3	-	Preservatives		10		1		
F								-	-	\vdash	+	-				NaOH		EVIE		10834		İ		1
F				AC					1	-						Na2S2O3		live		DIE		1		
				CEPT		7										Methanol		10.		ole d		1		
	8			ACCEPTED BY I AFFILIATION												Other				mede d'aleo@paceiat				
-				LAF												Analyses	Test	Y/N		Spac	11			
1	3			TALL				×	×	×	×	×	×	×	×	CI, F, SO4								
	13			NO				×	×	×	×	×	×	×	×	TDS			Re	CDM				
1							×	×	×	×	×	×	×	×	×	App III/IV Meta RAD 9315/932			lues		abs.com.			
1	50			15				2	-		-	-				100 0010/002			A Da	, con,				
-				k							1								Requested Analysis Filtered (Y/N)					
0				DATE															SFI			1		
7	1			m,															tered		П	T		9
	+			9															MIL	ntationetto		1		
	-			TIME																- Interest		1	,	_
											_								11					Fa
in C								_	_			_				-	W1416		Ц	Sta	Kegi		-	Page:
	-	-		5	1		-	-			1 -	-			2	Residuel Chion	ne (1//N)			GA GA	lator			
red (SAMPLE CONDITIONS								Ho	H	I	7			-	16	State / Location GA	Regulatory Agency		1	11
dy	-	-		E CO						-		11	11	エニ	il			ole.	16	non	ency			
				NDIT							1	71	-	749	=7.49			1 8	13			1		O
_	_	-		SNO						1		0	H0.	0	19			. 1-2	3					
es				2						1								100	3			1	1	1

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT All relevant fields must be completed accurately.

eceive e Y/N) ustody esied ooler Y/N) ample tect	EMP II	3	10.7	DATE Signed:	170	11	1 6	K	30	100	el Howard	100	ER Clarie	1	200	E OFFICE OM	SIGNATURE OF SAMPLER: V	SIG								
						1	1)				1		層	GNATI	SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER:	R NAM	SAMPLI								
		The second secon		-								+														
													0181		424	raterion	Mook	1 1	MDW-EAS	MON	Daniel					
SAMPLE CONDITIONS		3001	DATE	+		LIATION		100	ACCEPTED BY FAFE	1		+	y limit		100	DAIL DAIL	ON	1 2	, red	- Inside	T ALLEN	4)		ADDITIONAL COMMENTS	200110	
	E				×	×		L	-	-		1	L		-					-	TW					Paris de
					×	×	×			-		+								-	IM					77.14
The second of th		-			×	×	×			-		+	+		+					+	TW			A separate and a sepa		Fig.
				F	×	×	×		1	-			-		1	-				+	TW					ME-FB-
					×	×	×			-		1			-					-	TW					7
					×	×	×			1		1	-							-	TWT					FLEF
					×	×	×					1	-		-					-	TW.					A. C.
					×	×	×			-			-		-					-	N.					La Fall
				H	×	×	×			-		-	-							-	I.M.					1
0H=7,15					×	×	×			-		×	×	5	CO	804.1 27/50%	1/51/2			0	#W			2-15	P	6
H=7.							×					×	>		24	S1242 1212	\$1.0k			6	\$ E			2-16	0	19-94
DH=6.67					×	×	×					*	×	5	60	24 1028	\$125/22			.0	₹ Q			7-19	0	H-07
	Residual Chlorine (Y/N)				App III/IV Metals RAD 9315/9320	TDS	Analyses Test	Other	Methanol	NaOH Na2S2O3	HCI	HNO3	Unpreserved H2SO4	# OF CONTAINERS	SAMPLE TEMP AT COLLECT	END	DAIE	START	ST			18 0 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Water Waster Waster Product SoutSold Oil Whise An Oiles	SAMPLE ID One Character per box. (A-Z, 0-9 i , -) Sample ids must be unique	SAMPLE ID the Character per box (PAZ, D-91, -) imple lds insist be unit	Sam
							Y/N		0	alive	Preservatives	P			DAV		СОГГЕСТЕР	COL		COMP)			MALAM			
GA	-	INIT	Requested Applysis Fillered (Y/N)	d Analysi	equesto	2		1		-	10834	#	Tace Prome #	ace.		7077	-	1010	100	7		1 tolate u		DARTO	JTan	1000
State / Location	State /				9,	lans som,		(Doele	нсов-фовофрас	11 1	aget	I Mai	Pace Project Manager	Райы		2	1 1	Mitchell 2022 2nd SA	# 2022	Milch	2	Project Nague		Fax.	(770)421-3382	(770)42 Due Date
Regulatory Agency	Regulati		+										Pace Quote	Pace Qu		7	N-K	0	1	7	Purchase Order #	Purctia		pic.com	aniel howard2@woodpic.com	nel howa
												dille	Company Name	Com			DOLL	0	73	nov	1	Сору То		Road	1075 Big Sharity Road	1075
or or	rage:	Г	_		1								non.	Attention					grad	el How	To Dan	Report to		ower)	Wood ESI (GA Power)	Wood
											on:	Januari Januari	Invotce information:	lovoi					ations	inform	Required Project Information:	Requir			tunition:	Client Information:

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

1	in		1	1	000	T		T		E		k .	1	7.	AMPLE	me of S.	PRINT Name of SAMPLER:	P							
on											-		,"	TUR	SIGNA	ME AND	SAMPLER NAME AND SIGNATURE	SAMP				-			
																-									
												0	1800	1 1	8/24/22	(8)	Moul	promote !	75		diam's	0			
SAMPLE CONDITIONS		TIME	DATE		ILIATION		HYH	ACCEPTED BY I AFF	ACCE			4.Rt	TIME		DATE		NOITA	RELINQUISHED BY / AFFILIATION	ED BY	HSIND	RELIN			ADDITIONAL COMMENTS	ADDITIO
				×	×	×	-				-			-		-	-				WT				A
		-		×	×	×			1	-	+			-			-				TW				P2-14
				×	×	×	1	1		+	-		1	+	-	-	-			L	TW				P-2-91
				×	×	×				+	+		1	+		+	-			1	TW				R-A-10
				×	×	×				-	-			-			-				TW				PE-57
				×	×	×	-	1		+	-			-						1	TW				F-39
				×	×	×		1	4	+	-		1	-	-	-					TW				P. F. S. S. S. S. S. S. S. S. S. S. S. S. S.
				×	×	×	1			1	-			-	1	-					VJT				P.2-2-97
017-Hd				×	×	×	1			-	×		×	Gi	1545		2			\$5	35			Z-25	D.
PH=7.34				×	×	×		-			×		×	Gr.	1416	12	0			0	TE C		and Control of Control	2-32	37
0H=8.01				×	×	×					×.		×	en	1132	11.				S. S.	£2.			2-20	P2
				×	×	×					×		×	U	00	3/24/2 1000	3/2			S	£5			B-01	T
	Residual Chlorine (Y/N)			RAD 9315/9320	TDS App III/IV Metals	CI, F, SO4	Other Analyses Test	Methanol	Ne2S2O3	NaOh	HCI	H2SO4	Unpreserved	# OF CONTAINERS	SAMPLE TEMP AT COLLECTI	<u>Z</u>	DAIE E	START	DATE IS	SAMPLE TYPE (G=GRAB C	MATRIX CODE (see valid co	25 \$ \$ 5 \$ 4 \$ 5 \$ 4 \$ 5	Waste Water Waste Water Product SoutSolid Oil Willie Value Au United	SAMPLE ID One Character per box. (A-Z, 0-9 f, -) Sample ids must be unique	SAMPLE ID One Character per box. (A-Z, 0-9 f, -) Sample lds must be unic
	Ħ						Y/N	-	ves	Preservatives	eser ^c			011	000	0	соптество	00		=COMP)		cop	MATRIX	*	
S	-	(N/A)	sis Filtered (Y/N	Requested Analysis	Requ		-							1		1	50			0	1			1	1
State / Location	State				labs.com,	acelab	dello	Incole d'oleo@pace	tucon	- 11	100	Pace Project Manager Pace Profile # 10834	Se Pa	9 10		20	122160170.1202	2 160170	16/	Miles	0 10	Project Warne		Tox N	Due Date 5+
												ole.	Pace Quote	Pe							Order#	Purchasi		dplc con	agiel howard2@woodplc.com
Regulatory Agency	Regulat		1										Address	Ad		40	5 A	2	1	14	Wichelly			1.	Kennesaw, GA 30144
		1									9	Attention:	Attention:	3 3)	brak	Daniel Howard	C Dan	Report to		Power)	Wood F&I (GA Power)
1 Of 1	Page:										ation	Invoice Information:	oice.	In				5	nation	inform	Required Project Information:	Require			Sherit Information:

CHAIN-OF-CUSTODY / Analytical Request Document

Part Part	ustody aled poler (N) smples	WP in (102	r GE	Trer	1	-	1	4	-	5	÷	9	PRINT Name of SAMPLER:	ame of S	PRINT	_							
Part Part	on		W	8				14.		8	1		JAN.	SIGNAT	AME ANI	MPLER N	SA							
Part Part																								
Delication Del							1					10		25/22		Wood	10	ma	aniel !	7				
Page 1 Or	SAMPLE CONDITIONS	IME		D.	NCIT	FFILIA	BYIA	EPTED	ACC			HME		DATE		HIATION	BYIAFF	QUISHE	RELIN			AL COMMENTS	ADDITION	
Page 1 Page 1																								
Page Page					×														W					
Action A				×	×	×												-	WI	F				
SAMPLE ID				×	1	×	_		-			-		-	+	+		-	WI					#
Page Page				×	-	×		-	-			-					1	-	WI					4
Page 1 Of	The state of the s			×		×						-							WI					7
Page Page				×		×	_												WI					Ŧ
Information: Required Project Information: Required Proj	7.0			×		×	1				×	X		Ois	3/24/	3		10	¥8.			177	pZ	4
Respirit Project Information: Invoice Information: Page: // Of Invoice Information: Invoice Information: Invoice Information: Invoice Information: Invoice Information: Invoice Information: Attention: Company Name: Address: Respirit Project Information: Address: Respirit Project Information: Invoice Information: Address: Respirit Project Information: Invoice Information: Address: Respirit Project Information: Invoice Information: Address: Respirit Project Information: Invoice Information: Address: Respirit Project Information: Invoice Information: Address: Respirit Project Information: Invoice Information: Address: Respirit Project Information: Invoice Information: Address: Respirit Project Information: Invoice Information: Address: Respirit Project Information: Invoice Information: Address: Respirit Project Information: Invoice Information: Address: Respirit Project Information: Address: Respirit Project Information: Invoice Information: Address: Respirit Project Information: Address: Respirit Project Information: Invoice Information: Address: Respirit Project Information: Address: Respirit Project Information: Invoice Information: Address: Respirit Project Information: Address: Respirit Project Information: Address: Respirit Project Information: Invoice Information: Address: Respirit Project Information: Address: Respirit Project Information: Invoice Information: Address: Respirit Project Information: Address: Respirit Project Information: Address: Respirit Project Information: Address: Respirit Project Information: Address: Respirit Project Information: Address: Respirit Project Information: Address: Respirit Project Information: Address: Respirit Project Information: Address: Respirit Project Information: Address: Respirit Project Information: Address: Respirit Project Information: Address: Respirit Project Information: Address: Respirit Project Information: Address: Respirit Project Information: Address: Respirit Project Information: Address: Respirit Project Information: Address: Respirit Project Informati	6.7			×		*					×	×		235	\$122 JU	4/2		10	31			1	20	218
Required Project Information: Invoce Information: Required Project Information: Required Project Information: Required Project Information: Reputation Project Information Project Information Project Information Project Information Project Information Project Information Project Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Informa	6.7			×		×					×	×	·	1	5/22	42		, ©	33			-02	FD	233
Required Project Information: Required Project Information: Required Project Information: Required Project Information: Report To Daniel Howard Copy To R Alle Alle Company Name Copy To R Alle Alle Company Name Address: Purchase Order # Project Name Internal 2022 2nd SA Project Name Int	S100 C 1100	Pacidial Chirona IVIN		RAD 9315/9320										HMI		M n	> ·			SL 10 10 10 10 10 10 10 10 10 10 10 10 10	Washe Washe Washe Washe Product Solliso On Washe Air Otton Tissue	EID per bex. 1,-) st be unique	SAMPI to Characte (A-Z, 0-9 nple tds mu	S 0 00
Required Project Information: Report To Daniel Howard Copy To Residence Copy To Residence Copy To Residence Copy To Residence Copy To Residence Copy To Residence Copy To Residence Copy To Residence Copy To Residence Copy To Residence Copy To Residence Copy To Residence Copy To Residence Copy To Residence Copy To Residence Copy To Residence Copy To Residence Copy To Residence Residence Residence Residence Residence Copy To Residence Residence Residence Copy To Residence Residence Residence Copy To Residence Residence Residence Copy To Residence Residence Residence Copy To Residence Residence Residence Residence Copy To Residence Residence Residence Residence Copy To Residence Residence Residence Residence Residence Copy To Residence Residence							Y/N		tives	serva	Pre			DN .	EO	COLLECT		COMP)		EC.	MAIR			
Required Project Information: Report To Dariel Howard Copy To Report To Dariel Howard Copy To Report To Dariel Howard Copy To Report To Company Name Address Purchase Order # Project Name Interiol 2022 2nd SA Project Name Interiol 2022 2nd SA Project Name Interiol 2022 2nd SA Project Name Interiol 2022 2nd SA Project Name Interiol 2022 2nd SA Project Name Interiol 2022 2nd SA Project Name Interiol 2022 2nd SA Project Name Interiol 2022 2nd SA Project Name Interiol 2022 2nd SA Project Name Interiol 2022 2nd SA Project Name Interiol 2022 2nd SA Project Name Interiol 2022 2nd SA Project Name Interiol 2022 2nd SA Project Name Interiol 2022 2nd SA Project Name Interior Int	- 1117 145 CANA		Filtered (Y/N	ested Analysis	Requ		+						1	-				1	-					1
Required Project Information: Report To Darniel Howard Copy to Required Project Market Address Purchase Order it: Section C Page: // Of i	e/Location GA	Sta		100	s.com	acelab	යගුහ	ile d'oli		10834	# Man	Projec	Pace		02	0, 22	017	Milche (2) 6	Wame	Project		Salard	421-3382 57-	(779) 6 Date
Required Police Information: Invoice Information: I	man J Cylency	, and	1			-						Quote	Pac						se Order #	Purcha		ila com	ard2@wood	I howe
Required Project Information: Section C Report Report to Daniel Howard Attention: Page: 2 Of 1	The second secon		T								SHIP	BBS.	Addi	1	70			C. C.	3	folion		NO.	v. GA 30144	mesaw
Required Project Information: Invoice Information: Page: 1/2 Of												tion	Alle			-		let How		Report		ower)	HIS SPEND	Moor
	of i	Page :								:00	itemati	ce Inte	Invo		-		ation:	Inform	ed Project	Requir			armation:	ent lute

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

copy ed er ples	AP in C		ver Caillen	1	Udi	7	0		=	-	1	-	MPLER	me of SA	SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER:	SA						
											1810		8/25/22		Wood	10	Howay	James !				
SAMPLE CONDITIONS		TIME	DATE		ILIATION		ACCEPTED BY I AFF	ACCEP			TIME		DATE		ILIATION	RELINGUISHED BY / AFFILIATION	AGUISHE	RELIN			ADDITIONAL COMMENTS	ADI
				×	×	×												TW				757
				×	×	×												IW				2-44
				×	×	×			-									TW				1
				×	×	×								-	-		1	TW				67:713-
A CONTRACT OF STREET OF STREET, STREET				×	×	×					-							WT				1557
	_			×	×	×			-	F	+		-				-	I.M.				1
THE REAL PROPERTY AND PERSONS ASSESSED.				×	×	×			1				-	-		-	-	TW				74.15
				×	×	×	1		1								F	IM				-2-20A
,				×	×	×					-		-				-	TW				1
pH=6.93				×	×	×			-	×	×	LK	00	8/24/22 1600	2/2		#S	35			7-14	6
H=6,0					×	×				×	×		C	21H1 12/22/8	8/2		を	15			Z-7D	つじ
0H=6.76				×	×	×				×	×	S	1608		8/25/22		FE G	15			Z-23A	7
	Residual Chlorine (Y/N)			RAD 9315/9320	TDS App III/IV Metals	Analyses Test	Other	Na2S2O3 Methanol	HCI NaOH	HNO3	Unpreserved H2SO4	≠ OF CONTAINERS	SAMPLE TEMP AT COLLECTION	END DATE TIME	£.	START	SAMPLE TYPE (G*GRAB C=	MATRIX CODE (see valid cook	Limbing Waster DW Waste William WW Waste William WW WW WASTER WW WASTER	Problem Wante Wante Wante Wante Product Solitan Sulfan Sulfan Sulfan An Giller France An Gi	SAMPLE ID One Character per hox. (A-Z, 0-9 i, -) Sample lds must be unique	SAN One Cha
						Y/N		ves	Preservatives	Pres			N N	D	COLLECTED		COMP)		WAIRIN EC	WA		
GA	-	(N/V)	vsis Filtered	Requested Analysis Filtered (Y/N)	Rea				0007	1		1		1	1	600	0.00	-				- 1
State / Location	State /	Total state of			nicole d'oleogopacetans com	ppacels	dioteof	Hicole	5	1	Pace Profile # 1063	Pace		20	0.2200	Michell 2022 2nd-SA	Milche	n d	Project Na		34 1 1 ax	(770)421-3362 Due Date 5+
Regulatory Agency	Regulan										Pace Quote	ang _{el}		100	Dar ber			Purchase Order #.	Puidu		ile e.a	oward2@
										Tie .	Company Name	Company			200	0	N. Hand	N. N.	Сору То		1075 Big Sharry Road nesaw, GA 30144	1075 Big Shanty F Kennesaw, GA 30144
	1 110	Г									ion:	Attention				hd	Daniel Howard	To Dar	Report To		Wood ESI (GA Power)	food ESI (
of	Page :	_							6	mation	invoice information:	invoic				mon:	Informe	Required Project Information:	Requi		000	Sherit Information:

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

ody d ar	6						-	3		100	A	1		Signature Comments	2000	1							
y	in C						T	Howard	7	4	2	一篇	MPLER	SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER:	PRINT N	SA							
																				i de la companya de l	111111111111111111111111111111111111111		
											1600		8/26/22		Wood	-	200	2	Daniel Howard				
SAMPLE CONDITIONS	r.	ЭМП	DATE	NO	FILIATION	ACCEPTED BY I AFFI	HOEDE	ACCE			TIME		DATE	-	LIATION	RELINQUISHED BY I AFFILIATION	JISHED	ELINOI	17		STP	ADDITIONAL COMMENTS	
				×	×		-		-		-		-				6	J.W					add the
- International Control of the Contr				×	×		1				-		-		-			WI					+
				×	×		-		+		+		-			-	+	WI	-				-15-5
				×	×		-		+		-		-	-		-	+	WT					-03-5
				× ×	×		-		+		-		-			-	+	TW			ŀ		457
				×	×		-		-		-		-		-	-	-	FW					4-54
				×	×		+				-		+			-	+	FW					1
				×	×	_	-		+		-		-			-	+	T.W					THE STATE OF THE S
				×	×	,			-		-		-				+	E.M.					7
				×	×	1	-				-							TW					0-08-
DH=7.09				×	×					×	×	UK.	1120	11 21/2/8	04		6.	\$S			7	PZ-5	\$
				×	×					Ж.	×	5	Ē.	8/26/22 0915	3/2		عر	TE D				E8-01	407
STATE STATE STATE	Residual Chlorine (Y/N)			App (II/IV Metals RAD 9315/9320	CLF, SO4 TDS	Analyses Test	Methanol Other	Na25203	NaOF	HNOS	Unpreserved H2SO4	# OF CONTAINERS	SAMPLE TEMP AT GOLLECTIO	END END	ME	START	SAMPLE TYPE (G=GRAB C=	MATRIX CODE (see volid coo	25 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	Water Water Water Waste Waste Water Spinsted Oil Water August Australia Charles Australia Charles Char		SAMPLE ID Che Character per box. [A-Z, 0-91, -) Sample lds must be unique	8 9 CO
						Y/N		ves	Preservatives	Pres			N N	D	COLLECTED		COMP		CODE	MAINE			
		(N/Y) be	lysis Filter	Requested Analysis Filtered (Y/N)		П							1				-	-					
GA GA	Stat			Color	energe cont.	Speting	- Color	and in the second	10834	1	Pace Proble #	Pace		02	0. 2202	Project # 6122160170.	211	2	a# 6	Proje		Due Dale Standard	ue Date
							A. de		9	Manao	Page Project Manager	Page 9			VS	20222	Archael	0 0	Project Name	Prop		(770)421-3382 Fax	(770)
Regulatory Agency	Regul						11		П		255	Address		7	Bar Ker	C i	100	Michelle				Kennesaw, GA 30144	Grinesav
										na	Attention Name	Attention				2	Howa	Daniel Howard	Copy To	Rep		1075 Big Shanty Road	1075
1 Of 1	Page:									mation	Invoice Information:	Invo				tion;	forma	ject in	15	Req		Therit Information:	ient inte

October 24, 2022

Michelle Barker WOOD E&I 1075 Big Shanty Rd Suite 100 Kennesaw, GA 30144

RE: Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Dear Michelle Barker:

Enclosed are the analytical results for sample(s) received by the laboratory between August 25, 2022 and August 27, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

Revision 1: Issued on 10/24/22 to include the Radium QC sheets.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Nicole D'Oleo

nicole.d'oleo@pacelabs.com (704)875-9092

Micole D'oler

Project Manager

Enclosures

cc: Joju Abraham, Georgia Power-CCR Noelia Gangi, Georgia Power Ben Hodges, Georgia Power Kristen Jurinko Laura Midkiff, Georgia Power Ms. Lauren Petty, Southern Company

> Rhonda Quinn, WOOD E&I Michael Smilley, Georgia Power

Tina Sullivan, ERM Greg Wrenn, WOOD E&I

CERTIFICATIONS

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14

Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457

New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3
Utah/TNI Certification #: PA014572017-9
USDA Soil Permit #: P330-17-00091
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92622406005	PZ-1D	Water	08/24/22 11:35	08/25/22 09:40
92622406006	FD-01	Water	08/24/22 00:00	08/25/22 09:40
92622406007	PZ-31	Water	08/24/22 14:00	08/25/22 09:40
92622406008	PZ-33	Water	08/24/22 15:45	08/25/22 09:40
92622414006	FB-01	Water	08/24/22 10:00	08/25/22 14:47
92622414007	PZ-2D	Water	08/24/22 11:32	08/25/22 14:47
92622414008	PZ-32	Water	08/24/22 14:10	08/25/22 14:47
92622414009	PZ-25	Water	08/24/22 15:45	08/25/22 14:47
92622414010	PZ-19	Water	08/25/22 10:28	08/26/22 10:00
92622414011	PZ-16	Water	08/25/22 12:12	08/26/22 10:00
92622414012	PZ-15	Water	08/25/22 14:08	08/26/22 10:00
92622414013	FD-02	Water	08/25/22 00:00	08/26/22 10:00
92622414014	PZ-18	Water	08/25/22 10:35	08/26/22 10:00
92622414015	PZ-17	Water	08/25/22 12:10	08/26/22 10:00
92622414016	PZ-23A	Water	08/25/22 16:08	08/26/22 10:00
92622414017	PZ-7D	Water	08/25/22 14:10	08/26/22 10:00
92622414018	PZ-14	Water	08/25/22 16:00	08/26/22 10:00
92622414019	EB-01	Water	08/26/22 09:15	08/27/22 11:15
92622414020	PZ-57	Water	08/26/22 11:20	08/27/22 11:15

SAMPLE ANALYTE COUNT

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92622406005	PZ-1D	EPA 9315	RMS	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92622406006	FD-01	EPA 9315	RMS	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92622406007	PZ-31	EPA 9315	RMS	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92622406008	PZ-33	EPA 9315	RMS	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92622414006	FB-01	EPA 9315	RMS	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92622414007	PZ-2D	EPA 9315	RMS	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92622414008	PZ-32	EPA 9315	RMS	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92622414009	PZ-25	EPA 9315	RMS	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92622414010	PZ-19	EPA 9315	RMS	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92622414011	PZ-16	EPA 9315	RMS	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92622414012	PZ-15	EPA 9315	RMS	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92622414013	FD-02	EPA 9315	RMS	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92622414014	PZ-18	EPA 9315	RMS	1	PASI-PA

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE ANALYTE COUNT

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92622414015	PZ-17	EPA 9315	RMS	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92622414016	PZ-23A	EPA 9315	RMS	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92622414017	PZ-7D	EPA 9315	RMS	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92622414018	PZ-14	EPA 9315	RMS	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92622414019	EB-01	EPA 9315	RMS	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92622414020	PZ-57	EPA 9315	RMS	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

SUMMARY OF DETECTION

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92622406005	PZ-1D					
EPA 9315	Radium-226	0.0152 ± 0.0651 (0.168)	pCi/L	(09/22/22 09:17	
EPA 9320	Radium-228	C:89% T:NA 0.181 ± 0.549 (1.24) C:71% T:82%	pCi/L	(09/13/22 16:10	
Total Radium Calculation	Total Radium	0.196 ± 0.614 (1.41)	pCi/L	(09/22/22 16:48	
2622406006	FD-01					
EPA 9315	Radium-226	0.0157 ± 0.0669 (0.172) C:94% T:NA	pCi/L	(09/22/22 19:40	
EPA 9320	Radium-228	0.131 ± 0.246 (0.540) C:76% T:86%	pCi/L		10/04/22 12:28	
Total Radium Calculation	Total Radium	0.147 ± 0.313 (0.712)	pCi/L		10/05/22 16:55	
2622406007	PZ-31					
EPA 9315	Radium-226	0.0843 ± 0.0839 (0.158) C:93% T:NA	pCi/L	(09/22/22 09:17	
EPA 9320	Radium-228	0.697 ± 0.607 (1.23) C:70% T:88%	pCi/L	(09/13/22 16:10	
Total Radium Calculation	Total Radium	0.781 ± 0.691 (1.39)	pCi/L	(09/22/22 16:48	
2622406008	PZ-33					
EPA 9315	Radium-226	0.0107 ± 0.0845 (0.220) C:84% T:NA	pCi/L	(09/22/22 09:17	
EPA 9320	Radium-228	0.753 ± 0.662 (1.35) C:69% T:89%	pCi/L	(09/13/22 16:10	
Total Radium Calculation	Total Radium	0.764 ± 0.747 (1.57)	pCi/L	(09/22/22 16:48	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92622414006	FB-01					
EPA 9315	Radium-226	-0.0245 ± 0.0516 (0.174)	pCi/L		09/22/22 09:17	
EPA 9320	Radium-228	C:88% T:NÁ 0.463 ± 0.672 (1.45) C:72%	pCi/L		09/13/22 16:10	
Total Radium Calculation	Total Radium	7:75% 0.463 ± 0.724 (1.62)	pCi/L		09/22/22 16:48	
92622414007	PZ-2D	, ,				
EPA 9315	Radium-226	-0.00215 ± 0.0602 (0.171) C:91% T:NA	pCi/L		09/22/22 09:17	
EPA 9320	Radium-228	0.0268 ± 0.601 (1.39) C:74% T:80%	pCi/L		09/13/22 16:10	
Total Radium Calculation	Total Radium	0.0268 ± 0.661 (1.56)	pCi/L		09/22/22 16:48	
92622414008	PZ-32					
EPA 9315	Radium-226	0.0960 ± 0.102 (0.206) C:91% T:NA	pCi/L		09/22/22 09:17	
EPA 9320	Radium-228	0.246 ± 0.478 (1.05) C:75% T:92%	pCi/L		09/13/22 16:10	
Total Radium Calculation	Total Radium	0.342 ± 0.580 (1.26)	pCi/L		09/22/22 16:48	
2622414009	PZ-25					
EPA 9315	Radium-226	0.205 ± 0.130 (0.208) C:85% T:NA	pCi/L		09/22/22 09:17	
EPA 9320	Radium-228	0.559 ± 0.363 (0.683) C:79% T:90%	pCi/L		09/13/22 16:48	
Total Radium Calculation	Total Radium	0.764 ± 0.493 (0.891)	pCi/L		09/22/22 16:48	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit Ar	nalyzed	Qualifiers
2622414010	PZ-19					
EPA 9315	Radium-226	0.148 ± 0.118 (0.207)	pCi/L	09/22	/22 09:17	
EPA 9320	Radium-228	C:77% T:NA 0.789 ± 0.405 (0.693) C:74%	pCi/L	09/13	/22 16:48	
Total Radium Calculation	Total Radium	T:86% 0.937 ± 0.523 (0.900)	pCi/L	09/22	/22 16:48	
2622414011	PZ-16					
EPA 9315	Radium-226	0.202 ± 0.137 (0.237) C:89% T:NA	pCi/L	09/22	/22 08:36	
EPA 9320	Radium-228	0.526 ± 0.405 (0.792) C:76% T:80%	pCi/L	09/13	/22 16:48	
Total Radium Calculation	Total Radium	0.728 ± 0.542 (1.03)	pCi/L	09/22	/22 16:48	
2622414012	PZ-15					
EPA 9315	Radium-226	0.115 ± 0.115 (0.228) C:83% T:NA	pCi/L	09/22	/22 08:38	
EPA 9320	Radium-228	0.934 ± 0.453 (0.784) C:79% T:88%	pCi/L	09/13	/22 16:48	
Total Radium Calculation	Total Radium	1.05 ± 0.568 (1.01)	pCi/L	09/22	/22 16:48	
2622414013	FD-02					
EPA 9315	Radium-226	0.0573 ± 0.0802 (0.171) C:87% T:NA	pCi/L	09/22	/22 08:40	
EPA 9320	Radium-228	0.771 ± 0.533 (1.05) C:71% T:90%	pCi/L	09/13	/22 16:54	
Total Radium Calculation	Total Radium	0.828 ± 0.613 (1.22)	pCi/L	09/22	/22 16:48	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2622414014	PZ-18					
EPA 9315	Radium-226	0.0434 ± 0.0826 (0.190)	pCi/L		09/22/22 08:40	
EPA 9320	Radium-228	C:88% T:NA -0.0394 ± 0.528 (1.21) C:71%	pCi/L		09/13/22 16:54	
otal Radium Calculation	Total Radium	T:91% 0.0434 ± 0.611 (1.40)	pCi/L		09/22/22 16:48	
2622414015	PZ-17					
EPA 9315	Radium-226	0.217 ± 0.134 (0.213) C:83% T:NA	pCi/L		09/22/22 08:41	
EPA 9320	Radium-228	0.763 ± 0.527 (1.02) C:74% T:92%	pCi/L		09/13/22 19:25	
Total Radium Calculation	Total Radium	0.980 ± 0.661 (1.23)	pCi/L		09/22/22 16:48	
2622414016	PZ-23A					
EPA 9315	Radium-226	0.132 ± 0.105 (0.181) C:86% T:NA	pCi/L		09/22/22 08:12	
EPA 9320	Radium-228	0.264 ± 0.368 (0.786) C:77%	pCi/L		09/13/22 18:43	
Total Radium Calculation	Total Radium	T:89% 0.396 ± 0.473 (0.967)	pCi/L		09/22/22 16:48	
2622414017	PZ-7D					
EPA 9315	Radium-226	0.0294 ± 0.0630 (0.148) C:86% T:NA	pCi/L		09/22/22 08:13	
EPA 9320	Radium-228	0.742 ± 0.493 (0.926) C:72% T:86%	pCi/L		09/13/22 18:43	
Total Radium Calculation	Total Radium	0.771 ± 0.556 (1.07)	pCi/L		09/22/22 16:48	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92622414018	PZ-14					
EPA 9315	Radium-226	0.00925 ± 0.0751 (0.199) C:90% T:NA	pCi/L		09/22/22 08:14	
EPA 9320	Radium-228	0.444 ± 0.433 (0.889) C:79% T:92%	pCi/L		09/13/22 18:43	
Total Radium Calculation	Total Radium	0.453 ± 0.508 (1.09)	pCi/L		09/22/22 16:48	
92622414019	EB-01					
EPA 9315	Radium-226	0.0271 ± 0.0875 (0.217) C:78% T:NA	pCi/L		09/22/22 08:14	
EPA 9320	Radium-228	0.548 ± 0.457 (0.907) C:74% T:87%	pCi/L		09/13/22 18:44	
Total Radium Calculation	Total Radium	0.575 ± 0.545 (1.12)	pCi/L		09/22/22 16:48	
92622414020	PZ-57					
EPA 9315	Radium-226	0.135 ± 0.117 (0.219) C:87% T:NA	pCi/L		09/22/22 08:14	
EPA 9320	Radium-228	0.353 ± 0.354 (0.732) C:80% T:87%	pCi/L		09/21/22 15:04	
Total Radium Calculation	Total Radium	0.488 ± 0.471 (0.951)	pCi/L		09/22/22 16:48	

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Sample: PZ-1D PWS:	Lab ID: 926224 0 Site ID:	06005 Collected: 08/24/22 11:35 Sample Type:	Received:	08/25/22 09:40	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg				
Radium-226	EPA 9315	0.0152 ± 0.0651 (0.168) C:89% T:NA	pCi/L	09/22/22 09:17	13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 9320	0.181 ± 0.549 (1.24) C:71% T:82%	pCi/L	09/13/22 16:10	15262-20-1	
	Pace Analytical Se	rvices - Greensburg				
Total Radium	Total Radium Calculation	0.196 ± 0.614 (1.41)	pCi/L	09/22/22 16:48	3 7440-14-4	

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Sample: FD-01 PWS:	Lab ID: 9262 Site ID:	2406006 Collected: 08/24/22 00:00 Sample Type:	Received:	08/25/22 09:40	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0157 ± 0.0669 (0.172) C:94% T:NA	pCi/L	09/22/22 19:40	0 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.131 ± 0.246 (0.540) C:76% T:86%	pCi/L	10/04/22 12:28	8 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.147 ± 0.313 (0.712)	pCi/L	10/05/22 16:5	5 7440-14-4	

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Sample: PZ-31 PWS:	Lab ID: 9262 Site ID:	2406007 Collected: 08/24/22 14:00 Sample Type:	Received:	08/25/22 09:40	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				-
Radium-226	EPA 9315	0.0843 ± 0.0839 (0.158) C:93% T:NA	pCi/L	09/22/22 09:17	7 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.697 ± 0.607 (1.23) C:70% T:88%	pCi/L	09/13/22 16:10	0 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.781 ± 0.691 (1.39)	pCi/L	09/22/22 16:48	8 7440-14-4	

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Sample: PZ-33 PWS:	Lab ID: 926224 0 Site ID:	O6008 Collected: 08/24/22 15:45 Sample Type:	Received:	08/25/22 09:40	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg				
Radium-226	EPA 9315	0.0107 ± 0.0845 (0.220) C:84% T:NA	pCi/L	09/22/22 09:17	13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 9320	0.753 ± 0.662 (1.35) C:69% T:89%	pCi/L	09/13/22 16:10	15262-20-1	
	Pace Analytical Se	rvices - Greensburg				
Total Radium	Total Radium Calculation	0.764 ± 0.747 (1.57)	pCi/L	09/22/22 16:48	3 7440-14-4	

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Sample: FB-01 PWS:	Lab ID: 9262241 Site ID:	4006 Collected: 08/24/22 10:00 Sample Type:	Received:	08/25/22 14:47	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	vices - Greensburg				
Radium-226	EPA 9315	-0.0245 ± 0.0516 (0.174) C:88% T:NA	pCi/L	09/22/22 09:17	7 13982-63-3	
	Pace Analytical Ser	vices - Greensburg				
Radium-228	EPA 9320	0.463 ± 0.672 (1.45) C:72% T:75%	pCi/L	09/13/22 16:10	15262-20-1	
	Pace Analytical Ser	vices - Greensburg				
Total Radium	Total Radium Calculation	0.463 ± 0.724 (1.62)	pCi/L	09/22/22 16:48	3 7440-14-4	

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Sample: PZ-2D PWS:	Lab ID: 9262 Site ID:	22414007 Collected: 08/24/22 11:32 Sample Type:	Received:	08/25/22 14:47 I	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg			-, ₋	
Radium-226	EPA 9315	-0.00215 ± 0.0602 (0.171) C:91% T:NA	pCi/L	09/22/22 09:17	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.0268 ± 0.601 (1.39) C:74% T:80%	pCi/L	09/13/22 16:10	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.0268 ± 0.661 (1.56)	pCi/L	09/22/22 16:48	3 7440-14-4	

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Sample: PZ-32 PWS:	Lab ID: 92622 Site ID:	2414008 Collected: 08/24/22 14:10 Sample Type:	Received:	08/25/22 14:47	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg			_	
Radium-226	EPA 9315	0.0960 ± 0.102 (0.206) C:91% T:NA	pCi/L	09/22/22 09:17	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.246 ± 0.478 (1.05) C:75% T:92%	pCi/L	09/13/22 16:10	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.342 ± 0.580 (1.26)	pCi/L	09/22/22 16:48	7440-14-4	

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Sample: PZ-25 PWS:	Lab ID: 92622 Site ID:	2414009 Collected: 08/24/22 15:45 Sample Type:	Received:	08/25/22 14:47	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.205 ± 0.130 (0.208) C:85% T:NA	pCi/L	09/22/22 09:1	7 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.559 ± 0.363 (0.683) C:79% T:90%	pCi/L	09/13/22 16:48	8 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.764 ± 0.493 (0.891)	pCi/L	09/22/22 16:48	8 7440-14-4	

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Sample: PZ-19 PWS:	Lab ID: 9262 Site ID:	2414010 Collected: 08/25/22 10:28 Sample Type:	Received:	08/26/22 10:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.148 ± 0.118 (0.207) C:77% T:NA	pCi/L	09/22/22 09:17	7 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.789 ± 0.405 (0.693) C:74% T:86%	pCi/L	09/13/22 16:48	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.937 ± 0.523 (0.900)	pCi/L	09/22/22 16:48	3 7440-14-4	

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Sample: PZ-16 PWS:	Lab ID: 9262 Site ID:	2414011 Collected: 08/25/22 12:12 Sample Type:	Received:	08/26/22 10:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.202 ± 0.137 (0.237) C:89% T:NA	pCi/L	09/22/22 08:36	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.526 ± 0.405 (0.792) C:76% T:80%	pCi/L	09/13/22 16:48	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.728 ± 0.542 (1.03)	pCi/L	09/22/22 16:48	3 7440-14-4	

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Sample: PZ-15 PWS:	Lab ID: 926224 Site ID:	14012 Collected: 08/25/22 14:08 Sample Type:	Received:	08/26/22 10:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	ervices - Greensburg			_	
Radium-226	EPA 9315	0.115 ± 0.115 (0.228) C:83% T:NA	pCi/L	09/22/22 08:38	13982-63-3	
	Pace Analytical Se	ervices - Greensburg				
Radium-228	EPA 9320	0.934 ± 0.453 (0.784) C:79% T:88%	pCi/L	09/13/22 16:48	3 15262-20-1	
	Pace Analytical Se	ervices - Greensburg				
Total Radium	Total Radium Calculation	1.05 ± 0.568 (1.01)	pCi/L	09/22/22 16:48	7440-14-4	

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Sample: FD-02 PWS:	Lab ID: 9262 Site ID:	2414013 Collected: 08/25/22 00:00 Sample Type:	Received:	08/26/22 10:00 I	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0573 ± 0.0802 (0.171) C:87% T:NA	pCi/L	09/22/22 08:40	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.771 ± 0.533 (1.05) C:71% T:90%	pCi/L	09/13/22 16:54	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.828 ± 0.613 (1.22)	pCi/L	09/22/22 16:48	7440-14-4	

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Sample: PZ-18 PWS:	Lab ID: 9262 Site ID:	2414014 Collected: 08/25/22 10:35 Sample Type:	Received:	08/26/22 10:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0434 ± 0.0826 (0.190) C:88% T:NA	pCi/L	09/22/22 08:40	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	-0.0394 ± 0.528 (1.21) C:71% T:91%	pCi/L	09/13/22 16:54	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.0434 ± 0.611 (1.40)	pCi/L	09/22/22 16:48	3 7440-14-4	

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Sample: PZ-17 PWS:	Lab ID: 9262 2 Site ID:	2414015 Collected: 08/25/22 12:10 Sample Type:	Received:	08/26/22 10:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.217 ± 0.134 (0.213) C:83% T:NA	pCi/L	09/22/22 08:4	1 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.763 ± 0.527 (1.02) C:74% T:92%	pCi/L	09/13/22 19:25	5 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.980 ± 0.661 (1.23)	pCi/L	09/22/22 16:48	3 7440-14-4	

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Sample: PZ-23A PWS:	Lab ID: 9262 Site ID:	2414016 Collected: 08/25/22 16:08 Sample Type:	Received:	08/26/22 10:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg			_	
Radium-226	EPA 9315	0.132 ± 0.105 (0.181) C:86% T:NA	pCi/L	09/22/22 08:12	2 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.264 ± 0.368 (0.786) C:77% T:89%	pCi/L	09/13/22 18:43	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.396 ± 0.473 (0.967)	pCi/L	09/22/22 16:48	7440-14-4	

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Sample: PZ-7D PWS:	Lab ID: 9262 Site ID:	2414017 Collected: 08/25/22 14:10 Sample Type:	Received:	08/26/22 10:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0294 ± 0.0630 (0.148) C:86% T:NA	pCi/L	09/22/22 08:13	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.742 ± 0.493 (0.926) C:72% T:86%	pCi/L	09/13/22 18:43	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.771 ± 0.556 (1.07)	pCi/L	09/22/22 16:48	3 7440-14-4	

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Sample: PZ-14 PWS:	Lab ID: 92622 Site ID:	2414018 Collected: 08/25/22 16:00 Sample Type:	Received:	08/26/22 10:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.00925 ± 0.0751 (0.199) C:90% T:NA	pCi/L	09/22/22 08:14	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.444 ± 0.433 (0.889) C:79% T:92%	pCi/L	09/13/22 18:43	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.453 ± 0.508 (1.09)	pCi/L	09/22/22 16:48	3 7440-14-4	

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Sample: EB-01 PWS:	Lab ID: 9262 2 Site ID:	2414019 Collected: 08/26/22 09:15 Sample Type:	Received:	08/27/22 11:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0271 ± 0.0875 (0.217) C:78% T:NA	pCi/L	09/22/22 08:14	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.548 ± 0.457 (0.907) C:74% T:87%	pCi/L	09/13/22 18:44	1 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.575 ± 0.545 (1.12)	pCi/L	09/22/22 16:48	3 7440-14-4	

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Sample: PZ-57 PWS:	Lab ID: 9262 Site ID:	22414020 Collected: 08/26/22 11:20 Sample Type:	Received:	08/27/22 11:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.135 ± 0.117 (0.219) C:87% T:NA	pCi/L	09/22/22 08:14	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.353 ± 0.354 (0.732) C:80% T:87%	pCi/L	09/21/22 15:04	1 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.488 ± 0.471 (0.951)	pCi/L	09/22/22 16:48	3 7440-14-4	

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

QC Batch: 530231 Analysis Method: EPA 9320
QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92622406005, 92622406007, 92622406008, 92622414006, 92622414007, 92622414008, 92622414009,

92622414010, 92622414011, 92622414012, 92622414013, 92622414014, 92622414015, 92622414016,

92622414017, 92622414018, 92622414019

METHOD BLANK: 2572179 Matrix: Water

Associated Lab Samples: 92622406005, 92622406007, 92622406008, 92622414006, 92622414007, 92622414008, 92622414009,

92622414010, 92622414011, 92622414012, 92622414013, 92622414014, 92622414015, 92622414016,

92622414017, 92622414018, 92622414019

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.284 ± 0.356 (0.756) C:78% T:91%
 pCi/L
 09/13/22 16:45

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

QC Batch: 530874

Analysis Method: EPA 9315 QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

> Pace Analytical Services - Greensburg Laboratory:

Associated Lab Samples: 92622406006

METHOD BLANK: 2574652 Matrix: Water

Associated Lab Samples: 92622406006

Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers Parameter Radium-226 0.0646 ± 0.0850 (0.178) C:94% T:NA pCi/L 09/22/22 19:40

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

QC Batch: 535739

QC Batch Method:

535739 Analysis Method: EPA 9320 Analysis Description:

Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

EPA 9320

Associated Lab Samples: 92622406006

METHOD BLANK: 2599416 Matrix: Water

Associated Lab Samples: 92622406006

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.0371 ± 0.270 (0.626) C:74% T:89%
 pCi/L
 10/04/22 12:22

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

QC Batch: 530329 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92622406005, 92622406007, 92622406008, 92622414006, 92622414007, 92622414008, 92622414009,

92622414010, 92622414011, 92622414012, 92622414013, 92622414014, 92622414015, 92622414016,

92622414017, 92622414018, 92622414019, 92622414020

METHOD BLANK: 2572345 Matrix: Water

Associated Lab Samples: 92622406005, 92622406007, 92622406008, 92622414006, 92622414007, 92622414008, 92622414009,

92622414010, 92622414011, 92622414012, 92622414013, 92622414014, 92622414015, 92622414016,

92622414017, 92622414018, 92622414019, 92622414020

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.0390 ± 0.0730 (0.167) C:93% T:NA
 pCi/L
 09/22/22 09:17

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Mitchell 2022 2nd SA RAD-Revised Report

EPA 9320

Pace Project No.: 92622414

QC Batch: 530871

QC Batch Method:

Analysis Method:
Analysis Description:

EPA 9320 9320 Radium 228

Laboratory:

Pace Analytical Services - Greensburg

Associated Lab Samples: 92622414020

METHOD BLANK: 2574648 Matrix: Water

Associated Lab Samples: 92622414020

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.757 ± 0.340 (0.552) C:80% T:96%
 pCi/L
 09/21/22 11:51

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 10/24/2022 07:31 AM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval).

Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Date: 10/24/2022 07:31 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
2622406005	PZ-1D	EPA 9315	530329	_	
2622406006	FD-01	EPA 9315	530874		
2622406007	PZ-31	EPA 9315	530329		
2622406008	PZ-33	EPA 9315	530329		
2622414006	FB-01	EPA 9315	530329		
2622414007	PZ-2D	EPA 9315	530329		
2622414008	PZ-32	EPA 9315	530329		
2622414009	PZ-25	EPA 9315	530329		
2622414010	PZ-19	EPA 9315	530329		
2622414011	PZ-16	EPA 9315	530329		
2622414012	PZ-15	EPA 9315	530329		
2622414013	FD-02	EPA 9315	530329		
2622414014	PZ-18	EPA 9315	530329		
2622414015	PZ-17	EPA 9315	530329		
2622414016	PZ-23A	EPA 9315	530329		
2622414017	PZ-7D	EPA 9315	530329		
2622414018	PZ-14	EPA 9315	530329		
2622414019	EB-01	EPA 9315	530329		
2622414020	PZ-57	EPA 9315	530329		
2622406005	PZ-1D	EPA 9320	530231		
2622406006	FD-01	EPA 9320	535739		
2622406007	PZ-31	EPA 9320	530231		
2622406008	PZ-33	EPA 9320	530231		
2622414006	FB-01	EPA 9320	530231		
2622414007	PZ-2D	EPA 9320	530231		
2622414008	PZ-32	EPA 9320	530231		
2622414009	PZ-25	EPA 9320	530231		
2622414010	PZ-19	EPA 9320	530231		
2622414011	PZ-16	EPA 9320	530231		
2622414012	PZ-15	EPA 9320	530231		
2622414013	FD-02	EPA 9320	530231		
2622414014	PZ-18	EPA 9320	530231		
2622414015	PZ-17	EPA 9320	530231		
2622414016	PZ-23A	EPA 9320	530231		
2622414017	PZ-7D	EPA 9320	530231		
2622414018	PZ-14	EPA 9320	530231		
2622414019	EB-01	EPA 9320	530231		
2622414020	PZ-57	EPA 9320	530871		
2622406005	PZ-1D	Total Radium Calculation	534819		
2622406006	FD-01	Total Radium Calculation	537741		
2622406007	PZ-31	Total Radium Calculation	534819		
2622406008	PZ-33	Total Radium Calculation	534819		
2622414006	FB-01	Total Radium Calculation	534819		
2622414007	PZ-2D	Total Radium Calculation	534819		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Mitchell 2022 2nd SA RAD-Revised Report

Pace Project No.: 92622414

Date: 10/24/2022 07:31 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92622414008	PZ-32	Total Radium Calculation	534819		
92622414009	PZ-25	Total Radium Calculation	534819		
92622414010	PZ-19	Total Radium Calculation	534819		
92622414011	PZ-16	Total Radium Calculation	534819		
92622414012	PZ-15	Total Radium Calculation	534819		
92622414013	FD-02	Total Radium Calculation	534819		
92622414014	PZ-18	Total Radium Calculation	534819		
92622414015	PZ-17	Total Radium Calculation	534819		
92622414016	PZ-23A	Total Radium Calculation	534819		
92622414017	PZ-7D	Total Radium Calculation	534819		
92622414018	PZ-14	Total Radium Calculation	534819		
92622414019	EB-01	Total Radium Calculation	534819		
92622414020	PZ-57	Total Radium Calculation	534819		

Pace	
/ ACC	

DC#_Title: ENV-FRM-HUN1-0083 v01_Sample Condition Upon Receipt

Effective Date: 05/12/2022 Laboratory receiving samples: Asheville Eden Greenwood Huntersville Raleigh ___ 0#:92622414 Sample Condition Client Name: **Upon Receipt** Proje Courier: Client Commercial Other: Custody Seal Present? Seals Intact? Date/Initials Person Examining Contents: 3/257 Packing Material: Bubble Wrap Bubble Bags None Other Biological Tissue Frozen? ☐Yes ☐No ☐N/A Thermometer: TR Gun ID: Type of Ice: Blue None Correction Factor: Cooler Temp: Add/Subtract (°C) Temp should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling process Cooler Temp Corrected (°C): has begun USDA Regulated Soil (N/A, water sample) Did samples originate in a quarantine zone within the United States: CA, NY, or SC Did samples originate from a foreign source (internationally, (check maps)? ☐Yes ☐No including Hawaii and Puerto Rico)? Yes Comments/Discrepancy: Chain of Custody Present? 1. Pres □No □N/A Samples Arrived within Hold Time? - Yes □No 2. □N/A Short Hold Time Analysis (<72 hr.)? Yes Mo □N/A 3. Rush Turn Around Time Requested? Yes No □N/A 4. Sufficient Volume? Yes □No □N/A Correct Containers Used? Yes □No □N/A 6. -Pace Containers Used? **Ø**Yes □No □N/A Containers Intact? Tes □No □N/A Dissolved analysis: Samples Field Filtered? MN/A ☐Yes □No 8. Sample Labels Match COC? Yes DNo □N/A 9. -Includes Date/Time/ID/Analysis Matrix: Headspace in VOA Vials (>5-6mm)? Yes □No N/A 10 Trip Blank Present? ☐ Yes No 11. ON/A Trip Blank Custody Seals Present? DN/A Yes □No COMMENTS/SAMPLE DISCREPANCY Field Data Required? Yes No Lot ID of split containers: CLIENT NOTIFICATION/RESOLUTION pH Strip Lot# 10D4611 Person contacted: Project Manager SCURF Review: Date:

Project Manager SRF Review:

Date:

DC#_Title: ENV-FRM-HUN1-0083 v01_Sample Condition Upon Receipt

Effective Date: 05/12/2022

'Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

- **Bottom half of box is to list number of bottles
- ***Check all unpreserved Nitrates for chlorine

Proje WO#: 92622414

PM: NMG

Due Date: 09/16/22

CLIENT: GA-GA Power

Item#	BP4U-125 mL Plastic Unpreserved (N/A) (Cl-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP45-125 mL Plastic H2504 (pH < 2) (C+)	BP3N-250 mL plastic HNO3 (pH < 2)	8P42-125 mL Plastic ZN Acetate & NaOH (>9)	BP4B-125 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 (ner Anıber H2501 (pH < 2)	AG35-250 nL Amber H2SO4 (pH < 2)	DG94-250 n.L Amber NH4Cl (N/A)(Cl·)	DG9H-10 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-10 mL VOA Unpreserved (N/A)	DG9V-40 mL VOA H3PO4 (N/A)	DG95-40 mL VOA H25O4 (N/A)	V/GK (3 vials per kit)-VPH/G3s kit (N/A)	SPST-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A - lab)	BPIN	BP3R-250 mL Plastic (NH2)25O4 (9.3-9.7)	AGOU-100 mL Amber Unpreserved (N/A) {CI-}	VSGU-20 mt. Scintillation vials (N/A)	DG9U-40 ml, Amber Unpreserved vials (N/A)
1	1	1	1		1	X	1	1			1		1	1	1									2	1			
2	1	1	1		1	1	1	1			1		1	1	1									2	1			
3	1	1	1		1	1	1	1			1		1	1	1								The state of the s	2	1			
4	1	1	1		1	1	1	1			1		1	1	1									2	1			
5	1				1	1	1	1			1		1	1	1									1	1			
6	1				1	1	1	1			1		1	1	1									1	1			
7	1				1	1	1	1			1		1	1	1				Ì					1	1			Ħ
8	1				1	1	1	1			1		1	1	1									1	1			
9	1		1		1	X	1	1			1		1	1	1									1	1			
10	1				1	1	1	1			1		1	1	1				1					1	1			
11	1				1	1	1	1			1		1	1	1			İ	1				T	1	1			
12	1				1	1	1	1			1		1	1	1					1			T	1	1			T

		pH Ad	ljustment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

CHAIN-OF-CUSTODY: Amalytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info.pacetabs.com/hubfs/pas-standard-terms.pdf

	Γ		17.60	24	23	22	21	28	19	18	250 775 初了 初了	16	16	14	13	ITEM#		7	Reques	Email	Suite 100	Company	Requ
			ADDITIONAL COMMENTS						EDen	P C-15	-	MIT-92-33-W6-20220824	MIT-PZ-31-WG-2020824	MIT-APAD-FD-601-W6-20120924	MIT-PZ-10-WG-20220824	SAMPLE ID South Poor Poor Poor Poor Poor Poor Poor Poo	MATRI	d lengara	(770)421-3382	ic cc	Suite 100, Kennessw. GA 30144		5
	-	4	Re				•	V	V					-		write Waler WW Product P GodSedd St. Cil Cil Wys WP Arr AR Other T5 Thause T5	COOR	riged.*	3	Purchase Order #:	Copy To:	Report To: [12
		Town Mary	RELINQUISHED BY / AFFILIATION				\$	WT	¥	WT	4	WT .	M	M	M	MATRIX CODE (see valid coor SAMPLE TYPE (G=GRAB C		12 160 110, 2207	Mito	# 5	Thorda Bu	Daniel Howard	ect Info
		1	ED 8Y/													ST		161	Mitchell 2022 2nd SA	30	0	pard	mation
(A) TO	SAMP	1 20	A PILLE					-			m					START	8	110	2 2nd 9	1	B		
SIGNATURE OF SAMPLER: Day 18 However	SAMPLER NAME AND SIGNATURE	/ Wood	NOLL											Ø.			COLLECTED	1	Ä	9	July 1		
MRE of	AME A	1000	疆									4		CO INVE	State 1135	END	03	0		7	7		
MAS	ND SIC	1 80	DATE									1545	1400	1	113	TIME		1		7			
PLER:	GNATI	8/24/2			+	-		-		-		2	O.		<u> </u>	SAMPLE TEMP AT COLLECTION	NC	H					
D	RE	NO.	が持										G	5	5	# OF CONTAINERS		Pac	Pac	Pac	Com	Atte	hvo
出		1800	TIME	-	-	-	-	_				×	X	X	×	Unpreserved		Pace Profile #	Pace Project Manager:	Pace Quote:	Company Name	Attention:	Invoice Information:
0		1	部門									X	×	×	×	H2SO4 HNO3	P	**	ct Mar	•	Name.		format
1st		1 1								-						нсі	Preservatives	10834	ager	1	1	1	ion:
1		3	æ		-	-					_					NaOH	ative	E	3	1		١	
1	100	10	ACCEPT		-	\dashv	-	-		-	-			-		Na2S2O3 Methanol	88	П	nicole.ď	-			
		1	KAB G3			7		1								Other	1		ďolec		П	1	
M		1	N.													Analyses Test	YINB	弱	oleo@pacelabs.com		Ш	١	
2		2	AFFILIATION				_			_		×			×	CI, F, \$04		0.60	elabs		П	1	
7		N	ğ		-	-	κ .					×	×		×	App III/IV Metals		R	com.	1	П	I	
er Gn						1	_	_		_	-	×			×	RAD 9315/9320		Requested Analysis Filtered (Y/N)	П	1	П	İ	
3		M												10				A An	П		П	1	
11/6		38																elysic	П	1	П	1	
3		1 2	DATE	-	-	4			_	_	_							Filte	-	1	Ш		ï
)kn	_	1	PAGE CIENT		+	+	-	-					-					O per	100				
		18	TIME		+	1									-			(N)	121	25.50			
	藏	13																9000				ſ	P
MP in C	0 5									1								1623	St	70		1	Page :
		HH	9	-	-	-	-		Т							Residual Chlorine (Y/N)			State / Location	Regulatory Agency		1	
sceived o	on		AMPL								1	7	FE	7	Ha			GA	ocat	28		1	
/N) uslody	-		SAMPLE CONDITIONS								ŀ	1	2	11	1/2			4	on	ency		1	-
aled ooler			NELLON							1		7	7	7				10	BOSE	8		19	Q
(N) amples			SNS								-	×.	04	OH.	7.49				HE	80		+	-
amples													-	-	0		TO SERVICE STATES	9		200	1	1	k

1
Done
Pace
100000000000000000000000000000000000000

DC#_Title: ENV-FRM-HUN1-0083 v01_Sample Condition Upon Receipt

Effective Date: 05/12/2022

Laboratory receiving samples:					
Asheville Eden Greenwood	Huntersvi	lle _	Raleigh		Mechanicsville Atlanta Kernersville
Sample Condition Client Name:					WO#: 92622414
GAPON	ve/			Proje	DM LIME
Courier: Fed Ex UPS Commercial Pace	S USPS		. Cii	ent	CLIENT: GA-GA Power
8121 3394	als Intact? + 498 Bubble Bags	Yes		ther	Date/Initials Person Examining Contents: 5/25/23
Thermometer:			1		Yes No DAA
Cooler Temp: Correction Factorial Cooler Temp Corrected (°C): Subtraction Factorial Cooler Temp Corrected (°C): Subtraction Factorial Cooler Temp Corrected (°C): Subtraction Factorial Cooler Temp Corrected (°C): Subtraction Factorial Cooler Temp Corrected (°C): Subtraction Factorial Cooler Temp Correction Factorial Cooler Temp Correction Factorial Cooler Temp Correction Factorial Cooler Temp: Subtraction Factorial Cooler Temp Correction Factorial Cooler Temp Correction Factorial Cooler Temp Correction Factorial Cooler Temp Corrected (°C): Subtraction Factorial Cooler Temp Corrected (°C): Subtraction Factorial Cooler Temp Corrected (°C): Subtraction Factorial Cooler Temp Corrected (°C): Subtraction Factorial Cooler Temp Corrected (°C): Subtraction Factorial Cooler Temp Corrected (°C): Subtraction Factorial Cooler Temp Corrected (°C): Subtraction Factorial Cooler Temp Corrected (°C): Subtraction Factorial Cooler Temp Corrected (°C): Subtraction Factorial Cooler Temp Corrected (°C): Subtraction Factorial Cooler Temp Cooler Te	9		Wet □8 -	ue	■None Temp should be above freezing to 6°C ■Samples out of temp criteria. Samples on ice, cooling process has begun
Did samples originate in a quarantine zone within t (check maps)? Yes No	he United States	CA, NY,	or SC		Did samples originate from a foreign source (internationally,
				T	including Hawaii and Puerto Rico)? Yes No Comments/Discrepancy:
Chain of Custody Present?	Tres	□No	□N/A	1.	comments/Discrepancy.
Samples Arrived within Hold Time?	₽ Yes	ON	□N/A	2.	700
Short Hold Time Analysis (<72 hr.)?	□Yes	No	□N/A	3.	
Rush Turn Around Time Requested?	□Yes	□N ₀	□N/A	4.	THE PARTY OF THE P
Sufficient Volume?	Yes	□No		5.	
Correct Containers Used? -Pace Containers Used?	Yes	No No	□N/A □N/A □N/A	6.	
Containers Intact?	Nes	□No	□N/A	7.	
Dissolved analysis: Samples Field Filtered?	□Yes	□No	ØN/A	8.	
Sample Labels Match COC?	₹ Yes	□No	□N/A	9.	
-Includes Date/Time/ID/Analysis Matrix:	W				
Headspace in VOA Vials (>5-6mm)?	□Yes	□No		10.	•
Trip Blank Present?	□Yes	□No	ZN/A	11.	taranta de la companya della companya della companya de la companya de la companya della company
Trip Blank Custody Seals Present?	□Yes	□No	6N/A		
COMMENTS/SAMPLE DISCREPANCY					Field Data Required? ☐Yes ☐ No
		_	j	ot ID	of split containers:
LIENT NOTIFICATION/RESOLUTION					pH Strip Lot# 10D4611
				_	
Person contacted:			Date/Time	:	
Project Manager SCURF Review:					Date:
Project Manager SRF Review:					Date:

DC#_Title: ENV-FRM-HUN1-0083 v01_Sample Condition Upon Receipt

Effective Date: 05/12/2022

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

- **Bottom half of box is to list number of bottles
- ***Check all unpreserved Nitrates for chlorine

Proje WO#: 92622414

PM: NMG

Due Date: 09/16/22

CLIENT: GA-GA Power

ltem#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP45-125 mL Plastic H25O4 (pH < 2) (Cl-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4B-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCI (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG35-250 mL Amber H2SO4 (pH < 2)	DG94-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mt VOA Unpreserved (N/A)	DG9V-40 mL VOA H3PO4 (N/A)	DG95-40 mL VOA H2504 (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A - lab)	SP21-250 mt. Sterile Plastic (N/A - lab)	BYIN	BP3R-250 mL Plastic (NH2)25O4 (9.3.9.7)	AGOU-100 mL Amber Unpreserved (N/A) (CI-)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1	1		(1	V	1	1			1		1	1	1									Z	1			
2	/	1	1		1	V	1	1			1		1	1	1									Z	1			
3	1	1	1		1	V					1		1	1	1									X	1			
4	1	1	1		1	y	1	1			1		1	1	1									X	1			
5	1				1	1	1	X			1		1	1	1									1	1			
6	1				1	1	1	X			1		1	1	1									1	1			
7	1				1	1	1	1			1		1	1	1									1	1			
8	1				1	1	1	1			1		1	1	1									1	1			
9	1				1	1	1	1			1		1	1	1									1	1			
10	1				1	1	1	1			1		1	1	1									1	1	1		
11	1				1	1	1	1			1		1	1	1				1					1	1			
12	1				1	1	1	1			1		1	1	1									1	1			

		pH Ac	justment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #
	31.0					

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

11 6 Company Required Client Information: 9 ITEM # uite 100 Kennesaw GA 30144 quested Due Date daniel.howard2@woodplc.com MIT-PZ-25-WG-20120824 Wood E&I (GA Power) 1075 Big Shanty Road 770/421 3382 MIT-PZ-21-WG-20220824 Sample ids must be unique One Character per box. (A-Z, 0-9/, -) WIT -APA12-F8-01-WG-7220524 SAMPLE ID MIT-PZ-32-WG-20220824 ADDITIONAL COMMENTS Standare Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info.paceiabs.ccm/hubls/pas-standard-terms.pdf Required Project Information:
Report To Daniel Howard
Copy To R head daying
An in head Sacker
Purchase Order # oject #: 6/22/60/70.2202 roject Name RELINGUISHED BY / AFFILIATION Model Nood 5 3 3 4 ş 3 1 3 3 MATRIX CODE (see valid codes to left) SAMPLE TYPE (G=GRAB C=COMP) START SAMPLER NAME AND SIGNATURE TME COLLECTED SIGNATURE IN SAMPLER PRINT Name of SAMPLER: OF STATE END 8/24/52 1418 1132 DATE SAMPLE TEMP AT COLLECTION 1800 Attention: Company Name: ba W 5 # OF CONTAINERS Pace Profile # Pace Project Manager. Pace Quote Invoice Information Section C Address 200 TIME Unpreserved H2SO4 X HNO3 Preservatives Z HÇI NaOH ACCEPTED BY I AFFILIATION Na2S2O3 nicole d'oleogracelabs com Methanol Other B **Analyses Test** Y/N DATE Signed 8/2 4/ CI. F. SO4 × × TOS × × × × App III/IV Metals × ested Analysis Filtered RAD 9315/9320 DATE N BMIL Page: Regulatory Agency TEMP in C State / Location Residual Chlorine (Y/N) 工工 PHI D#= Received on SAMPLE CONDITIONS (Y/N) Custody 7.34 8,0 Sealed ð Cooler (Y/N) Samples ntact (Y/N)

	0
1	Pace
1	INDIVINE IN THE OFFICE

DC#_Title: ENV-FRM-HUN1-0083 v01_Sample Condition Upon Receipt

Effective Date: 05/12/2022

boratory receiving samples:				
Asheville Eden Greenwood	Huntersville		Raleigh	
Sample Condition Upon Receipt Client Name:	200		Р	Proje WO#: 92622414
ourier: Fed Ex UPS Commercial Pace	USPS Other:		Clie	PM: NMG Due Date: 09/16/22 CLIENT: GA-GA Power
ustody Seal Present? Ves No Sea 8/2-1 47 acking Material: Bubble Wrap B	Is Intact?	Yes None	□No	Date/Initials Person Examining Contents: 8/26/22
nermometer: ATR Gun ID: 214 100 Correction Fact	194502 Type of Ice:	3		□Yes □No □N/A
ooler Temp: (70 / 1) * (151) Add/Subtract (ooler Temp Corrected (°C): 4, \$5.// SDA Regulated Soli (N/A, water sample) Did samples originate in a quarantine zone within the	(c) <u>0.0</u> 15,4	'A, NY, c	or SC	Temp should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling process has begun Did samples originate from a foreign source (internationally,
(check maps)? Yes No				including Hawaii and Puerto Rico)?
Chain of Custody Present?	Pres	□No	□N/A	Comments/Discrepancy: 1.
Samples Arrived within Hold Time?		□No	□N/A	2.
Short Hold Time Analysis (<72 hr.)?		Q AIG	□N/A	3.
Rush Turn Around Time Requested?		No	□N/A	4.
Sufficient Volume?		□No	□N/A	5.
Correct Containers Used? -Pace Containers Used?	Ves	□Na □Na □Na	□N/A □N/A	6.
Containers Intact?		□No	□N/A	7.
Dissolved analysis: Samples Field Filtered?		 □No	DW/A	8.
Sample Labels Match COC?		□No	□N/A	9.
-Includes Date/Time/ID/Analysis Matrix:	W			
Headspace in VOA Vials (>5-6mm)?	□Yes	□No	PMA	10.
Trip 8lank Present?		□No	DATA	11.
Trip Blank Custody Seals Present?	□Yes	□No	, DATA	
MMENTS/SAMPLE DISCREPANCY				Field Data Required? Yes No
				Lot ID of split containers:
NT NOTIFICATION/RESOLUTION				pH Strip Lot# 10D4611
erson contacted:			Date/Time	e:
Project Manager SCURF Review:				Date:
Project Manager SRF Review:				Date:

DC#_Title: ENV-FRM-HUN1-0083 v01_Sample Condition Upon Receipt

Effective Date: 05/12/2022

*Check mark top half of box if pH and/or dechlorination is verified and Project

within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

***Check all unpreserved Nitrates for chlorine

MO#: 92622414

M: NMG

Due Date: 09/16/22

CLIENT: GA-GA Power

ltem#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	8P4S-125 mL Plastic H25O4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP42-125 mL Plastic ZN Acetate & NaOH (>9)	8P48-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	DG94-250 mL Amber NH4Cl (N/A)(CI-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unpreserved (N/A)	DG9V-40 mt VOA H3POA (N/A)	DG95-40 mL VOA H25O4 (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A - lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3R-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AGOU-100 mL Amber Unpreserved (N/A) (CI-)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1	1	1	1		1	1	1	1			1		1	1	1									X	X			
2	1	1	1		1	N.		/			1		1	1	1									X	1			
3	1	1	T		1	1	1	1			1		1	1	1				:					X	1			
4	1	1	1		1	K	1	/			1		1	1	1									7.	X			
5	1	1	1		1	1	1	1			1		1	1	1									3	X		- 1	
6	1	1	1		1	V	1	1			1		1	1	1									X	X			
7	1	1	T		1	1	1	1			1		1	1	1		-							2	X			
8	1	1	1		1	1	1	1			1		1	1	1									50	K			
9	1	1	(1	14	1	1			1		1	1	1									7.	1			
10	1	1			1	1	1	1			1		1	1	1									1	1			
11	1				1	1	1	1			1		1	1	1									1	1			
12	1				1	1	1	/			1		1	1	1									1	1			

		pH Ac	ljustment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #
					/	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

1

	12	=	10	9	8	7	6	c,	4	ω	2	1	ITEM#			Reque	Phone	Email	Address	Section A Required Company
ADDITIONAL COMMENTS	S. S. S. S. S. S. S. S. S. S. S. S. S. S	22.4	1	A3.70-	23	42.39	23	45-75M	0.00	1000 MIT-DZ-15-WG-20220825	MIT-PZ-16-WG-20120875	MIT-PZ-19-MG-20120825	SAMPLE ID One Character per box. (A-Z, 0-9 / , .) Sample ids must be unique			Requested Due Date Standard	(770M21-3382 Fax	15		Client Information Wood E&I (GA
D : D	WT	TW	WT	WT	WT	WT	TW	WT	WT	-20220825 WT	-20120 875 WT	-20120825 WT	MATRIX CODE (see valid code	o o o		Project #: C11	Project Name	Mil	Copy To Rho	le via this chain of custody constitutes ackr Section B Required Project Information:
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER! SIGNATURE SIG										SISTAT 1408	\$125/22 1212	844 a 1028	SAMPLE TYPE (G=GRAB C=	COLLECTED		Project #: 4122160170, 2202	Mitchell 2022 2nd SA	shelle Barker	Copy To Rhook Guinn	The Chain situtes acknowledgment and accommormation:
Sing Hays										S	5 x	X X X	SAMPLE TEMP AT COLLECTION # OF CONTAINERS Unpreserved H2SO4	Preservatives		Pace Profile # 10834		Address	Company Name:	The Chain-of-Custody is a LEGAL DOCUMENT. Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions Section B Report To David Monay
Notes	×	×	×	× ;	× >	× :	× ;	× :	×	×	×	× × ×	Methanol Other	Y/N	Requested	Ticole o electropacelabs com	-			MENT. All relevant fields must be complete rations found at https://info pacelabs.com/hubfs
DATE TIME															Analysis Filtered (Y/N)	Section of the last of the las		CONTRACTOR		ed accurate
MP in C Inceived on Many Inceived on Ma										1	54 V 1000	ノール	Residual Chlorine (Y/N)		GA CONTRACTOR	State / Location		Regulatory Assercy		rd-terms pdf

				3	12	11	6	8	8	7	6	On	4	w	2	-	ITEM#			Reques	Phone	Email	Address.	Compa	Section A
				ADDITIONAL COMMENTS	3	7	Per	Series Control	PESSO	22-20*	2236	#2-25A	4	EDGE-MITT-P7-17-ING-20120825	MIT- PZ-18-WG-20220815	ELOIMIT-APAIZ-FDD 02-146-20220825	SAMPLE ID One Character per box. (A-Z, 0-91, -) Sample Ids must be unique			Requested Due Date	27.	Email daniel housed? Secretal com		Wood E&I (GA	Pace:
			T T) 8											-		Walls Walls WW Freder P Sensylvad EL Or WP AR AR OT These TS	DW COO		Project #: 61	Project Name	1	Copy To	Required Project Information:	CHAIN-OF-CUSTODY / Analyti The Chain-of-Custody is a LEGAL DOCUMENT Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Condition
			1	непри	¥	4	4	¥	TW	N.	4	WT	\$	4	4	4	MATRIX CODE (400 valid of SAMPLE TYPE (G=GRAB		£	221	Mitc	17:01	7	ect Infor	constitu
SAMPL			three of	RELINQUISHED BY / AFFILIATION													START DATE TIME	COL		Project # 6122/60/70. 2202	Mitchell 2022 2nd SA	selle	Copy To Name Howard	mation:	es acknowledg
IPLER NAME AND SIGNATU PRINT Name of SAMPLER:			Was	ION	П									shister.	1925/2Z	Shop	DATE	COLLECTED		720		Bar-	3		The (
PRINT Name of SAMPLER:			9/15/12	DATE	F									01210	2035	1	END			2		30%			CHAIN-OF-CUSTODY / Analyti The Chain-of-Custody is a LEGAL DOCUMENT ent and acceptance of the Pace Terms and Condition
LER:	Ш		22	м										0.	_		SAMPLE TEMP AT COLLECT	LION	1				1		-Cust
3			1810	3		1								in	C	5	# OF CONTAINERS		1	Pace	Pace Quote	Address	Company	Invoi	ody i
3			10	HIT				-			_			×	×	X	Unpreserved H2SO4	-	Ш	Pace Profile #	Pace Quote:	55	Company Name:	Section C Invoice Information:	S a L
·		-	20	611										X	X	×	HNO3		П	12	9	П	Vame	(oma	Tem C
-			1										1 11				нсі	Preservatives	П	10834		Н		tion:	T DO
I			nus	>													NaOH	vativ							A COL
			0	ACCEP18		-	-							-	-		Na2S2O3 Mathanol	EŠ.	Ш	THE COLO		П			MEN
17			1													-	Other	+	H	10		+	+		
		-	1	DEY ! AFFILIATION													Analyses Test	YIN	Ħ	pied (procedures com	1				cal Request Document All relevant fields must be completed accurately, found at https://info.pacelabs.com/hubfs/pas-standard-terms.pdf
			M	4					_	-	-	_	_		-	×	CI, F. SO4		11	Sapie			1		vant
T			N		×		×			_	_	_	-		12.	×	App III/IV Metals	-	20	SOM,	П				field
3				jê.	×	×	×	×	×	×	×	×	_		_	×	RAD 9315/9320	+	Requested Analysis Filtered (Y/N)						S mu
18			4	道												1			3	1	П				OCI Ist be
9		1 5	E	8			'		-		_								Na Sala		Н				COM
- 8		1	3	DATE					-		-	-	-	-	-	\dashv			Filter	-	Н	+	Щ	l .	plet
			10	956			_	-			\exists					-	15-		7 20	18	11	1			ed a
- 15			5	TIME													·	-	3	1		Н			ccura
10			7	疆															П	L	П	V.		,	ately dard-
in C				靈						\perp	_					_		_	Ц	S.		22		Page :	a i
ved on	+	+	\vdash	2	-	Т	-1	Т	-	1	F	-	V			_	Residual Chlorina (Y/N)			ate /1		ulato		"	2
	1			SAMPLE CONDITIONS			1			- 1			-	2	10	d		304	1	State / Location		4		_	
у	-	+	\vdash	8									1	Hi	42	干				ion		3			
			\vdash	9	-	_	_	_		-	-	+	-	1	1	-		PERMITS A	25		H	3	-	Q	
Nes		+-	\vdash	Š									1	200	1	1/2		260		STREET		87			
				1									1	21 6	1	2		是某	X2	100	П				

Address Required Client Information: Requested Due Date Suite 100, Kennesaw, GA 30144 14 23 12 21 20 19 18 17 6 5 to ITEM # danuel.howard2@woodplc.com ATT-PZ-14 NG-20220825 ---- MIT-72-23A-NG-2020825 Wood E&I (GA Power) 1075 Big Shanly Road (770)421-3382 | rax MIT-PZ-70-WG-20120825 Sample Ids must be unique One Character per box. SAMPLE ID ADDITIONAL COMMENTS (A-Z, 0-9/, -) The Chain-of-Custody is a LEGAL DOCUMENT All relevant fields must be completed accurately.

Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info.pacelabs.com/hubfs/pas-standard-terms.pdf MATRIX
Dratung Wate
Wate
Wate
Wate
Wate
Wate
Wate
Moduct
SourSold
Di
Wipe
Air
Othe Project # 6 12216 0 170, 2202 Purchase Order # Le Helle Backer Report To: Required Project Information: Section B roject Name Daviel Howall Wood Sizston RELINQUISHED BY / AFFILIATION 3 š ž ş Š MATRIX CODE (see valid codes to left) S ş 3 SAMPLE TYPE (G-GRAB C-COMP) START SAMPLER NAME AND SIGNATURE COLLECTED SIGNATIONS OF SAMPLES PRINT Name of SAMPLER: 5/18/22 FH 10 81 to 51/80 CHAIN-OF-CUSTODY / Analytical Request Document END. 1600 DATE SAMPLE TEMP AT COLLECTION 18/2 Company Name Address: # OF CONTAINERS Invoice Information: Attention. Pace Project Manager Pace Quote an, c THE Unpreserved H2SO4 HNO3 HCI NeOH ACCEPTED BY / AFFILIATION Na2\$203 Methanol cleo@pacelabs.com Other Analyses Test Y/N CI, F, SO4 DATE Signed: 0/2 5 h × × TDS App III/IV Metals RAD 9315/9320 8/25/22 DATE TWE Page: Regulatory Agency TEMP in C State / Location Residual Chlorine (Y/N) Received on 140 SAMPLE CONDITIONS 年-6.93 86.9=HO (Y/N) Sealed 9 đ Coote (Y/N) Samples Intact (Y/N)

	0
1	Pace
1	MINISTER SERVER

DC#_Title: ENV-FRM-HUN1-0083 v01_Sample Condition Upon Receipt

Effective Date: 05/12/2022

oratory receiving samples: sheville Eden Greenwood	Huntersvil	le l	Raleigh	П	Mechanicsville Atlanta Kernersville
Sample Condition Client Name:	A		Marcigi	·L)	Mechanisville Atlanta Kernersville
Upon Receipt	DIAD "			Proje	
ourier: Gred Ex UPS Commercial Pace	USPS Other	-	□ci	ent	PM: NMG Due Date: 09/16/22 CLIENT: GA-GA Power
stody Seal Present? No Sea	ls Intact?	Yes	□No		
812	-1939	4 5	0/7		Date/Initials Person Examining Contents:
cking Material: Bubble Wrap B	ubble Bags	□None	0 0	ther	Biological Tissue Frozen? ☐Yes ☐No ☐N/A
OTR Gun ID: 230	Type of Ice	: D	Wet DE	lue	Nane
oler Temp: 3,8 Correction Fact)			Temp should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling proces
oler Temp Corrected (°C): DA Regulated Soil (\sum N/A, water sample) Did samples originate in a quarantine zone within the	e United States	CA. NY.	or SC		has begun Did samples originate from a foreign source (internationally,
{check maps}?					including Hawaii and Puerto Rico)? Yes No
Chain of Custody Present?	7	-			Comments/Discrepancy:
Samples Arrived within Hold Time?		□No	□N/A	1.	·
PURSUIT STATE OF THE PARTY OF T		□No	□N/A	2.	
Short Hold Time Analysis (<72 hr.)?	□Yes	Date	□N/A	3.	
Rush Turn Around Time Requested?	□Yes	UNO	□N/A	4.	19 - Admin
Sufficient Volume?	₫7es	DNO	□N/A	5.	
Correct Containers Used? -Pace Containers Used?	∐Yes ØYes		□N/A □N/A	6.	
Containers Intact?	□ (es	□No	□N/A	7.	
Dissolved analysis: Samples Field Filtered?	□Yes	_ □No	HMA	8.	
Sample Labels Match COC?	□Yes	ONo	□N/A	9.	
-Includes Date/Time/ID/Analysis Matrix:	W				
Headspace in VOA Vials (>5-6mm)?	□Yes	□No	JO/A	10.	1 kg
Trip Blank Present?	□Yes	□No	DATA.	11.	· · · · · · · · · · · · · · · · · · ·
Trip Blank Custody Seals Present?	□Yes	□No	TUCA		
MENTS/SAMPLE DISCREPANCY			7		Field Data Required? Yes No
		,			
IT NOTIFICATION/RESOLUTION				ot ID	of split containers:
	-				pH Strip Lot# 10D4611
		-		-0"	-
son contacted:			Date/Time	:	_
Project Manager SCURF Review:					Date:
Project Manager SRF Review:					Date:

DC#_Title: ENV-FRM-HUN1-0083 v01_Sample Condition Upon Receipt

Effective Date: 05/12/2022

Check mark top half of box if pH and/or dechlorination is verified and

within the acceptance range for preservation samples. ceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LEHg

*Bottom half of box is to list number of bottles

** Check all unpreserved Nitrates for chlorine

Project # WO#: 92622414

PM: NM

Due Date: 09/16/22

CLIENT: GA-GA Power

llem#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	8P3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP45-125 mL Plastic H2SO4 (pH < 2) (CI-)	BOSN.250 ml plastic HNO3 (pH < 2)	BP427125 mL Plastic ZN Acetate & NaOH (>9)	BP4B-125 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (Cl-)	AG1H-1 liter Amber HCl [pH < 2]	AG3U-250 nt Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2504 (pH < 2)	AG35-250 mL Amber H2SO4 (pH < 2)	DG94-250 mL Amber NH4C! (N/A)(CI·)	DG9H-40 mt VOA HGI (N/A)	VG9T-40 mt VOA Na25203 (N/A)	VG9U-40 mL VQA Unpreserved (N/A)	DG9V-10 mL VOA H3PO1 (N/A)	DG9S-40 mL VOA H2504 (N/A)	V/GK (3 vials per kit)-VPH/G3s kit (N/A)	SPST-125 mt. Sterile Plastic (N/A – lab)	SPZT-250 mL Sterile Plastic (N/A - Iais)	BPIN	8P3R-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AG0U-100 mL Amber Unpreserved (N/A) (CI)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1	1	1	1		1	1	1	1		20000000	1		1	1	1				-					7				
2	1	1	1		1	1	1	1			1		1	1	1			- Annual Control		and the same of th				2				
3	1				1	1	1	1			1		N.	1	1	j	İ							-				
4	1				1	1	13	1			1		1	3	1				Ī					1				
5	1				1	1	1	1			1		1	1	15							1			1			
5	1				1	1	1	1			1		1	1	1						T			1				
7	1				1	1	1	1			1		1	1	1			T		Ī		1		1	1			
3	1				1	1	1	1		T	1		1	1	1		1		1.		T		ĺ	1				
9	1				1	1	1	1			1	1	1	1	A			T					1	1	1			
10	1				1	1	1	1			1		1	1	1			i						1	1			
11	1				1	1	1	1		-	1	1	1	1	1	1				Ť		The state of the s		1	1			-
12	1				1	1	1	1			1		1	1	K					1				1	1			

		pH Ac	ljustment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Cert lication Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers

					12	=	10	9	8	7	6	5	4	w	2	-	ITEM #	-	7	Reques	Phone	Suite 10	Address	Required	
				ADDITIONAL COMMENTS	7237	182-14-1 182-14-1	1961	UZZ	88	מבגם	7	WEZD	P. P.	Sp. Carlo	MIT-PZ-57-100000000000000000000000000000000000	MIT-APAN-EB-01-WQ-20120826	SAMPLE ID One Character per box. (A-Z, 0-9 , -) Sample Ids must be unique			DAG	(770)421	00, Kennesaw, GA 30144	Address 1075 Big Shanly Road	Client Information:	/ Face
			Daniel	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TW													Product P Solitation St. Gil Wips WP AP AP Other Trause TS			Project # 6	Project Name		Copy To	Required Project Information:	The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately. Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info.pacetals.com/high/chase.stack.com/high/chase.s
				LINGUI	TW	4	¥	TW	M	M	\$	¥	W.	3	M	TW	MATRIX CODE (see vali SAMPLE TYPE (G=GR)	122	3	Mile	Danie	ject la	const
7	SAME		NATE.	HED BY / AFF													STA			Proma # 6122160170.2202	litchell 2022 2nd	helle b	Copy To Daniel Howard	formation:	itutes acknowle
PRINT Name of SAMPLER:	SAMPLER NAME AND SIGNATURE		1/Wood 8/26/22	ATION			-								8/26/12 1/20	8/14/209 15	TIME DATE	COLLECTED		2202	SA	arker	1		The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.
SAMP	ND SIGN		8/26	DATE										-7	2	2150	TIME								ain-of-
ER:	WITH	\perp	22	m.			in										SAMPLE TEMP AT COLL	CTION							Cust
	ñ		3	-											G	CT	# OF CONTAINERS]	Pace	Pac	Addr	Com	Sec	ody
3			1600	TIME	-	-				-		E.			×	×	Unpreserved			Pace Profile #	Pro	Address	Attention. Company Name:	Section C Invoice Information:	is a
9	-		7												×	×	H2SO4 HNO3			le #	E M		Name	form	LEG
	1		6	1							100				_	^	HCI	rese	11	5	Pace Quote Pace Project Manager			ition:	AL D
-			2	7		1					1	Ti			1		NeOH	Preservatives	$\ \ $	10834					1000
E			me	ACCEPTE		VI.	1										Na2S2O3	ves	П	i alconi	3			118	JME
			6	PEB													Methanol			0.00					NT.
1	35		1	D BY I AFFILIATION	انت		_			118	1 = 1						Other Analyses Test	Y/N	H	ureo@paceraos com					All re
7	1		John The	1	×	×	×	×	×	×	×	×	×	×	×	×	C. F. SO4	T/N	11	SIBORG					leva
	3		1	NOIT	×	×	×	×	×	×	×	×	×	×	×	×	TDS			00 00					os fie
1			1	835		1000			-	_		-	_	-		×	App III/IV Metals		188	9		1			lds .
	10		To.		×	×	×	×	×	×	×	×	×	×	×	×	RAD 9315/9320	_	100	1			П		nust
I	9-		3	100						-		\dashv							Requested Analysis Filtered	1	П		П		bec
ľ	4	1111	6	B														-	188	1		T			duce
	12		14	1															18	1	H	1	ш		Diete
	(C)		1	懋															N/V		П	1		9	dac
			4	JWILL .		_	-					_								1	П				cura
1	() E	-	+	(E)		-		-	-		-	-	_	-			*				П	1		Pa	lely.
С			-	꺴		_					_1			1		-	Residual Chiana	-	Ц	Sta		Regn		Page:	
d or	,			SA -	T	T						T	т	-	5 1	-	Residual Chlorine (Y/N)		9	State / Location		Requistory Assert	ľ	Pa	1
				SAMPLE CONDITIONS										1	-				1	ocati			-		
-				Ş				1						ľ	1	- 1		14/0	70	8		3	- 1		
-	+			9		+	-		-	-	+	-	+	-	200	-		Pice-fry	(4)	-	H		-	2	
3	+			á										1	O				4	1		4			
				135						- 1	- 1		- 1	- 1		- 1				1				.	

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

SAMPLE ID SAMPLE ID	ADDITIONAL COMMENTS WITH A SAMPLER MANUE MADE TO A SAMPLER THE SAMPLER MANUE MADE TO A SAMPLER SAMPLER THE SAMPLER MANUE MADE TO A SAMPLER THE SAMPLER MANUE MADE TO A SAMPLER THE SAMPLER MANUE MADE SAMPLER THE SAMPLER MANUE MADE SAMPLER THE SAMPLER MANUE MADE SAMPLER THE SAMPLER MANUE MADE SAMPLER THE SAMPLER MANUE MADE SAMPLER THE SAMPLER THE SAMPLER MANUE MADE SAMPLER THE S			1	1	1	1	=	1	7	-		7	199 Idy	PRINT Name of SAMPLER	PRINT N	T					
SAMPLE ID Sample in the must be unlique Automorphic at a must be unlique The sample in the must be unlique The sample in the must be unlique The sample in the must be unlique The sample in the must be unlique The sample in the sample	ADDITIONAL CONNECTION OF THE STATE OF THE ST	- 1			1000					1	-		R	GNATU	ME AND S	MPLER NA	SA					
SAMPLE ID SAMPLE ID	PORT OF COLLECTED SAMPLE ID Collection Accounted to the collection Acc																		***************************************			
ADDITIONAL CONNECTION ADDI												00	18	4/22		Woo	1	Mah.	Janel			
SAMPLE ID SAMPLE ID SAMPLE ID SAMPLE ID SAMPLE ID SAMPLE ID SAMPLE TYPE COLLECTED Thank MT THE SAMPLE TYPE COLLECTED THE SAMPLE TYPE COLLECTED THE SAMPLE TYPE COLLECTED THE SAMPLE TYPE COLLECTED THE SAMPLE TYPE COLLECTION THE SAMPLE TYPE COLLECTION SAMPLE TYPE SAMPLE TYPE COLLECTION SAMPLE TYPE COLLECTION SAMPLE TYPE SAMPLE TYPE COLLECTION SAMPLE TYPE COLLECTION SAMPLE TYPE SAMPLE TYPE SAMPLE TYPE SAMP	Project Project College Project College Project College Project College Project College Project College Project College Project College Project College Project College Project College Project College Project College Coll	7	TIME	DATE	***	NOITAL	AFFIL	reo ay	CCEP			ñ	111	ATE	- D	LIATION	BYIAFF	UISHED	RELING		DITIONAL COMMENTS	JA.
SAMPLE ID START PT - 11 WITH START SCORE (Ge-GRAB C-COMP) WITH SAMPLE TYPE (GE-GRAB C-COMP) WITH SAMPLE TYPE (GE-GRA	Project Name	1									-							\vdash				
SAMPLE ID SAMPLE ID One Chancet per box. An ample life must be unique P2-10 WI FIGURE P2-33 WI WI WI WI WI WI WI WI WI	AMPLE ID SAMPLE ID One Character per box. (AZ, 237, 24, 237) AMPLE ID One Character per box. (AZ, 237, 24, 237) Ample its must be unique FD Z - 1) WG DATE THARE DATE THARE DATE THARE DATE THARE DATE THARE DATE THARE DATE THARE DATE THARE DATE THARE DATE THARE DATE THARE SAMP, E TEMP AT COLLECTION WG DATE THARE THARE	1					-		-		-						+	-				
SAMPLE ID SAMPLE ID Soldward Value With Consolidate With Value Washer Water With Consolidate With Value With Consolidate With Value With Consolidate With Value With Consolidate With Value With Consolidate With Value With Consolidate With Value With Consolidate With Value With Consolidate With Value With Consolidate With Value With Consolidate With Value With Consolidate With Value With Consolidate With Value With Consolidate With Value With Consolidate With Value With Consolidate With Value With Consolidate With Value With Consolidate With Value With Consolidate With Value With Consolidate With Value SAMPLE TEMP AT COLLECTION SAMPLE TEMP AT COLLECTION With Consolidate With Value SAMPLE TEMP AT COLLECTION SAMPLE TEMP AT COLLECTION With Consolidate With Value SAMPLE TEMP AT COLLECTION With Consolidate With Value SAMPLE TEMP AT COLLECTION Preservation With Consolidate With Value SAMPLE TEMP AT COLLECTION Preservation With Consolidate With Value SAMPLE TEMP AT COLLECTION Preservation With Consolidate With Value SAMPLE TEMP AT COLLECTION Preservation With Consolidate With Value SAMPLE TEMP AT COLLECTION Preservation With Consolidate With Value SAMPLE TEMP AT COLLECTION Preservation With Consolidate With Value SAMPLE TEMP AT COLLECTION Preservation National Consolidate With Value With Consolidate With Value SAMPLE TEMP AT COLLECTION Preservation National Consolidate With Value With Consolidate With Value SAMPLE TEMP AT COLLECTION Preservation National Consolidate With Value With Consolidate With Value SAMPLE TEMP AT COLLECTION Preservation National Consolidate With Value National Consolidate With Value National Consolidate With Value National Consolidate With Value National Consolidate With Value National Consolidate With Value National Consolidate With Value National Consolidate With Value National Consolidate With Value National Consolidate With Value National Consolidate With Value National Consolidate With Value National Consolidate With	Project Name Projec																	-	TW			
SAMPLE ID SAMPLE ID Somewhat water with the unique of the properties of the proper	Page Project Manager Page Page Project Manager Page				×	-	l×				-					-	-	-	TW.			
SAMPLE ID SAMPLE ID SAMPLE TEMP AT COLLECTION WITH SAMPLE TEMP AT COLLECTION AND SAMPLE TEMP AT COLLECTION AND HOLD	Page Name Page Name Page Name Page Name Page Name				-	×	l×				-					-	-	-	WT			*
Sample lds must be unique Sample lds must be un	Project Number Of START When the same of the second of th					×	×		_		-		_					-	TW			4
SAMPLE ID One Character per box. (AZ, 0-91-) Sample Ms must be unique Note that water with the per box. (AZ, 0-91-) Sample Ms must be unique Note that the per box. At the per box. MATRIX CODE (see valid codes to left) SAMPLE TYPE (GEGRAB C=CDMP) SAMPLE TYPE (GEGRAB C=CDMP) MATRIX CODE (see valid codes to left) SAMPLE TYPE (GEGRAB C=CDMP) SAMPLE TEMP AT COLLECTION AN OF CONTAINERS X X X X Unpreserved H2SO4 HNO3 Methanoi Other Analyses Test X X X X TDS Analyses Test X X X X App III/IV Metals	Date 3 Fan Fan Fan From Michael 2022 2nd SA Date 1 Proped # 6 123 160 170 122 2nd SA Proped # 1083 122 2nd SA Proped # 1083 122 2nd S					×	l _×							-			-	-	IM		and the second s	ŧ
Sample lifs must be unique Sample lifs must be unique Sample lifs must be unique Sample lifs must be unique Sample lifs must be unique Sample lifs must be unique Sample lifs must be unique Sample lifs must be unique Sample lifs must be unique Sample lifs must be unique Sample lifs must be unique Sample type Sample ty	Date 3 FAN BAT Project Name Mildhell 2022 2nd SA Project # 6 1 3 3 6 6 1 7 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					×	×				×			G	150	_	-	6	3		∠-33	
SAMPLE ID Sample lifs must be unique The same of the	Analyses Test SAMPLE ID One Character per box. (A.Z. 0-91.) Sample lds must be unique Thank The character per box. (A.Z. 0-91.) Sample lds must be unique Thank					×	×				×			00	140			G	148		Z-31	‡
SAMPLE ID One Character per box. (A-Z, 0-91,-) Sample lds must be unique Itsaue TO COLLECTED COLLECTED COLLECTED COLLECTED COLLECTED COLLECTED Preservatives START END COLLECTED Preservatives START END COLLECTED Preservatives START END SAMPLE TYPE (GEGRAB C=CDMP) SAMPLE TEMP AT COLLECTION AND AND SAMPLE TEMP AT COLLECTION AND HOI NAOH NA2S2O3 Methanol Other Analyses Test X App III/IV Metals COLLECTED Preservatives Y/N X App III/IV Metals	Table 3 Face Project Name Multiple 2022 2nd SA Pace Project Manager incole dible @pacelabs.com Project # 6 13 2 6 6 17 0 1 2 2 0 2 Pace Project Manager incole dible @pacelabs.com Pace Project # 10834 Requested Analysis Filtered (YNI) SAMPLE ID SAMPLE ID SAMPLE TYPE MATRIX CODE (see valid todes to left) SAMPLE TYPE MATRIX CODE (see valid todes to left) SAMPLE TYPE MATRIX CODE (see valid todes to left) SAMPLE TYPE MATRIX CODE (see valid todes to left) SAMPLE TYPE MATRIX CODE (see valid todes to left) SAMPLE TYPE MATRIX CODE (see valid todes to left) Pace Project Manager incole dible @pacelabs.com Pa					×	~				×.			,		8/2		.0	3 4		D-01	4
MATRX CODE (see valid todes to left) SAMPLE TYPE (GEGRAB C=COMP) DATE TIME	Project Mainer Mitchell 2022 2nd SA Project # © 132 60170, 22.02 Project # © 132 60170, 22.02 Project # © 132 60170, 22.02 Project # © 132 60170, 22.02 Project # © 132 60170, 22.02 Project # © 132 60170, 22.02 Project # © 132 60170, 22.02 Project # © 132 60170, 22.02 Project # © 132 60170, 22.02 Project # © 132 60170, 22.02 Project Mainer Mitchell 2022 2nd SA Pace Project Mainer Maine				100	×	~				>.	^		G		2/8		6	1 2		Z-10	#
cose to M COLLECTED & Preservatives	Project Naine: Mitchell 2022 2nd SA Pace Project Manager nicole d'aleogracolabs.com. Project # & 12.2160170, 22.02 Pace Profile # 10834 Pace Profile # 10834 Requested Analysis Filtered (Y/N) MACHAEL CODE 12 0 COLLECTED 5 Preservatives 5	Residual Chiorme (Y/N)				TDS									Z Z	M	1 3					SA One C
	Project Name: Milchell 2022 2nd SA. Pace Project Manager incole d'Oleo@pacellabs.com. Project # 6122160170 - 2202 Pace Profile # 10834 Requested Analysis Filtered (YIN)						Y/N	1	/es	eivati	Presi	1		ON	<u>=</u> 0	СОГТЕСТІ		=COMP)		Al At A	T &	
	Project Name: Mitchell 2022 2nd SA Pare Project Manager murals d'also des constitues de la configuración d	K	The second secon			idus rom	Paraca	A PASSA	(II)	1834	10	rolite #	Page		02	ini	017	216	0#612	Proje	tandard	ue Date,
A Project # 6122160170, 2202 Pace Profile # 10834				+			The same	d'alen	albrane		Manage	CONSCI	Pace	j		dSA	1 2022 2n	Milche	ci Name:	Proje	1382 F ax	(7/0)421
Prichase Order #: Pace Oucle: Pace Quode: Project Name: Mitchell 2022 2nd SA Project Mainsger nicule d'oleo@pacelabs.com. Project # 6 12.2160170, 22.02 Pace Profile # 10834											3	any Nai	Comp			2012	-	7	10 8	Copy	hanty Road	1075 Hig
Company Name Company Name Address Purchass Order #: Project Name: Mitchell 2022 2nd SA Project # 6 1 3 2 1 6 0 17 0 1 2 2 0 2 Pace Project # 10634	Copy To Rhanda Quinn	age	Ę			1	1	1		ľ		Ort	Attenti				ard	el Howa	nt To. Dan	Repo	(GA Power)	Wood E&
Report To Daniel Howard Attention: Copy To Republic Guern Company Name Purchase Order # Pace Company Name Project Name: Mitchell 2022 2nd SA Pace Quote: Project Manager incult of Disorgapacetabs, com.	wer) Report To Daniel Howard		,								nation	e nfor	nvoic				HOII:	III CITIE	med Project	Keq	jerit.	uent information:

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed

ay d r	PinC			Evo-G:	100	11	0	11 0	-	-		_	-1	PRINT Name of SAMPLER: *	Name of	PHINT							
חכ													URE	SAMPLER NAME AND SIGNATURE	NAME A	AMPLER	6						
		Account of the las						444						The state of the s								All the control of th	
												218	=	8/25/22 1810	80	/Wood	Howard	No.	Daniel	r €			
SAMPLE CONDITIONS		TIME	DATE	=	LIATION		ACCEPTED BY / AFFI	серте	AC			TIME		DATE	i	RELINQUISHED BY I AFFILIATION	AV AB O	JISHE	RELING			ADDITIONAL COMMENTS	-
				×	×	×											L	H	TW				13
				×	×	×		-			-		-					+	TW				17.14
And the second of the second o				×	×	×			-		-		1					+	¥.				1
	1			×	×	×		H			-		1					+	TW				1
				×	×	×					-		1					-	TW				FF FF
				×	×	×					-		1					-	TW				45.21
				×	×	×							-					-	×				11.24
				×	×	×		H										-	ES.				Will Land
				×	×	×							+					-	TW				B7.48
4=7,1				×	×	×				1	-	×	5	1408	\$15/22 1408	200		14	A.C.			PZ-15	E PAR
H= 7,						×		- 1		^	×		فر	1212	S12422 1212	60		l.	\$50			91-Zd	2-01
0 H=667				×	×	×				~		×	57	1028	Shasha 1028	60		. 6	F S			アノーノマ	1
	Residual Chlorine (YIN)			App III/IV Metals RAD 9315/9320	TDS	Analyses Test	Other	Na2S2O3 Mathanol	NaOH	HCI	H2S04 HN03	Unpreserved	SAMPLE TEMP AT COLLECTS # OF CONTAINERS	TIME	END	SE CONTRACTOR OF THE PROPERTY	START			Walta Wy	Walst Walst Walst Walst Walst Profit(Soul/Sold On On On On On On Insure	PLE ID	San O. Co
						Y/N		Se	vativ	Preservatives	_				TED	COLLECTED		=COMP)		Salar	Dankana Dankana		
		(NIA) po	dysia Filteri	Requested Analysis Fillered (Y/N)	Ren	-		1				1	+					-					
GA GA	Sinte				The County				-	10834	Pace Profile #	ce Pro	172	12	2202	6122160170.	160	22	180	Project #		Standard	Due Date
			-		ממום שלו		Dicate	cole c	Ш	Pace Project Manager	BCT W	e Pro	D'	And the second s		2rid SA	2022	Mitch	Nague	Project Nague		(770)421-3362 Fax.	(770)
Regulatory Agency	Ragula										4	Address.	2 8	7	TX B	Barker	11.	5	Purchase Order #	Purcha		pic.co	el how
											Company Name	media	Co		UU	0	J. S. P.	non		Copy To		1075 Big Sharity Road	1075
ı Of	Page :					1			1	The state of the s	Attention	Attention	A				Nav	Daniel Howard	lo Dani	Report to		Wood ESI (GA Power)	Woo
										dion	form	nvoice in	1				ation:	nform	Required Project Information:	Required		Chent Information:	ent Inf

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

cerved or V) stody ied oler V) nples ct	MP in C	000	Gw.	ver Gy	E		Lynne	NO.	0	-	2.	9	J	R	PRINT Name of SAMPLER:	Name	PRINT	П								
											1		R	ATU	SAMPLER NAME AND SIGNATURE	AME /	MPLER !	SAI				T	t			
												20	1800	22	8/24/22	2	I woul	Howard!	3	J	Salar S	E				
SAMPLE CONDITIONS	TIME	DATE		NOIT	ACCEPTED BY I AFFILIATION	HIYE	OBL	CCE				TIME	1		DATE		RELINQUISHED BY I AFFILIATION	/ AFFI	ED BY	HSIU	RELING			MENTS	ADDITIONAL COMMENTS	
			×	×	×	-														_	WT					7.37
			×	×	×	1	-					-	-					-		-	N,					1
			×	×	×	1	-				+-	+					-	1		-	TW				-	765
			×	×	×	1	-	-			1	-					-	+		-	TW					- Charles
			×	×	×	1	-					-		1						-	N,					PEST-
			×	×	×			-			\vdash	-						-		-	TW					1
			*	×	×			_			-	-								-	W.					7
			×	×	×	1	-	-			1	-								1	TVV				and determined and constitution on the second	7.284
01.7 = Ha			×	×	×						×	×	5		1546	4	-			C	S. C.			25	52-	4
">H=7.34			×	×	×	1					×	×			1416					4.	T.			32	2-Zd	-9-62
0H=8.01			×	-	×						×	×	in		1132					a	₹ CO			9	R-24	407
			×	×	×						×	×	U		3/24/12 1000	24/2	22			Ø	FZ O			-	FB-0	897
Residual Chiorine (Y/N)			RAD 9315/9320	TDS App III/IV Metals	CI, F, SO4	Analyses Test	Methanol Other	Na2S2O3	NaOH	HCI	HNOS	Unpreserved H2SO4	# OF CONTAINERS	SAMPLE TEMP AT COLLECT	TIME	DATE	ME.	P P	DATE		MATRIX CODE (see valid coo	20 5 4 5 5 2 5 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Water Water Houses ScallSolid On Other Tessee		SAMPLE ID One Character per box. (A-Z, 0-9 / , .) Sample ids must be unique	Samp
						Y/N	- 1	es	vativ	reservatives	P	- 1		אכ		TED	соглестер			=COMP)	es to lefti		MIRIX			
GA.	N)	Analysis Filtored (Y/N)	Requested Analy	Requ	1	+	1		2	10007	1					8	100	-	1	þ	1					
State / Location	SS			abs.com,	acelab	nicole d'oleo@pace	d'ale	licote		Pace Project Manager	LMa	Proje	Pare Project N			3	Project Name Mileholt 2022 2nd SA	22.2m	5 110	Milet	617	oject Na	P _I	Eax.	5+ 1 F	Due Date 5+
Regulatory Agency	Reg	1					-	-				Quote	Pace Quote			1	Darke	1	1	17.	Purchase Order #:	rchase	P		olc co	el howard
											ame	ary v	Company Name			2	Sur you	10	1	1	10	Capy To	Cc		Sharity Road	1075 Big Sharity I
	l age.					1		1				110	Attention						plan	Hov.	Daniel Howard	Report To:	12.		Wood F&I (GA Power)	Wood F
	Dana									00.	ma	e int	Invoice Information:					7.	natio	nform	Required Project Information:	quired	7.			Men mornanon:

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

y	n C	G						1				1 1		E	VATU	AND SIG	SAMPLER NAME AND SIGNATURE	SAMPL						
				4																				
													0	1810		8/25/22	1 Wood	1/1/		מאל	Daniel Howar			
SAMPLE CONDITIONS	1s	TIME	DATE		NC	ACCEPTED BY I AFFILIATION	IAFFI	ED BY	CEPT	AC			SWIT	1	in.	DATE	NOI	RELINQUISHED BY ! AFFILIATION	7 AB C	SHSIN	RELING		ADDITIONAL COMMENTS	-
					×	-	_					+-	-			ĺ				-	TW			
				×		×	L		-	-			-							-	LM			
				×	×	×			-	-										-	WI			1
				×	×	×	lu o			-										-	WI			+
				×	×	×							-							-	1W			2-16
	7			×	×	×	L														TAX			-
= 7.				×	×	×						×	×	Ü		8/25/22/12/0	8/25/2			.0	WG O		PZ-17	2:19
71.9=H0				×	×	×						×	×	in		shish 2 1035	8/25/22			.6,	W.		PZ-18	F-16
34.9=40				×	×	× ×						×	×	5		1	\$/25/22			(i)	W.C.		FD-02	3
	Residual Chlorine (Y/N)			RAD 9315/9320	App III/IV Metals	CI, F, SC4 TDS	Analyses Test	Other	Na2S2O3 Methanol	NaCH	HCI	HN03	Unpreserved H2SG4	# OF CONTAINERS	SAMPLE TEMP AT COLLECT	TIME	DATE	START	ST	SAMPLE TYPE (G=GRAB C	경우호 돌으부 기술 목 MATRX CODE Isee valid co	Water Water Water Water Water Frederic Sont Sond Gin Whips Apa Apa Coner Traxee	SAMPLE ID One Character per box. (A-Z, 0-91,-) Sample lds must be unique	Samp
							Y/N		S	ative	Preservatives	Pr		1	ON		COLLECTED	COL		=COMP)	des to left	MAHEY Unikana Vester		
		Y/N)	Requested Analysis Filtered (Y/N)	sted Analys	Reque	11	П													-				
State / Location GA	State / Lo				com	elabs.com	nicole.d'oleo@pace	d'oleo	relazi		10834	Pace Profile # 108	Pace Profile #	Pace		۲	6122160170, 2202	2 2nd S.	01/202	Mich	Project # 612	רופ	Date Standard	Due Date
y Agency	Regulatory Agency											1	Address Pace Quote	Address Pace Qua			barker	a.	16	CE	Purchase Order #:	1 2	lc co	howar
									1			lame	Company Name	Com			2	PU	T	E De	-1	G	10/5 Big Shanly Road Kennesaw GA 30144	10/5 b
-	The state of the s	ſ											HOLD.	Allention					paler	Daniel Howard	Report to Danie	77	**OOG LG! (OA FOWE!)	MOOU

CHAIN-OF-CUSTODY / Analytical Request Document

																	The latest			
										0	1810	8/15/12		Wood	1 par	XHO	Daniel Howard			
SAMPLE CONDITIONS	TIME	DATE		ž		ACCEPTED BY I AFFI	CCEPT			A	TIME	DATE	0	RELINQUISHED BY / AFFILIATION	ED BY / AI	HSINDNI	REL		ADDITIONAL COMMENTS	
			×		×											T	TW			7
			×	×	×											IM	5			1
			×		×				-	-						WI	V			1
			×	×	×											TW	V			1777
The state of the s			×	×	×											WT	V			1.37
- 11 Person Community Control of the			×	×	×											TW	V			190
				×	×											TW	V			1
			×	×	×											WI	-		The second secon	100
			×	×	×											TW	1			1
pH=693					×		-		×	24,	CK	8	8/24/22 16:00	4.8		15			7/-11	3
5			1	×	×				×	×	以	0	OH-I respect	E&	-	₹C.	-		アト・ノロ	1
			×	× ×	×				×	×	S	2	8124/22 16C8	554		TG			アトーと出	197
Residual Chloria			App 11/1V Metal RAD 9315/9320	TDS	Analyses	Methanol Other	Na2\$203	HOH NaOH	HNO3	Unpreserved H2SO4	# OF CONTAINS	SAMPLE TEMP	DATE	TIME	DATE	SAMPLE TYPE			(A-Z, 0-9 i, -) Sample lds must be unique	S
e (Y/N)					Test							AT SOLLECT	END	START	ST	5, 7, 503, 15	A	Water Waler Pladuct Sol/Solid Oil	SAMPLE ID One Character per box.	0 ,.
					Y/N		ves	Preservatives	Pres			ON	STED	СОГГЕСТЕР				MA(Rix Enmisting Water		
	(NIX	Analysis Filtered (Y/N	Requested Analy	Re	T						1	1				_				
State / Location GA		Total Control of the		elabs com,	opacei	mode doleogipac	Hook	10634	1 1	Pace Profile # 108	Pace		202	6122160170,2202	160	122	Project # 6	Pro	" Tradath	Due Date.
The County of the County						-				along ane,	1 ace	-		48 1116	Sept. 2023	Mile	Project Name	Pro	(770)421-3382 Fax	(770
Hilatory Aponon	Ros	+	The second secon							SSE	Address		Barker		2118	100	Puichase Order #	Pu	artiel howard/2@woodpic.com	niel how
						-	-		a(ne	Company Name	Com		0.0		Rhandle C	40	Copy To	00	10/5 Big Shaniy Road	707
of of	Page :							7.	mane	Altention	Aller				owerd	Daniel Howard	deport for I	Ro	Wood F81 (GA Power)	Wor
										hvolen laFe	lowe				rmation	ect Info	Required Project Information:	Re	Ment Information:	moin in

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

eceived e ((N) usloby saled color ((N) amples	EMP in (3	26. 15.					0	HOW GIT	d		Carpie C		-	PLER	e of SAA	PRINT Name of SAMPLER:	SIG						
an														URE	IGNAT	AND S	SAMPLER NAME AND SIGNATURE	SAMPL						
							1																	
		1	market man										1600	1 1	12	8/26/22	Wood	-	100	#	Daniel Howard	-6	mention in the second s	
SAMPLE CONDITIONS		TIME	DATE		N	Ā	ACCEPTED BY / AFFIL	AB OR	CEPTI	AC			HME	15	BIAG	D.	NOI	RELINQUISHED BY I AFFILIATION	1 48 0	QUISHE	RELIN		ADDITIONAL COMMENTS	ADDIT
				×	×	×									-						WI			1
				×	×	×	×					-			\vdash						WT			1
				×	×	×	10			-		1		1	-					-	WT			PE-ST-
				×	*	×	×				1	+			-	-					TWT			¥-799-
				×	×	×	le ·									T					IW			447
				×	×	×	Tea.					-		1							TW			45-24
				×	×	×	le.		-	-										-	IW			7
				×	×	×				-				-	-					-	IW			Tan a
				×	×	×									-				-		T.W.			7
				×	×	×	1												İ	L	TW			999
DH=7.09				×		-					-	×	×	Ux.	20	12 1120	2/24/2			€ C	£5		2-51	10
				×	×	×						>.	X.	2	G	8/26/2 0915	8/26			E	ŧs		8-01	TI TO
Residual Uniorine (5)	Residual Chlorine (Y/h			RAD 9315/9320	App III/IV Metals	CI, F. SO4	Analyses Test	Other	Na2S2O3 Methanol	NaOH	нсі	H2SO4 HNO3	Unpreserved	# OF CONTAINERS	SAMPLE TEMP AT CO	CONS	DATE	START	BAILE			Supfacial St. Out Affection of	SAMPLE ID One Character per box. [A-Z, 0-97, -] Sample ids must be unique	SAM One Char (A-Z Sample lds
	11											-			- FCTIO					RAE C=		5 5		
							Y/N		šš	valiv	Preservatives	ים			N		COLLECTED	COI		COMP)		MAIRIX		
	Ц	(N/A)	Requested Analysic Filtored (Y/N)	ested Anal	Requ	1							1	1	-									
State / Location	Sta				aba.com,		mode.dialeo@pace	Colect	radical	4	10634	e #	Pace Profile # 1063	Pac		2	220	2160170.	600	2 Miles	Project # 6 22 160170. 2202	Proje	Due Date Frankard	ue Date
Regulatory Agency	Regu		-					1				<u>a</u>	Pace Quote	Pac			T. Co.	00	115	1	Purchase Order #	Pure	voodple.com	aniel howard2@woodpic.com
						1		11				Name	Company Name	Col			Shine.	N. S.	1	Rhondy 6	3	Сору То	D144	Kernesaw, GA 30144
1 01	Page:	_				1	1	-	1				Allention	Alle					Var.d	Daniel Howard	tio Da	Report To.	A Power)	Wood F&I (GA Power)
	2	_									tion:	torna	invoice information:	Inv					nation	t Inform	Required Project Information:	Requ	ā	-Hommonnation:

Pace Analytical

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Ra-228 Test

Sample Madrix Spin		MS/MSD						
977/2022	68670 WT	2572179	0.284	0.356	0.756	1.56	Pass	Pass
Analyst. Date:	Worklist Matrix:	MB Sample ID	MB concentration:	M/B 2 Sigma CSU:	MB MDC:	MB Numerical Performance Indicator:	MB Status vs Numerical Indicator.	MB Status vs. MDC:

Method Blank Assessment

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:	8/16/2022	
Sample I.D.	30516426010	
Sample MS I.D.	30516426020	
Sample MSD I.D.	30516426021	
Spike I.D.:	22-016	
MS/MSD Decay Corrected Spike Concentration (pCI/mL):	34,663	
Spike Volume Used in MS (mL):	0.10	
Spike Volume Used in MSD (mL):	0,10	
MS Aliquat (L, g, F):	0.804	
MS Target Conc.(pCi/L, g, F):	4.311	
MSD Aliquot (L, g, F):	0.802	
MSD Target Conc. (pCi/L, g, F):	4.321	
MS Spike Uncertainty (calculated):	0.211	
MSD Spike Uncertainty (calculated);	0.212	
Sample Result:	0.827	
Sample Result 2 Sigma CSU (pCi/L, g, F):	0.716	
Sample Matrix Spike Result:	4.507	
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	1.174	
Sample Matrix Spike Duplicate Result:	4.407	
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	1,190	
MS Numerical Performance Indicator:	-0,889	
MSD Numerical Performance Indicator.	-1.035	
MS Percent Recovery:	85.36%	
MSD Percent Recovery:	82,84%	
MS Status vs Numerical Indicator.	Pass	
MSD Status vs Numerical Indicator:	Pass	
MS Status vs Recovery:	Pass	
MSD Status vs Recovery:	Pass	
MS/MSD Upper % Recovery Limits:	135%	
MS/MSD Lower % Recovery Limits:	60%	

Laboratory Control Sample Assessment	LCSD (Y or N)?	Z
A TYPE TO LEGISLAND TO THE PARTY OF THE PART	LCS68670	LCSD68670
Count Date:	9/13/2022	
Spike I.D.:	22-016	
Decay Corrected Spike Concentration (pCi/mL):	34.342	
Volume Used (mL):	0.10	
Aliquot Volume (L, g, F):	0.800	
Target Conc. (pCi/L, g, F):	4.291	
Uncertainty (Calculated):	0,210	
Result (pCi/L, g, F):	3.620	
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	0.852	
Numerical Performance Indicator.	-1,50	
Percent Recovery:	84.37%	
Status vs Numerical Indicator:	N/A	
Status vs Recovery:	Pass	
Upper % Recovery Limits:	135%	
Lower % Recovery Limits:	%09	

Matrix Spike/Matrix Spike	Matrix	Matrix Spike Dup Dur (Based on the Percen MS/ MSD
	Enter Duplicate sample IDs if other than LCS/LCSD in the space below.	
		非 woja

Sample 1.D.:

Sample Result (DCIV. g. F):

Sample Result 2 Sigma CSU (DCIV. g. F):

Sample Duplicate Result 2 Sigma CSU (DCIV. g. F):

Are sample and/or duplicate results below RL?

Duplicate Numerical Performance Indicator:

Duplicate Result 2 Sigma CSU (DCIV. g. F):

Are sample and/or duplicate results below RL?

Duplicate Sample Assessment

30516426010 30516426020 30516426021

Sample I.D. Sample MS I.D. Sample MSD I.D. Sample Matrix Spike Result:

Duplicate Sample Assessment

4,507 1,174 4,407 1,190

0.117 2.99% Pass Pass 36%

the space below.	elow ## Matrix Sp	(Based on the	
	See Below 排		

	- 000/001	The state of the s	
	the space below.	Matrix Spike Result 2 Sigma CSU (pCi/L, g, F);	
		Sample Matrix Spike Duplicate Result:	
推 wol		Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	
		Duplicate Numerical Performance Indicator:	
		(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	
		MS/ MSD Duplicate Status vs Numerical Indicator:	
		MS/ MSD Duplicate Status vs RPD:	
		% RPD Limit	
١	1		

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Duplicate Status vs RPD; % RPD Limit:

Duplicate Status vs Numerical Indicator:

Comments: Ra-228 NELAC DW2 Printed: 9/14/2022 2:07 PM Page 58 of 62

Face Analytical

Quality Control Sample Performance Assessment

VAL 9/9/2022 68728 WT Ra-228 Test Analyst Date: Worklist: Matrix:

MS/MSD Z

MS/MSD 1

Sample I.D. Sample MS I.D. Sample MSD I.D.

Sample Collection Date:

Sample Matrix Spike Control Assessment

Spike L.D.:

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike Volume Used in MS (mL):

Spike Volume Used in MSD (mL):

Analyst Must Manually Enter All Fields Highlighted in Yellow.

 ation: 0.757	CSU: 0.340	MDC: 0.552	cator, 4.37	cator: Fail*	MDC: See Comment
MB concent	M/B 2 Sigma	MB	MB Numerical Performance Ind	MB Status vs Numerical Ind	MB Status vs.

aboratory

Method Blank Assessment

MS Target Conc. (pCi/L, g, F):
MS Target Conc. (pCi/L, g, F):
MSD Target Conc. (pCi/L, g, F):
MS Spike Uncertainty (caiculated):

MSD Spike Uncertainty (calculated):

Sample Result.

Sample Result 2 Sigma CSU (pCi/L, g, F) Sample Matrix Spike Result

Matrix Spike Result 2 Sigma CSU (pCi/L. g. F):

Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result 2 Sigma CSU (pC/IL, g, F): MS Numerical Performance Indicator;

MS Percent Recovery

MSD Numerical Performance Indicator

MSD Percent Recovery MS Status vs Numerical Indicator MSD Status vs Numerical Indicator

Control Sample Assessment	CSD (YorN)?	z
	LCS68728	LCSD68728
Count Date:	9/21/2022	
Spike I.D.:	22-016	
Decay Corrected Spike Concentration (pCi/mL):	34,254	
Volume Used (mL):	0.10	
Alignot Volume (L, g, F):	0.807	
Target Conc. (pCi/L, g, F):	4.245	
Uncertainty (Calculated):	0.208	
Result (pCi/L, g, F);	4.828	
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	1.031	
Numerical Performance Indicator:	1.09	
Percent Recovery:	113.74%	
Status vs Numerical Indicator:	NA	
Status vs Recovery:	Pass	
Upper % Recovery Limits:	135%	
Lower % Recovery Limits:	%09	

Sample LD. Sample MS LD.	Sample Matrix Spike Result: Matrix Spike Result 2 Sigma CSU (pCifu, g, P): Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result 2 Sigma CSU (pCifu, g, F): Duplicate Numerical Performance Indicator:	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD:
	Matrix Spi	(Based on the MS

Enter Duplicate

sample IDs if other than

92623277006DUP

Duplicate Sample I.D. Sample I.D.:

Duplicate Sample Assessment

92623277006

LCS/LCSD in re space belov

See Below 排

1,505

Sample Result (pCi/l. g, F):
Sample Result 2 Sigma CSU (pCi/l. g, F):
Sample Duplicate Result (pCi/l. g, F):
Sample Duplicate Result 2 Sigma CSU (pCi/l. g, F):
Are sample and/or duplicate results below RL?

1,850

Duplicate RPD:

Duplicate Numerical Performance Indicator:

Pass

Duplicate Status vs RPD:

Duplicate Status vs Numerical Indicator

MS/MSD Upper % Recovery Limits: MS/MSD Lower % Recovery Limits:

MSD Status vs Recovery

MS Status vs Recoven

Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	It 2 Sigma CSU (pCi/L, g. F):	Suplicate Numerical Performance Indicator.	es) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD:	% RPD Limit:
				Matrix Spike Resu	Sample N	Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g. F	Duplicate Num	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate S	MS/ M	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

"The method blank result is below the reporting limit for this analysis and is acceptable.

Pace Analytical

Quality Control Sample Performance Assessment

Ra-228	VAL 9/28/2022	69055 WT
Test	Analyst Date:	Worklist Matrix:

2599416 0.037 0.270 0.626 0.27 Pass Pass

Method Blank Assessment

MB Status vs Numerical Indicator, MB Status vs. MDC: MB Numerical Performance Indicator.

Laboratory Control Sample Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment Sample Collection Date: Sample ID. Sample MSD ID. Sample MSD ID. Spike I.D.: Spike LO: Spike LO: Spike Volume Used in MSD (mL): Spike Volume Used in MSD (mL): MSD Aliquot (L, g, F): MSD Target Conc. (pCl/L, g, F): MSD Aliquot (L, g, F): MSD Aliquot (L, g, F): MSD Spike Uncertainty (calculated): MSD Spike Uncertainty (calculated): Sample Result 2 Sigma CSU (pCl/L, g, F): MSD Numerical Performance Indicator: MSD Numerical Performance Indicator: MSD Numerical Performance Indicator: MSD Numerical Performance Indicator: MSD Numerical Performance Indicator: MSD Numerical Indicator: MSD Percent Recovery: MSD Status vs Numerical Indicator: MS
--

ontrol Samole Assessment	LCSD (Y or N)?	λ.	MSD Spike U
	LCS69055	LCSD69055	
Count Date:	10/4/2022	10/4/2022	Sample Result 2 Si
Spike I.D.:	22-029	22-029	Samp
Decay Corrected Spike Concentration (pCi/mL):	19.874	19.874	Matrix Spike Result 2 Si
Volume Used (mL):	0.20	0.20	Sample Matrix
Alauot Volume (L. g. F):	0.806	0.805	Matrix Spike Duplicate Result 2 Si
Target Conc. (pCi/L, g, F):	4.933	4,940	MS Numerical
Uncertainty (Calculated):	0.355	0.356	MSD Numerical
Result (pCi/L, g, F):	4,189	4,442	
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	0.917	7260	N
Numerical Performance Indicator:	-1.48	-0.94	MS Status
Percent Recovery:	84.92%	89,91%	MSD Status
Status vs. Numerical Indicator:	N/A	NA	2
Status vs Recovery:	Pass	Pass	MS
Upper % Recovery Limits:	135%	135%	MS/MSD Up
Lower % Recovery Limits:		%09	MS/MSD Lov
Transcript William Property and the Contract of the Contract o			

Assessment	Sample I.D. Sample MS I.D.	Sample MSD I.D.	pike Result 2 Sigma CSU (pC/L. g. F):	ma CSU (pCVL, g, F):	MSD Duplicate RPD:	Numerical Indicator:	MS/ MSD Duplicate Status vs RPD:
Matrix Spike/Matrix Spike Duplicate Sample Assessment		Samole	Matrix Splike Result 2 Sigma CSU (pC/L. g. F):	Matrix Spike Duplicate Result 2 Sigma CSU (pCiVL, g, F):	Duplicate Numerical Performance Indicator: (Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator.	MS/ MSD Dupli

Sample I.D.:	LCS69055	Enter Duplicate	
Duplicate Sample I.D.	LCSD69055	sample IDs if	
Sample Result (pCi/L, g, F):	4,189	other than	
Sample Result 2 Sigma CSU (pCi/L, g, F):	0,917	LCS/LCSD in	
Sample Duplicate Result (pCi/L, g, F):	4.442	the space below.	
Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F):	776.0		
Are sample and/or duplicate results below RL?	ON.		
Duplicate Numerical Performance Indicator:	-0.370		
(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:	5.70%		
Duplicate Status vs Numerical Indicator:	Pass		
Duplicate Status vs RPD:	Pass		
% RPD Limit:	36%		

Duplicate Sample Assessment

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

My Komments:

1 011

Quality Control Sample Performance Assessment

Pace Analytical

9/7/2022 68700 DW Test: Worklist: Matrix: Date: Analyst:

MS/MSD 2

MS/MSD 1

Sample I.D. Sample MS I.D.

Sample Collection Date

Sample Matrix Spike Control Assessment

Sample MSD I.D. Spike I.D.: MS/MSD Decay Corrected Spike Concentration (pCl/mL):

Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL):

MS Aliquot (L, g, F): MS Target Conc.(pCi/L, g, F): MSD Aliquot (L, g, F):

MSD Target Conc. (pCi/L, g, F): MS Spike Uncertainty (calculated): MSD Spike Uncertainty (calculated):

Analyst Must Manually Enter All Fields Highlighted in Yellow.

0.073 0.167 1.05 N/A Pass 0.039 MB Sample ID MB concentration: M/B Counting Uncertainty MB MDC:

Method Blank Assessmen

MB Status vs Numerical Indicator; MB Status vs. MDC: Laboratory Control Sample Assessment

MB Numerical Performance Indicator:

Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result: Gounting Uncertainty (pCifL, g, F): MS Numerical Performance Indicator: Matrix Spike Result Counting Uncertainty (pCi/L, g, F): CSD68700 (N or N) CS68700 19-033 Count Date Spike I.D.: Decay Corrected Spike Concentration (pCi/mL): Volume Used (mL)

Sample Result Counting Uncertainty (pCi/L, g, F)

Sample Matrix Spike Result

MSD Numerical Performance Indicator

MS Percent Recovery

MSD Percent Recovery MS Status vs Numerical Indicato

Sample Result

9/22/2022 19-033 24.023 0.10 0.503 4.773 0.057 5.474 0.511 2.67 1114.68% INIA Pass 125% 93.29% 0.10 0.482 4.458 0.057 1.29 MA Aliquot Volume (L, g, F): Target Conc. (pCi/L, g, F): Result (pCI/L, g, F): LCS/LCSD Counting Uncertainty (pCI/L, g, F): Uncertainty (Calculated): Numerical Performance Indicator: Percent Recovery. Status vs Numerical Indicator.

Upper % Recovery Limits: Lower % Recovery Limits.

Duplicate Sample Assessmen

Status vs Recovery:

LCSD68700 CS68700

Sample I.D.: Duplicate Sample I.D.

4.458

Sample Result (OCult., g, F):
Sample Result Counting Uncertainty (DCult., g, F):
Sample Duplicate Result (OCult., g, F):
Sample Duplicate Result Counting Uncertainty (DCult., g, F):

(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:

Are sample and/or duplicate results below RL?

Duplicate Numerical Performance Indicator:

Duplicate Status vs RPD, % RPD Limit

Duplicate Status vs Numerical Indicator:

Duplicate Numerical Performance Indicator: (Based on the Percent Recoveries) MS/ MSD Duplicate Status vs Numerical Indicator: Sample Matrix Spike Result Matrix Spike Result Counting Uncertainty (pCi/L, g, F): Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Duplicate Result Matrix Spike/Matrix Spike Duplicate Sample Assessment 92622406005DUP 0.015 0.055 0.077 0.075 See Below ## 92622406005

Sample I.D. Sample MS I.D. Sample MSD I.D.

MS/MSD Upper % Recovery Limits: MS/MSD Lower % Recovery Limits:

MSD Status vs Numerical Indicator MS Status vs Recovery MSD Status vs Recovery

134.13% N/A 25%

5.474 0.511 NO -2.835 20.57%

MS/ MSD Duplicate Status vs RPD: % RPD Limit: ## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

wandreder

LAMA IZEIZE

TAR_68700_W_CorrectedSampleID TAR_68700_W.xls

Comments: TAR DW QC Printed: 9/22/2022 12:57 PM

101

Pace Analytical

Quality Control Sample Performance Assessment

9/12/2022 68731 DW RMS Test Date: Worklist: Matrix: Analyst:

MS/MSD 2

MS/MSD 1

Sample I.D. Sample MS I.D. Sample MSD I.D.

Spike I.D.

Sample Collection Date:

Sample Matrix Spike Control Assessment

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike Volume Used in MS (mL):

Spike Volume Used in MSD (mL):

MS Aliquot (L, g, F): MS Target Conc.(pCi/L, g, F): MSD Aliquot (L, g, F): MSD Target Conc. (pCi/L, g, F):

Analyst Must Manually Enter All Fields Highlighted in Yellow.

0.178 1.50 N/A Pass 0.065 0.084 MB Numerical Performance Indicator. MB Sample ID MB MDC: MB Status vs Numerical Indicator. MB Status vs. MDC: MB concentration: M/B Counting Uncertainty Method Blank Assessmen

CSD6873 CS6873

MS Spike Uncertainty (calculated): MSD Spike Uncertainty (calculated):

Sample Result

Sample Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Result: Matrix Spike Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Duplicate Result

Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):

MS Numerical Performance Indicator:

MS Percent Recovery

MSD Percent Recovery

MSD Numerical Performance Indicator

MS Status vs Numerical Indicator MSD Status vs Numerical Indicator MS Status vs Recovery MSD Status vs Recovery

9/23/2022 19-033 24.023 0.10 0.502 4.789 0.057 4.446 0.462 -1.44 92.84% Pass 125% 75% Y. 104.14% 19-033 0.10 Pass 125% 75% 976 0.057 0.520 N/A Count Date: Spike I.D.: Result (pCi/L, g, F): LCS/LCSD Counting Uncertainty (pCi/L, g, F): Aliquot Volume (L, g, F): Decay Corrected Spike Concentration (pCI/mL): Volume Used (mL): Uncertainty (Calculated): Status vs Recovery: Farget Conc. (pCI/L, g, F) Numerical Performance Indicator Percent Recovery Status vs Numerical Indicator Laboratory Control Sample Assessment

CSD6873 LCS68731 Sample I.D.: Upper % Recovery Limits: Lower % Recovery Limits: Duplicate Sample I.D.

Sample I.D. Sample MS I.D. Sample MSD I.D.

Sample Matrix Spike Result

MS/MSD Upper % Recovery Limits: MS/MSD Lower % Recovery Limits:

Matrix Spike/Matrix Spike Duplicate Sample Assessment

92622406006 92622406006DUP 0.016 0.067 0.046 0.077 See Below ## 1.492 11.48% 4,976 0,520 4,446 0,462 Pass 25% Duplicate Status vs RPD: % RPD Limit: Sample Result (pCifL, 9, F): Sample Result Counting Uncertainty (pCifL, 9, F): Sample Duplicate Result (pCi/L, g, F): Are sample and/or duplicate results below RL? (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD: Sample Duplicate Result Counting Uncertainty (pCi/L, g. F) Duplicate Status vs Numerical Indicator Duplicate Numerical Performance Indicator **Duplicate Sample Assessmen**

MS/ MSD Duplicate Status vs RPD: % RPD Limit Matrix Spike Result Counting Uncertainty (pCI/L, g, F): Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): Duplicate Numerical Performance Indicator: (Based on the Percent Recoveries) MS/ MSD Duplicate Ratus vs Numerical Indicator: Sample Matrix Spike Duplicate Result

98.11% N/A

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

Unangle 22 A) Char

ralas Perelza

TAR DW QC

Printed: 9/26/2022 11:41 AM

October 20, 2022

Michelle Barker WOOD E&I 1075 Big Shanty Rd Suite 100 Kennesaw, GA 30144

RE: Project: Mitchell AP-A, AP-1, AP-2

Pace Project No.: 92630865

Dear Michelle Barker:

Enclosed are the analytical results for sample(s) received by the laboratory on October 12, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Charlotte
- Pace Analytical Services Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Nicole D'Oleo nicole.d'oleo@pacelabs.com (704)875-9092 Project Manager

Micole D'oler

Enclosures

cc: Joju Abraham, Georgia Power-CCR
Noelia Gangi, Georgia Power
Ben Hodges, Georgia Power
Kristen Jurinko
Laura Midkiff, Georgia Power
Ms. Lauren Petty, Southern Company
Rhonda Quinn, WOOD E&I
Michael Smilley, Georgia Power
Tina Sullivan, ERM
Greg Wrenn, WOOD E&I

CERTIFICATIONS

Project: Mitchell AP-A, AP-1, AP-2

Pace Project No.: 92630865

Pace Analytical Services Charlotte

South Carolina Laboratory ID: 99006 South Carolina Certification #: 99006001

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 South Carolina Drinking Water Cert. #: 99006003

North Carolina Drinking Water Certification #: 37706 Florida/NELAP Certification #: E87627 North Carolina Field Services Certification #: 5342 Kentucky UST Certification #: 84 North Carolina Wastewater Certification #: 12 La029

South Carolina Laboratory ID: 99006 Virginia/VELAP Certification #: 460221

Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092 North Carolina C

Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 North Carolina Certification #: 381 South Carolina Certification #: 98011001

SAMPLE SUMMARY

Project: Mitchell AP-A, AP-1, AP-2

Pace Project No.: 92630865

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92630865001	PZ-2D	Water	10/11/22 11:30	10/12/22 15:00
92630865002	PZ-32	Water	10/11/22 13:15	10/12/22 15:00
92630865003	PZ-25	Water	10/11/22 15:40	10/12/22 15:00
92630865004	EB-01	Water	10/11/22 08:20	10/12/22 15:00
92630865005	FB-1	Water	10/11/22 10:00	10/12/22 15:00
92630865006	FD-01	Water	10/11/22 00:00	10/12/22 15:00

SAMPLE ANALYTE COUNT

Project: Mitchell AP-A, AP-1, AP-2

Pace Project No.: 92630865

Lab ID	Sample ID	Method	Analysts	Analytes Reported
92630865001	PZ-2D	SM 2540C-2015	BTS	1
92630865002	PZ-32	SM 2540C-2015	BTS	1
92630865003	PZ-25	EPA 7470A	VB	1
		SM 2540C-2015	BTS	1
92630865004	EB-01	EPA 7470A	VB	1
		SM 2540C-2015	BTS	1
92630865005	FB-1	EPA 7470A	VB	1
		SM 2540C-2015	BTS	1
92630865006	FD-01	EPA 7470A	VB	1
		SM 2540C-2015	BTS	1

PASI-C = Pace Analytical Services - Charlotte

PASI-GA = Pace Analytical Services - Peachtree Corners, GA

SUMMARY OF DETECTION

Project: Mitchell AP-A, AP-1, AP-2

Pace Project No.: 92630865

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92630865001	PZ-2D					
	Performed by	Customer			10/13/22 14:04	
	рН	7.94	Std. Units		10/13/22 14:04	
SM 2540C-2015	Total Dissolved Solids	75.0	mg/L	25.0	10/14/22 16:06	
92630865002	PZ-32					
	Performed by	Customer			10/13/22 14:04	
	рН	7.37	Std. Units		10/13/22 14:04	
SM 2540C-2015	Total Dissolved Solids	173	mg/L	25.0	10/14/22 16:06	
92630865003	PZ-25					
	Performed by	Customer			10/13/22 14:04	
	рН	7.13	Std. Units		10/13/22 14:04	
SM 2540C-2015	Total Dissolved Solids	267	mg/L	25.0	10/14/22 16:06	
92630865006	FD-01					
SM 2540C-2015	Total Dissolved Solids	260	mg/L	25.0	10/14/22 16:06	

Project: Mitchell AP-A, AP-1, AP-2

Pace Project No.: 92630865

Date: 10/20/2022 05:37 PM

Sample: PZ-2D	Lab ID:	92630865001	Collecte	d: 10/11/22	2 11:30	Received: 10	/12/22 15:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical Pace Ana	Method: llytical Services	- Charlotte						
Performed by	Customer				1		10/13/22 14:04		
рН	7.94	Std. Units			1		10/13/22 14:04		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Ana	lytical Services	- Peachtre	e Corners, (GΑ				
Total Dissolved Solids	75.0	mg/L	25.0	25.0	1		10/14/22 16:06		

Project: Mitchell AP-A, AP-1, AP-2

Pace Project No.: 92630865

Date: 10/20/2022 05:37 PM

Sample: PZ-32	Lab ID:	92630865002	Collecte	d: 10/11/22	2 13:15	Received: 10	/12/22 15:00 Ma	trix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical Pace Ana	Method: lytical Services	- Charlotte						
Performed by	Customer				1		10/13/22 14:04		
pH	7.37	Std. Units			1		10/13/22 14:04		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Ana	lytical Services	- Peachtree	e Corners, 0	3A				
Total Dissolved Solids	173	mg/L	25.0	25.0	1		10/14/22 16:06		

Project: Mitchell AP-A, AP-1, AP-2

Pace Project No.: 92630865

Date: 10/20/2022 05:37 PM

Sample: PZ-25	Lab ID:	92630865003	Collecte	d: 10/11/22	2 15:40	Received: 10/	12/22 15:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	Customer				1		10/13/22 14:04		
рН	7.13	Std. Units			1		10/13/22 14:04		
7470 Mercury	Analytical	Method: EPA 7	7470A Prep	aration Met	thod: EF	PA 7470A			
	Pace Anal	ytical Services	- Peachtre	e Corners, (GΑ				
Mercury	ND	mg/L	0.00020	0.00013	1	10/17/22 16:05	10/18/22 10:20	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2015						
	Pace Anal	ytical Services	- Peachtre	e Corners, (GΑ				
Total Dissolved Solids	267	mg/L	25.0	25.0	1		10/14/22 16:06		

Project: Mitchell AP-A, AP-1, AP-2

Pace Project No.: 92630865

Date: 10/20/2022 05:37 PM

Sample: EB-01	Lab ID:	92630865004	Collecte	d: 10/11/22	2 08:20	Received: 10/	12/22 15:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
7470 Mercury	•	Method: EPA 7				PA 7470A			
Mercury	ND	mg/L	0.00020	0.00013	1	10/17/22 16:05	10/18/22 10:31	7439-97-6	
2540C Total Dissolved Solids	•	Method: SM 29		e Corners, C	SA.				
Total Dissolved Solids	ND	mg/L	25.0	25.0	1		10/14/22 16:06		

Project: Mitchell AP-A, AP-1, AP-2

Pace Project No.: 92630865

Date: 10/20/2022 05:37 PM

Sample: FB-1 Lab ID: 92630865005 Collected: 10/11/22 10:00 Received: 10/12/22 15:00 Matrix: Water Report Results Units Limit MDL DF Prepared CAS No. **Parameters** Analyzed Qual Analytical Method: EPA 7470A Preparation Method: EPA 7470A 7470 Mercury Pace Analytical Services - Peachtree Corners, GA Mercury ND mg/L 0.00020 0.00013 10/17/22 16:05 10/18/22 10:33 7439-97-6 2540C Total Dissolved Solids Analytical Method: SM 2540C-2015 Pace Analytical Services - Peachtree Corners, GA ND 25.0 25.0 **Total Dissolved Solids** mg/L 10/14/22 16:06

Project: Mitchell AP-A, AP-1, AP-2

Pace Project No.: 92630865

Date: 10/20/2022 05:37 PM

Sample: FD-01	Lab ID:	92630865006	Collecte	d: 10/11/22	2 00:00	Received: 10/	12/22 15:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
7470 Mercury	-	Method: EPA 7				PA 7470A			
Mercury	ND	mg/L	0.00020	0.00013	1	10/17/22 16:05	10/18/22 10:41	7439-97-6	
2540C Total Dissolved Solids	•	Method: SM 25			SA.				
Total Dissolved Solids	260	mg/L	25.0	25.0	1		10/14/22 16:06		

QUALITY CONTROL DATA

Project: Mitchell AP-A, AP-1, AP-2

Pace Project No.: 92630865

Date: 10/20/2022 05:37 PM

QC Batch: 730765 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92630865003, 92630865004, 92630865005, 92630865006

METHOD BLANK: 3804947 Matrix: Water

Associated Lab Samples: 92630865003, 92630865004, 92630865005, 92630865006

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

Mercury mg/L ND 0.00020 0.00013 10/18/22 09:22

LABORATORY CONTROL SAMPLE: 3804948

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Mercury mg/L 0.0025 0.0022 86 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3804949 3804950

MS MSD

92630865003 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits ND 0.0025 20 Mercury mg/L 0.0025 0.0021 0.0021 82 79 75-125

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Mitchell AP-A, AP-1, AP-2

Pace Project No.: 92630865

QC Batch: 730309 Analysis Method: SM 2540C-2015

QC Batch Method: SM 2540C-2015 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92630865001, 92630865002, 92630865003, 92630865004, 92630865005, 92630865006

METHOD BLANK: 3802695 Matrix: Water

Associated Lab Samples: 92630865001, 92630865002, 92630865003, 92630865004, 92630865005, 92630865006

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L ND 25.0 25.0 10/14/22 16:02

LABORATORY CONTROL SAMPLE: 3802696

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result **Total Dissolved Solids** 381 95 80-120 mg/L

SAMPLE DUPLICATE: 3802698

92630709001 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 46.0 **Total Dissolved Solids** mg/L 44.0 4 10

SAMPLE DUPLICATE: 3802794

Date: 10/20/2022 05:37 PM

92630583001 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 884 mg/L 876 1 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Mitchell AP-A, AP-1, AP-2

Pace Project No.: 92630865

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 10/20/2022 05:37 PM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Mitchell AP-A, AP-1, AP-2

Pace Project No.: 92630865

Date: 10/20/2022 05:37 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92630865001	PZ-2D				
92630865002	PZ-32				
92630865003	PZ-25				
92630865003	PZ-25	EPA 7470A	730765	EPA 7470A	730893
92630865004	EB-01	EPA 7470A	730765	EPA 7470A	730893
92630865005	FB-1	EPA 7470A	730765	EPA 7470A	730893
92630865006	FD-01	EPA 7470A	730765	EPA 7470A	730893
92630865001	PZ-2D	SM 2540C-2015	730309		
92630865002	PZ-32	SM 2540C-2015	730309		
92630865003	PZ-25	SM 2540C-2015	730309		
92630865004	EB-01	SM 2540C-2015	730309		
92630865005	FB-1	SM 2540C-2015	730309		
92630865006	FD-01	SM 2540C-2015	730309		

Pace	DC#_Title: ENV-FRM-	HUN1-0083	v01_S	ample (Cond	lition Upon Receipt
MATTER STREET	Effective Date: 05/12/2022			-11011		
sheville Sample Cond Upon Receip ourier: Commercial		_		Raleigi	Proje	Mechanicsville Atlanta Kernersville Ct#: WO#: 92630865
stody Seal Pre	esent? Yes No So	eals Intact?	☐Yes	 	other	92630865 Date/Initials Person Examining Contents: 10/12/22 Biological Tissue Erozen? Two
☐ IR Gu oler Temp:	8.6 Correction Fa	(°C) _ O . (_	Wet □E	Blue	□None Temp should be above freezing to 6°C
Did samples or	Soil (N/A, water sample) riginate in a quarantine zone within	. 6	: CA, NY,	or SC		has begun Did samples originate from a foreign source (internationally,
DA Regulated Did samples or	Soil (N/A, water sample)		: CA, NY,	or SC	I	has begun
DA Regulated Did samples or (check maps)?	Soil (N/A, water sample) riginate in a quarantine zone within		: CA, NY,	or SC	1.	has begun Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)? Yes No
DA Regulated Did samples or (check maps)? Chain of Cust	Soil (N/A, water sample) riginate in a quarantine zone within Yes No	the United States			1.	has begun Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)? Yes No
DA Regulated Did samples or (check maps)? Chain of Cust Samples Arri	Soil (N/A, water sample) riginate in a quarantine zone within Yes No tody Present?	the United States	□No	□N/A	-	has begun Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)? Yes No
DA Regulated Did samples or (check maps)? Chain of Cust Samples Arri	Soil (N/A, water sample) riginate in a quarantine zone within Yes No tody Present? ved within Hold Time?	the United States	□No □No	□N/A □N/A	2.	has begun Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)? Yes No
DA Regulated Did samples or (check maps)? Chain of Cust Samples Arri	Soil (N/A, water sample) riginate in a quarantine zone within Yes No tody Present? ved within Hold Time? ime Analysis (<72 hr.)? round Time Requested?	the United States	□No □No □No	□N/A □N/A □N/A □N/A	2. 3. 4.	has begun Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)? Yes No
DA Regulated Did samples or (check maps)? Chain of Cust Samples Arri Short Hold T Rush Turn Ar Sufficient Vol Correct Conta	Soil (N/A, water sample) riginate in a quarantine zone within Yes No tody Present? ved within Hold Time? ime Analysis (<72 hr.)? round Time Requested?	the United States	□No □No □No □No □No	□ N/A □ N/A □ N/A □ N/A □ N/A □ N/A	2.	Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)? Yes No
DA Regulated Did samples or (check maps)? Chain of Cust Samples Arri Short Hold T Rush Turn Ar Sufficient Vol Correct Conta	Soil (N/A, water sample) riginate in a quarantine zone within Yes No tody Present? ved within Hold Time? ime Analysis (<72 hr.)? round Time Requested? lume? ainers Used? tainers Used?	The United States Ves Yes Yes Yes	□No □No □No □No	□ N/A □ N/A □ N/A □ N/A □ N/A	2. 3. 4. 5.	has begun Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)? Yes No Comments/Discrepancy:
DA Regulated Did samples or (check maps)? Chain of Cust Samples Arri Short Hold Ti Rush Turn Ar Sufficient Vol Correct Conta	Soil (N/A, water sample) riginate in a quarantine zone within Yes No tody Present? ved within Hold Time? ime Analysis (<72 hr.)? round Time Requested? lume? ainers Used? tainers Used?	Ves	No No No No No No No No	□N/A □N/A □N/A □N/A □N/A □N/A □N/A □N/A	2. 3. 4. 5. 6.	has begun Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)?
DA Regulated Did samples or (check maps)? Chain of Cust Samples Arri Short Hold Ti Rush Turn Ar Sufficient Vol Correct Conta -Pace Cont Containers In Dissolved and Sample Label	Soil (N/A, water sample) riginate in a quarantine zone within Yes No tody Present? ved within Hold Time? ime Analysis (<72 hr.)? round Time Requested? lume? ainers Used? tainers Used?	Yes Yes Yes Yes Yes	No No No	□ N/A □ N/A □ N/A □ N/A □ N/A □ N/A □ N/A □ N/A	2. 3. 4. 5. 6.	has begun Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)?
DA Regulated Did samples or (check maps)? Chain of Cust Samples Arri Short Hold T Rush Turn Ar Sufficient Vol Correct Containers In Dissolved and Sample Label Includes C	Soil (N/A, water sample) riginate in a quarantine zone within Yes No tody Present? ved within Hold Time? ime Analysis (<72 hr.)? round Time Requested? lume? ainers Used? tainers Used? stact? alysis: Samples Field Filtered? is Match COC?	Yes Yes Yes Yes Yes Yes Yes Yes		N/A	2. 3. 4. 5. 6. 7. 8. 9.	has begun Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)?
DA Regulated Did samples or (check maps)? Chain of Cust Samples Arri Short Hold T Rush Turn Ar Sufficient Vol Correct Containers In Dissolved and Sample Label Includes C	Soil (Yes Yes Yes Yes Yes Yes Yes Yes	No No No No No No No No	N/A	2. 3. 4. 5. 6. 7. 8. 9.	has begun Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)?
DA Regulated Did samples or (check maps)? Chain of Cust Samples Arri Short Hold T Rush Turn Ar Sufficient Vol Correct Containers In Dissolved and Sample Label Includes C Headspace in Trip Blank Pre	Soil (Yes Yes Yes Yes Yes Yes Yes Yes		N/A	2. 3. 4. 5. 6. 7. 8. 9.	has begun Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)?

Project Manager SCURF Review: Date:

Project Manager SRF Review: Date:

_____ Date/Time:

Person contacted:

CLIENT NOTIFICATION/RESOLUTION

Lot ID of split containers:

DC#_Title: ENV-FRM-HUN1-0083 v01_Sample Condition Upon Receipt

Effective Date: 05/12/2022

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

Project #

WO#: 92630865

PM: NMG

Due Date: 10/26/22

CLIENT: GA-GA Power

**Bottom half of box is to list number of bottles

***Check all unpreserved Nitrates for chlorine

Item#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) (Cl-)	RDSW.250 m clastic HNO3 (thH < 2)	To the second and seco	BP42-125 mL Plastic ZN Acetate & NaOH (>9)	BP4B-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H- 1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2504 (pH < 2)	DG94-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unpreserved (N/A)	DG9V-40 mL VOA H3PO4 (N/A)	DG95-40 mL VOA H2SO4 (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A - lab)		BP3R-250 mL Plastic (NH2)2SO4 (9.3-9.7)	_ AGOU-100 mL Amber Unpreserved (N/A) {CI-)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1	1		1		1	1		1	1			1		1	1	1	17								1	1			
2	1		1		1	1	1		1			1		1	1	1									1	1			
3	1		1		1	1	1	1	1			1		1	1	1									1	1			
4	1		1		1	1	V	J	1			/		1	1	1									1	Z,			
5	1		T		1	1	V		1			/		1	1	1									Z	₹	1		
6	/		1	-	1	1	1	1	1			1		1	1	/						7			1	Ţ			
7	1				1	1	1					1	-	1	/	1									1	1			
8	1				1	1	1	1	1			1	-	1	1	1									1	1			
9	1			-	1	1	1	1	1			1		1	1	1									1	1			
10	1			-	1	1	1	1	1			1	-	1	-	1									1	1			
11	1				1	1	1	1	1			1		1	1	1									1	1			
12	1				1	1	1	1	1			1		1	1	1									1	1			

		pH Ac	ljustment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot#
	la la la la la la la la la la la la la l					

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers

Pace Analytical www.paceass.com

CHAIN-UF-CUS I ODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

							The same		- Trailing							- Pace			
mpany: GA Power	Report To. SCS Contacts	S Cont	acts				Atte	Attention: Sou	Southern Co	20 00							-	5	-
dress: Atlanta, GA	Copy To Wo	ood Cor	Wood Contacts Rhonda Quinn	onda Oc	in		3	Company Name:		WSP 11SA formerly Mondy	(former	Myon							
							₽¥	Address	1075 B	1075 Bin Shartty Boad Konggan, C	A Post	Son A		REGULA	œΙ	ENCY			
184 To: SCS Contacts	Purchase Order No.	No.					P S	Ouote		5 6	ייז ואס	I Neillik	Saw, G	NPDES	ES	GROUND WATER	WATER	T ORI	DRINKING WATER
one: Fax:	Project Name: Mitchell AP-A, AP-1, AP-2	Mitch	ell AP-A.	AP-1 A	5.2		Page Refe	Reference: Pace Project		Missis DiOlog				L UST	L	RCRA		✓ OTHER	ER CCR
quested Due Date/TAT: 7 Day	Princed Member 181		0, 000				Man	ager		o Oleo				Site Location	none	į			11. 11. 11.
ŀ		DODAA	DE JONE	0912216	2		8	Profile #:	10834					ST	STATE:	8			
	t	t					ł	-				Req	uested /	Requested Analysis Filtered (Y/N)	lltered ()	(N/			16.16.1
Required Client Information	5000 ₂₀	(9MO		COLLECT	CTED				Preservatives	atives	Î N /A								
DIMP	WATER WT WASTER WW PRODUCT P P P P P P P P P P P P P P P P P P P	=GRAB C=C	CCMPOSITE START	START	COMPOSITE	29	_				1						(N/A)		
OUE	£ 2 2 2		3740	į			OF CONTAINER	SO,	CI NO ³	a ₂ S ₂ O ₃ lonethanol	her Analysis Test						sidual Chlorine (
1 82-20	WG	8	+	$\overline{}$	15 W. 22	17.15 C	4	٦ -	H	N	o	ο 1 >	-	+	1			ace Proje	Pace Project No./ Lab I.D.
2 P2-32	SMA		F	1	10.11.37	13.6	-	=	1	1	I	र	\pm	+			子井二	7.94	
-	MG		T		10-11-27	1500	-	+	-	+	T	4	-		1		PH	1=7,37	
4 EB-01	Ma				-	820	1 0	-	-		T	\ \ <\>	Ŧ	+	1	-	PHI	=7,13	
. 1	MA	18		_	-22	1800	2	=	-	1	Ι	Φ× Φ×	Ŧ	+	#	1	+		
FD-001	570	9		*	1		2	-	-	+	Г		Ŧ	+	ŧ		+		
							+	E		-	Г	1	Ŧ	-		-	+		
		1	1				Н					H	F		Ė			ľ	
			H	\parallel			+					\blacksquare	\blacksquare						
			\dagger	1			+	1	+		Т	Ŧ	1	+			Н		
ADDITIONAL COMMENTS	RELI	NOUISH	RELINGUISHED BY / AFFILIATION	FILIATION		DATE	-	TIME	1	ACCEP	TED BY	ACCEPTED BY / AFFILIATION	NOT	DATE	+	TIME	┥゜	SAMOI E COMPANIONS	on Other
12 (30)		V	N			22-21-01	1,8	500	2	3	0	1	1	1/0/13/25	14	15	-	_	
7-DAY TAT PLEASE							-										++	\vdash	\coprod
	-		8	SAMPLER NA	MAME AN	ME AND SIGNATURE	- RE						П	Ц	H	H	Н	P	
age 1				g.	PRINT Name	Name of SAMPLER:	M	VER	Guit	15%	1				ľ	5. u	no bev	Seale (N/Y)	s jujsc
				ZIZ	PAINTAIN	SIGNATURE of SAMPLE		1	1	1		SATE	DATE Claned			dus	ń9:	ΑÞ	i ek

2022 Semi-Annual Groundwater Monitoring and Corrective Action Report Georgia Power Company – Plant Mitchell Ash Ponds A, 1, and 2 Putney, Georgia

APPENDIX B DATA QUALITY EVALUATION

Page 1 of 17

Data Evaluation Narrative

Project: Plant Mitchell CCR Groundwater Semiannual Event #18

Wood Project Number: 6122160170.2203.**** Site: Ash Ponds 1&2 - Plant Mitchell, Georgia

Matrix: Groundwater

Pace SDG Nos: 92622406 and 92630865

Introduction

A data quality evaluation (DQE) was performed on the laboratory data reported for the Semiannual Event #18 (August and October 2022) conducted at Ash Ponds 1 and 2 at Plant Mitchell, located in Albany, Georgia. The samples were collected and analyzed per the protocols presented in the *Draft* Plant Mitchell *Field Sampling Plan* (FSP) (SCS, 2016). The following sections provide summary discussions of the required data qualifications for the analytical methods for samples collected. A Level II DQE validation was performed on the samples analyzed by the fixed-based laboratory within these sample delivery groups (SDGs). A Level II DQE consists of review of the following criteria: sample integrity, holding times, method blanks, laboratory control samples (LCSs), matrix spikes/matrix spike duplicate (MS/MSD) recoveries and relative percent differences (RPDs), post digestion spikes (PDS), where applicable, laboratory and field duplicate RPDs, field and/or equipment blanks, and reporting limits. Additionally, the data summary tables generated from the electronic data deliverable (EDD) were compared to the laboratory hardcopy data report to verify that the EDD and laboratory data report agree.

The data were reviewed using the laboratory's precision and accuracy limits, the method requirements, and any requirements listed in the FSP. It should be noted that at the time of this review, a finalized QAPP was not provided. DQE data qualifications were applied, if necessary, using the procedures in United States Environmental Protection Agency (USEPA) Region IV Data Validation Standard Operating Procedures (USEPA, 2011) and the USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review (USEPA, 2020), as guidance, and professional judgment using the following qualifiers:

Usable Data <u>Qualifier</u> J The analyte was positively identified but the result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample. SCS Definition: Value J indicates the substance was detected at such low levels that the precision of the laboratory instruments could not produce as reliable of a value. Therefore, the value displayed (value J) is qualified by the laboratory as estimated. UJ The analyte was analyzed for but was not detected above the level of the reported sample reporting/method detection limit. The reported method detection limit is approximate and may be inaccurate or imprecise. U Analyte was analyzed for but was not detected above the level of the reported sample reporting/method detection limit. Note: SCS does not use the "U" flag except when reporting results for radium that are detected below the Minimum Detection Concentration (MDC). l J* This analyte should be considered "not-detected" because it was detected in an associated blank at a similar level.

Page 2 of 17

Qualifier Unusable Data

R The sample results are rejected due to deficiencies in the ability to analyze the

sample and meet QC criteria. The presence or absence of the analyte cannot be

confirmed and the data are unusable.

UR The analyte was analyzed for but was not detected above the level of the

reported sample reporting or method detection, however the data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The analyte may or may not

be present in the sample.

The analytical results for the samples reported in these SDGs are usable* with the qualifications discussed in this narrative. A summary of the data with associated qualifiers is presented in **Table 1**.

*Samples were recollected in October 2022 and usable data were generated for TDS results previously rejected due to gross exceedance of the analytical holding times.

Deliverables

The data packages, as submitted to WSP USA Environment & Infrastructure Inc. (WSP), formerly Wood Environment & Infrastructure Solutions, Inc. (Wood) are complete to perform a Level II DQE for United States Environmental Protection Agency (USEPA) Methods SW6020B, SW6010D, SW7470A, SM2540C, and EPA 300.0.

Sample Integrity

The groundwater samples were submitted to Pace Analytical Services, Inc. (Pace) in Peachtree Corners, Georgia and analyzed for Appendix III and Appendix IV metals (antimony, arsenic, barium, beryllium, boron, cadmium, chromium, cobalt, lead, lithium, molybdenum, selenium, and thallium) by Methods SW6020B and SW6010D (calcium), mercury by Method SW7470A, anions (chloride, fluoride, and sulfate) by Method 300.0, and total dissolved solids (TDS) by Method SM2540C. The anions were analyzed by Pace-Asheville, North Carolina. These data were reported in SDG 92622406.

Select samples were recollected in October 2022 and analyzed for TDS and/or mercury to generate usable data that was previously qualified for exceedance of holding times and the data were reported in SDG 92630865.

Samples were also sent from Pace's Georgia facility to their laboratory in Greenburg, Pennsylvania and analyzed for radium-226, radium-228, and total radium by Methods SW9315 and SW9320. The radium data were reported and narrated separately.

Based on the information provided on the Chain-of-Custody (COC) forms, the field samples arrived at the laboratory intact and within the temperature range and preservation requirements. Completed COC documents are included in the data package.

Sample Identification

These SDGs contain the following groundwater and quality control (QC) samples:

SDG 92622406:

	Pace Sample	Sample	DQE		Pace Sample	Sample	DQE
GPC Sample ID	ID	Date	Level	GPC Sample ID	ID	Date	Level
MIT-PZ-1D-WG-20220824	PZ-1D	08/24/22	II	MIT-PZ-25-WG-20220824	PZ-25	08/24/22	П
MIT-PZ-2D-WG-20220824	PZ-2D	08/24/22	Ш	MIT-PZ-31-WG-20220824	PZ-31	08/24/22	П
MIT-PZ-7D-WG-20220825	PZ-7D	08/25/22	II	MIT-PZ-32-WG-20220824	PZ-32	08/24/22	П
MIT-PZ-14-WG-20220825	PZ-14	08/25/22	Ш	MIT-PZ-33-WG-20220824	PZ-33	08/24/22	П
MIT-PZ-15-WG-20220825	PZ-15	08/25/22	Ш	MIT-PZ-57-WG-20220826	PZ-57	08/26/22	П
MIT-PZ-16-WG-20220825	PZ-16	08/25/22	Ш	QC Samples			
				MIT-APA12-EB-01-WQ-			
MIT-PZ-17-WG-20220825	PZ-17	08/25/22	Ш	20220826	EB-01	08/26/22	П
				MIT-APA12-FB-01-WQ-			
MIT-PZ-18-WG-20220825	PZ-18	08/25/22	Ш	20220824	FB-01	08/24/22	П
				MIT-APA12-FD-001-WQ-			
MIT-PZ-19-WG-20220825	PZ-19	08/25/22	Ш	20220824	FD-01	08/24/22	П
				MIT-APA12-FD-002-WQ-			
MIT-PZ-23A-WG-20220825	PZ-23A	08/25/22	Ш	20220825	FD-02	08/25/22	П

These samples were collected from Ash Ponds 1 and 2 between August 24 and August 26, 2022. Sample MIT-APA12-FD-001-WQ-20220824 (FD-001) is a field duplicate of MIT-PZ-1D-WG-20220824 (PZ-1D), and MIT-APA12-FD-002-WQ-20220825 (FD-002) is a field duplicate of MIT-PZ-18-WG-20220825 (PZ-18). The field QC blanks include samples MIT-APA12-FB-01-WQ-20220824 ([FB-01] a field blank sample) and MIT-APA12-EB-01-WQ-20220826 ([EB-01] an equipment blank). The truncated sample IDs (i.e., PZ-18, etc.) will be used to discuss the data quality in this narrative.

The analytical results for the metals, mercury, and anions data are usable with the qualifications discussed in this narrative with the following exceptions: four of nineteen TDS results were considered unusable; therefore, samples were recollected in October and reported in SDG 92630865 as listed below:

SDG 92630865:

GPC Sample ID	Pace Sample ID	Sample Date	DQE Level	QC Sample ID	Pace Sample ID	Sample Date	DQE Level
MIT-PZ-25-WG-20221011	PZ-25	10/11/22	Ш	MIT-APA12-EB-01-WQ-20221011	EB-01	10/11/22	II
MIT-PZ-2D-WG-20221011	PZ-2D	10/11/22	Ш	MIT-APA12-FB-01-WQ-20221011	FB-01	10/11/22	II
MIT-PZ-32-WG-20221011	PZ-32	10/11/22	Ш	MIT-APA12-FD-001-WG-20221011	FD-01	10/11/22	ll l

These samples were collected from Ash Ponds 1 and 2 on October 11, 2022 and analyzed for TDS and/or mercury due to exceedance of analytical holding times. Sample FD-001 is a field duplicate of PZ-25, and the field QC blanks include samples FB-01 (a field blank sample) and EB-01 (an equipment blank). Samples PZ-25, FD-001, FB-01 and EB-01 were additionally analyzed for mercury. The analytical results for the mercury and TDS data are usable with the qualifications discussed in this narrative.

Note: GPC created new sample IDs specific to their database; however, Pace LIMS could not accommodate the GPC sample IDs and reported the samples with the simpler established format.

A summary of the data quality is presented below.

Metals (SW6020B)

The samples were submitted to Pace for CCR Appendix III and Appendix IV metals by Methods SW6010D and SW6020B. The CCR Appendix III metals for this event are: boron (B) and calcium (Ca). The Appendix IV metals for this event are antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), cadmium (Cd), chromium (Cr), cobalt (Co), lead (Pb), lithium (Li), molybdenum (Mo), selenium (Se), and thallium (TI). Each of the Level II components were within laboratory QC limits except for MS/MSD recoveries.

Holding Times

The sample analyses were performed within the 6-month analysis holding time.

Method Blanks

The method blanks associated with the samples analyzed within this SDG contained no reportable detections of metals.

<u>Laboratory Control Sample (LCS)</u>

Percent recoveries for target analytes were within quality control limits in the LCSs.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

MS/MSD analyses were performed on samples FD-001, PZ-32, PZ-31, PZ-57, PZ-2D, and PZ-14. The recoveries and RPDs were within QC limits except for calcium in FD-001 and PZ-32.

Action: No qualification was necessary because calcium was present in the parent samples greater than 4 times (4x) the spikes.

Post Digestion Spike (PDS)

PDS analyses results were not reported within this Level 2 data package.

Field Duplicate Precision

Two blind field duplicate samples were collected and submitted to the laboratory for this sampling event. FD-001 is associated with monitoring well PZ-1D and FD-002 is associated with monitoring well PZ-18. Acceptable duplicate precision was achieved for both duplicate pairs.

Sampling Accuracy (Equipment Rinsate Blanks, Field Blanks)

Field accuracy was measured through the collection of equipment/rinsate blanks and field blanks. Equipment rinsate blanks are collected to monitor the decontamination process and field blanks are collected to assess the water used to decontaminate the equipment and the containers into which samples are placed. Sample FB-01 is a field blank and is associated with each of the samples reported in this SDG. Sample EB-01 is an equipment blank associated with monitoring well PZ-57 and reported boron at an estimated concentration (0.0091 milligrams per liter [mg/l]) between the method detection limit (MDL) and the reporting limit (RL). Sample results less than 10x the blank amount may be a field artifact and possibly biased high. Affected sample results below the RL were raised to the RL and flagged as a non-detect (U*) and sample results above the RL were flagged as possibly biased high (J) at the result reported. **Reason Code:**

SDG Nos: 92622406 and 92630865

BE

Action: The boron result for PZ-57 was qualified as estimated and flagged "J".

Reporting Limits

The laboratory RLs were below the screening values for samples submitted for the analysis of metals by USEPA Methods SW6010D and SW6020B with the exception of boron due to dilution. Samples PZ-16, PZ-15, PZ-18/FD-02, PZ-17, PZ-23A, and PZ-7D required a 5x dilution for boron to bring the concentration into the calibration range or to minimize matrix affects from the presence of elevated levels of non-target analytes or other matrix interference. Sample PZ-14 was re-analyzed due to boron being initially reported as non-detect with an elevated RL, and no qualification of the re-analyzed result was necessary.

Additionally, data are evaluated down to the MDL and results reported between the MDL and RL are considered quantitative estimates. Results reported between the MDL and RL were qualified as estimated and flagged "J" by the laboratory. The "J" qualifier is maintained by the data validator unless overridden by qualification for other QC criteria.

Mercury (SW7470A)

The samples were submitted to Pace for mercury by Method SW7470A. Each of the Level II components were within laboratory QC limits except for holding time on sample PZ-25. Therefore, sample PZ-25, along with QC samples, were recollected in October 2022 for mercury and reported in SDG 92630865.

Holding Times

The sample analyses were performed within the 28-day analysis holding time except for the August 2022 sample PZ-25, and the associated result was considered estimated (J). Sample PZ-25, plus QC samples, were recollected (reported in SDG 92630865) and were analyzed within the holding time. Therefore, no qualification was required.

Method Blanks

The method blanks associated with the samples analyzed within these SDGs contained no reportable detections of mercury.

Laboratory Control Sample (LCS)

Percent recoveries for target analytes were within quality control limits in the LCS.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

An MS/MSD analysis was performed on sample PZ-1D (SDG 92622406) and PZ-25 (SDG 92630865), and the recoveries and RPDs were within QC limits.

Post Digestion Spike (PDS)

PDS analyses results were not reported within this Level 2 data package.

Field Duplicate Precision

Blind field duplicate sample pairs, PZ-ID/FD-001 and PZ-18/FD-002 (SDG 92622406), and PZ-25/FD-001 (SDG 92630865) were collected and submitted to the laboratory for this sampling

SDG Nos: 92622406 and 92630865 Page 5 of 17

event. The RPD could not be calculated because mercury was not detected in either the parent or duplicate samples.

Sampling Accuracy (Equipment Rinsate Blanks, Field Blanks)

Mercury was not detected in the equipment blank or the field blank.

Reporting Limits

The laboratory RLs were below the screening values for samples submitted for the analysis of mercury by USEPA Method SW7470A. Additionally, data are evaluated down to the MDL and results reported between the MDL and RL are considered quantitative estimates. Results reported between the MDL and RL were qualified as estimated and flagged "J" by the laboratory. The "J" flags were retained by the validator unless overridden by qualification for other QC criteria.

Anions (EPA 300)

The samples were submitted to Pace for anions (chloride, fluoride, and sulfate) by Method 300. Each of the Level II components were within laboratory QC limits.

Holding Times

The sample analyses were performed within the 28-day analysis holding time.

Method Blanks

The method blanks associated with the samples analyzed within this SDG contained no reportable detections of anions.

<u>Laboratory Control Sample (LCS)</u>

Percent recoveries for target analytes were within quality control limits in the LCSs.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

MS/MSD analyses were performed on samples PZ-32 and PZ-7D, and the recoveries and RPDs were within QC limits.

Field Duplicate Precision

Two blind field duplicate sample pairs (PZ-ID/FD-001 and PZ-18/FD-002) were collected and submitted to the laboratory for this sampling event, and acceptable duplicate precision was achieved for both duplicate pairs.

Sampling Accuracy (Equipment Rinsate Blanks, Field Blanks)

Anions were not detected in the equipment blank or the field blank.

Reporting Limits

The laboratory RLs were below the screening values for samples submitted for the analysis of anions by USEPA Method 300. Additionally, data are evaluated down to the MDL and results reported between the MDL and RL are considered quantitative estimates. Results reported

between the MDL and RL were qualified as estimated and flagged "J" by the laboratory. The "J" qualifier is maintained by the data validator.

TDS (SM2540C)

The samples were submitted to Pace for TDS by Method SM2540C. Each of the Level II components were within QC limits except for holding time on samples FB-01, PZ-2D, PZ-32, and PZ-25. Therefore, samples FB-01, PZ-2D, PZ-32, and PZ-25, along with QC samples, were recollected in October 2022 for TDS and reported in SDG 92630865.

Holding Times

The sample analyses were performed within the 7-day analysis holding time except for August 2022 samples FB-01, PZ-2D, PZ-32, and PZ-25, and the associated results are considered unusable (R) because the samples were analyzed outside twice the recommended holding time. Therefore, samples were recollected (SDG 92630865) and TDS was analyzed within the holding time and the data is usable without qualification.

Method Blanks

The method blank associated with the samples analyzed within this SDG did not contain TDS.

<u>Laboratory Control Sample (LCS)</u>

Percent recoveries for target analytes were within quality control limits in the LCSs.

Laboratory Duplicate Precision

Laboratory duplicate analysis was performed on project sample PZ-18 and the RPD was within QC limits.

Field Duplicate Precision

Blind field duplicate sample pairs, PZ-ID/FD-001 and PZ-18/FD-002 (SDG 92622406), and PZ-25/FD-001 (SDG 92630865) were collected and submitted to the laboratory for this sampling event, and acceptable duplicate precision was achieved for both duplicate pairs.

Sampling Accuracy (Equipment Rinsate Blanks, Field Blanks)

TDS was not detected in the equipment blanks or the field blanks.

Reporting Limits

The laboratory RL was below the screening value of 500 mg/L for samples submitted for the analysis of TDS by Method SM2540C and no samples required dilutions; therefore, RLs were met for this project.

Additionally, data are evaluated down to the MDL and results reported between the MDL and RL are considered quantitative estimates. Results reported between the MDL and RL were qualified as estimated and flagged "J" by the laboratory; however, there were none reported in this SDG.

Overall Site Evaluation and Professional Judgment Flagging Changes

The chemical data included in this SDG was validated in general accordance with the guidelines contained in the project work plan. DQE flags were not applied or edited based on professional judgment.

References

SCS, 2016. *Draft Field Sampling Plan – Plant Mitchell*, Georgia Power Company, Earth Science and Environmental Engineering Technical Services, Southern Company Services, Inc. (SCS), August 17, 2016.

US EPA, 2011. Data Validation Standard Operating Procedures. Science and Ecosystem Support Division. Region IV. Athens, GA. September.

USEPA, 2020. EPA National Functional Guidelines for Inorganic Superfund Methods Data Review, Final, EPA-542-R-20-006, November 2020.

Prepared by/Date: <u>DWK 09/30/22</u> Checked By/Date: <u>JAH 10/03/22</u> Revised by/Date: <u>DWK 10/19/22</u> Checked By/Date: <u>JAH 11/07/22</u>

SDG Nos: 92622406 and 92630865 Page 8 of 17

TABLE 1 SUMMARY OF DATA QUALIFIERS

SDG Nos: 92622406 and 92630865 Page 9 of 17

Data Validation Narrative – SDGs 92622406 and 92630865 Plant Mitchell Ash Ponds 1 and 2 Wood Project No. 6122160170

TABLE 1

SUMMARY OF DATA QUALIFIERS SAMPLE DELIVERY GROUP 92622406 / 92630685

SAMPLING DATES: August 24-26, 2022 / October 11, 2022

Plant Mitchell Ash Ponds 1 and 2

Field Sample ID	Location ID	Туре	SDG	Method	Parameter Name	Lab Result	Lab Qual	Val Qual	Reason Codes	Units
•	!	Type	SDG	Metriou	Farameter Name	Lab Result	Lab Quai	Vai Quai	Reason Codes	Uiills
SDG: 92622406 - Colle	ected August 2022:									
PZ-25*	PZ-25	N	92622406	2540C	total dissolved solids	286	H1	R	Н	mg/L
PZ-25*	PZ-25	N	92622406	7470A	mercury	0.00018	J,H1	J	Н	mg/L
PZ-2D*	PZ-2D	N	92622406	2540C	total dissolved solids	287	H1	R	Н	mg/L
PZ-32*	PZ-32	N	92622406	2540C	total dissolved solids	172	H1	R	Н	mg/L
PZ-57	PZ-57	N	92622406	6020B	boron	0.18		J	BE	mg/L
FB-01*	FB-01	FB	92622406	2540C	total dissolved solids	ND	H1	UR	Н	mg/L
SDG: 92630865 (Resa	imple) - Collected Octobe	er 2022:								

Notes:

Results qualified "J" due to detections between the MDL and RL are not included on this table unless overridden by other DQE qualifiers.

*Samples PZ-25, PZ-2D, PZ-32 and FB-01 were resampled for TDS and PZ-25 was additionally resampled for mercury on October 11, 2022. Both TDS and mercury were ananlyzed within analytical holding times; therefore, all data are usable. The resampled data were reported in SDG 92630865.

Laboratory Qualifiers:

H1 = Holding time was exceeded

J = Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

Reason Codes:

BE = Equipment blank contamination. The result should be considered biased high.

H = Holding time was exceeded

Validation Qualifiers:

J = The compound was positively identified; however, the associated numerical value is an estimated concentration only. The associated numerical value is the approximate concentration of the analyte in the sample.

R = The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be confirmed. due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The analyte may or may not be present in the sample.

Prepared by/Date: <u>DWK 09/30/22</u> Checked by/Date: <u>JAH 10/03/22</u>

DQE CHECKLISTS

SDG Nos: 92622406 and 92630865 Page 10 of 17

LEVEL II DATA QUALITY VALIDATION RECORD

Project: Plant Mitchell CCR Semiannual Event 18

Project No: 6122160170.2203.****

Method: Metals by SW6010D/SW6020B

Laboratory and Lot: Pace SDG: 92622406 (Pace - Peachtree Corners, GA)

Reviewer/Date: <u>D. Knaub 09/30/22</u> Senior Reviewer/Date: <u>J. Hartness 10/03/22</u> Revised/Date: <u>D. Knaub 10/19/22</u> Revision Reviewer/Date: <u>J. Hartness 11/07/22</u>

YES NO NA COMMENTS

Case Narrative and COC Completeness Review

No case narrative is included with Level II data package from Pace.

Report revised after re-analysis of boron in PZ-14

Sample Preservation and cooler temperature met (HNO₃ to pH<2;

6°C±2) 5.8°C OK

Holding times met (180 days)

OK

QC Blanks Review - any MB results above RL?

Method Blanks:

p. 31 SW6010D MB 3759360 (Ca only) = ND

p. 32 SW6010D MB 3765178 (Ca only) = ND

p. 33 SW6010D MB 3776437 (Ca only) = ND

p. 34 SW6020B MB 3765186 = ND

p. 36 SW6020B MB 3765581 = ND

p. 38 SW6020B MB 3776575 = ND

p. 40 SW6020B MB 3797015 (B re-anal)= ND

Field/Equipment Blanks:

EB-01 (assoc. w/ PZ-57) B= 0.0091J mg/L **B result for PZ-57 flagged "J"**

FB-01 = ND (associated with all samples)

Laboratory Control Sample (LCS) recovery within limits (Metals 70-130%, Hg = 80-120%)

130%, ng = 60-120%)

p. 31 SW6010D LCS 3759361 – Ca =109% OK

p. 32 SW6010D LCS 3765179 - Ca = 106% OK

p. 33 SW6010D LCS 3776438 - Ca = 97% OK

p. 34 SW6020B LCS 3765187 – All OK

p. 36 SW6020B LCS 3765582 – All OK

p. 38 SW6020B LCS 3776576 – All OK

p. 40 SW6020B LCS 3797016 B = 106%

Metals (SW6010D/6020B) continued:

YES NO NA COMMENTS

X

Lab Duplicate - Field Duplicate precision goals met (lab limits - 20%)

<u>Constituent</u>	PZ-1D (mg/L)	FD-001 (mg/L)	RPD/Diff & RL
Ca	45.8	46.4	1.3
Ba	0.015	0.013	14.3
В	0.011J	ND	0.029 0.04
Cr	0.0025J	0.0023J	0.0002 0.005
Мо	0.00088J	0.00085J	0.000030.01
<u>Constituent</u>	PZ-18 (mg/L)	FD-002 (mg/L)	RPD/Diff & RL
Ca	141	147	4.2
Ba	0.026	0.025	3.9
В	0.39	0.38	2.6
Li	0.0033J	0.0033J	0.0

In cases where results are less than the RL (lab "J" values), all differences between the parent sample and the duplicate were less than the RL per GP guidance and no flag is necessary other than to indicate the result is less than the RL (J).

p. 36 Lab dup on non-project sample

Matrix Spike recoveries and RPDs within limits (if applicable: 75-125%, RPD 20)

p. 31 SW6010D (Ca only) – Not a sample from this SDG

p. 32 SW6010D (Ca only) – FD-001 Ca = 249, 352% RPD = 2 No flag, sample > 4x spike

p. 33 SW6010D (Ca only) - PZ-32 Ca = 100, 212% RPD = 2 No flag, sample > 4x spike

p. 34-35 SW6020B **PZ-31** - All %rec and RPDs OK

p. 36-37 SW6020B **PZ-57** - All %rec and RPDs OK

p. 38-39 SW6020B **PZ-2D** - All %rec and RPDs OK

p. 40 SW6020B **PZ-14 (re-anal)** – B = 95, 98% RPD 3

Post Digestion Spike recoveries within limits (if applicable: 80-120%)

Not reported for L2 data package

Total metals vs dissolved metals (RPD < 20% or diff. < RL)

No dissolved results in this SDG

EDD Data Verification vs. Hardcopy (10% samples for each SDG)

Checked each sample in this SDG, all OK (19 samples total)

Dilutions: 5x for boron in samples PZ-16, PZ-15, PZ-18/FD-02, PZ-17, PZ-23A, PZ-7D, and PZ-14.

PZ-14 re-anal. w/ no dilution

LEVEL II DATA QUALITY VALIDATION RECORD

Project: Plant Mitchell CCR Semiannual Event 18

Project No: 6122160170.2203.**** Method: Hg by SW7470A

X

X

X

Laboratory and Lot: Pace SDG: 92622406 (Pace - Peachtree Corners, GA)

Reviewer/Date: D. Knaub 09/30/22 Senior Reviewer/Date: J. Hartness 10/03/22/rev: 11/07/22

Laboratory and Lot: Pace SDG: 92630865 (Pace - Peachtree Corners, GA) - Resamples

Reviewer/Date: J. McIntyre 10/26/22 Senior Reviewer/Date: D. Knaub 10/28/22

YES NO **COMMENTS**

Sample PZ-25 (plus QC samples: FD-001, EB-01 and FB-01) recollected in October 2022 due to holding time exceedance and reported in SDG 92630865.

Case Narrative and COC Completeness Review

No case narrative is included with Level II data package from Pace.

Sample Preservation and cooler temperature met (HNO₃ to pH<2;

6°C±2)

SDG: 92622406: 5.8°C. OK

SDG: 92630865: 8.6°C – Samples were delivered on ice by the sample collector and were only 0.6°C above limit, therefore no qualification

was necessary.

Holding times met (Hg = 28 days)

SDG: 92622406: Sample **PZ-25** anal. 1 day out of hold, **assoc. result** flagged "J" - recollected and analyzed within hold (see below)

SDG: 92630865: Coll: 10/11/22; Prep: 10/17/22 Anal: 10/18/22 – All ok

QC Blanks Review - any MB results above RL?

SDG: 92622406: Method Blanks:

p. 40 MB 3765117 Hg = ND p. 41 MB 3774316 Hg = ND

p. 42 MB 3774337 Hg = ND Field/Equipment Blanks:

FB-01 = ND (associated with all samples) EB-01 = ND

SDG: 92630865: Method Blanks: p. 12 MB 3804947 Hg = ND Field and Equipment Blanks:

EB-01 = ND FB-01 = ND

Laboratory Control Sample (LCS) recovery within limits (Metals 70-

130%, Hg = 80-120%)

SDG: 92622406: p. 40 LCS 3765118 – Hg = 97%; p. 41 LCS 3774317 Hg = 102%

p. 42 LCS 3774338 Hg = 109%

SDG: 92630865: p. 12 LCS 3804948 – Hg = 86%

Lab Duplicate - Field Duplicate precision goals met (lab limits - 20%)

SDG: 92622406:

PZ-1D (mg/L) **FD-001** (mg/L) RPD/Diff & RL Hg ND ND NΑ

RPD/Diff & RL **PZ-18** (mg/L) **FD-002** (mg/L)

Hg ND NA

SDG: 92630865:

PZ-25 (mg/L) **FD-01** (mg/L) RPD/Diff & RL

both ND for Ha

Mercury (SW7470A) continued:

YES NO NA COMMENTS

X

Matrix Spike recoveries and RPDs within limits (if applicable: 75-125%, RPD 20)

SDG: 92622406:

p. 40 - PZ-1D Hg = 89, 91% RPD = 2
 p. 41 - not a sample from this SDG
 p. 42 - not a sample from this SDG

SDG: 92630865:

p. 12 - PZ-25 Hg = 82, 79% RPD = 4

X

Total metals vs dissolved metals (RPD < 20% or diff. < RL)

No dissolved results in these SDGs

X

EDD Data Verification vs. Hardcopy (10% samples for each SDG)

SDG: 92622406: Checked each sample in this SDG, all OK (19 samples) **SDG: 92630865**: Checked each sample in this SDG, all OK (4 samples) *No samples in these SDGs required a dilution.*

LEVEL II DATA QUALITY VALIDATION RECORD

Project: Plant Mitchell CCR Semiannual Event 18

Project No: 6122160170.2203.****

Method: Anions (chloride, fluoride, sulfate) by EPA 300

Laboratory and Lot: Pace SDG: 92622406 (Pace - Peachtree Corners, GA)

Reviewer/Date: D. Knaub 09/30/22 Senior Reviewer/Date: J. Hartness 10/03/22; rev 11/07/22

YES NO NA COMMENTS

No samples in this SDG required a dilution

Case Narrative and COC Completeness Review

No case narrative is included with Level II data package from Pace

Sample Preservation and cooler temperature met (Cool to 6°C)

5.8°C. OK

Holding times met (28 days)

OK

QC Blanks Review - Any detections above RL?

Method Blanks:

p. 46 MB 3757656 = ND p. 47 MB 3760016= ND

p. 48 MB 3760039 = ND <u>Field/Equipment Blanks</u>: EB-01 = ND; FB-01 = ND

Laboratory Control Sample (LCS) recovery within lab limits (90-110%)

p. 46 LCS 3757657= All OK p. 47 LCS 3760017 = All OK

p. 48 LCS 3760040 = All OK

Lab Duplicate - Field Duplicate precision goals met (20%)

Constituent **PZ-1D** (mg/L) **FD-001** (mg/L) RPD/Diff & RL chloride 2.6 2.6 0.0 fluoride 0.08J 0.076J 0.004 0.1 sulfate 2.2 2.2 0.0

Constituent **PZ-18** (mg/L) **FD-002** (mg/L) RPD/Diff & RL chloride 4.6 4.6 0.0 fluoride 0.052J 0.054J0.002 0.1 sulfate 96.3 95.6 07

In cases where results are less than the RL (lab "J" values), all differences between the parent sample and the duplicate were less than the RL per GP guidance and no flag is necessary other than to indicate the result is less than the RL (J).

Matrix Spike recoveries and RPDs within limits (lab %Rec limits, RPD = 20)

p. 46 Not a sample in this SDG

p. 47 PZ-32 %Recs and RPDs OK (2nd MS/MSD is not a sample in this SDG)

p. 48 PZ-7D %Recs and RPDs OK (2nd MS/MSD is not a sample in this SDG)

EDD Data Verification vs. Hardcopy (10% samples for each SDG)

Checked each sample in this SDG, all OK (19 samples total)

LEVEL II DATA QUALITY VALIDATION RECORD

Project: Plant Mitchell CCR Semiannual Event 18

Project No: <u>6122160170.2203.****</u> **Method:** <u>TDS by SM2540C</u>

Laboratory and Lot: Pace SDG: 92622406 (Pace - Peachtree Corners, GA)

Reviewer/Date: D. Knaub 09/30/22 Senior Reviewer/Date: J. Hartness 10/03/22; rev 11/07/22 Laboratory and Lot: Pace SDG: 92630865 (Pace – Peachtree Corners, GA) - Resamples

Reviewer/Date: J. McIntyre 10/26/22 Senior Reviewer/Date: D. Knaub 10/28/22

<u>YES NO</u> NA

COMMENTS

p. 44 MB 3754817= ND

Sample PZ-2D, PZ-25, and PZ-32 (plus QC samples: FD-001, EB-01 and FB-01) recollected in October 2022 due to holding time exceedance and reported in SDG 92630865.

Case Narrative and COC Completeness Review

No case narrative is included with Level II data package from Pace.

Sample Preservation and cooler temperature met (Cool 6°C±2) SDG: 92622406: 5.8°C. OK

SDG: 92630865: 8.6°C – Samples were delivered on ice by the sample collector and were only 0.6°C above limit, therefore no qualification

was necessary.

X

Holding times met (TDS = 7 days)

SDG: 92622406: Samples FB-01, PZ-2D, PZ-32, and PZ-25 anal. out of hold,

results flagged "R" - recollected and analyzed within hold (see

below)

SDG: 92630865: All OK

X

QC Blanks Review - any MB results above RL?

SDG: 92622406: Method Blanks:

p. 43 MB 3754176 = ND

p. 44 MB 3760948 = ND

<u>Field/Equipment Blanks</u>:

EB-01 = ND; FB-01 = ND

SDG: 92630865: Method Blanks:

p. 13 MB 3802695 = ND

Field and Equipment Blanks:

EB-01 = ND; FB-01 = ND

X

Laboratory Control Sample (LCS) recovery within limits

SDG: 92622406: p. 43 LCS 3754177 TDS = 96%;p. 44 LCS 3754818 TDS = 96%

p. 40 LCS 3760947 TDS = 95%

SDG: 92630865: p. 13 LCS 3802696 TDS = 95%

X

Lab Duplicate - Field Duplicate precision goals met (lab limits - 20%)

SDG: 92622406:

Constituent PZ-1D (mg/L) FD-01 (mg/L) RPD/Diff & RL

TDS 139 142 2.1

Constituent PZ-18 (mg/L) FD-02 (mg/L) RPD/Diff & RL

TDS 446 432 3.2

Lab Duplicates:

p. 43 PZ-1D RPD = 5- ok PZ-23A RPD = 3 - ok

p. 44 – not project samples

p. 45 FB-1 RPD NC, both ND and the other dup = not project sample

TDS (SM2540C) continued: YES NO NA

X

COMMENTS

X

Lab Duplicate - Field Duplicate precision goals met (lab limits - 20%) SDG: 92630865:

 Constituent
 PZ-25 (mg/L)
 FD-01 (mg/L)
 RPD/Diff & RL

 TDS
 267
 260
 2.3

Lab Duplicates:

p. 13 – not project samples

Matrix Spike recoveries and RPDs within limits (if applicable: 75-125%, RPD 20)

Not applicable to TDS

EDD Data Verification vs. Hardcopy (10% samples for each SDG)

SDG: 92622406: Checked each sample in this SDG, all OK (19 samples) **SDG: 92630865**: Checked each sample in this SDG, all OK (6 samples)

No samples in this SDG required a dilution.

Data Evaluation Narrative

Project: Plant Mitchell CCR Groundwater Semiannual Event #18 - Radium

Wood Project Number: 6122160170.2103.****
Site: Ash Ponds 1&2 - Plant Mitchell, Georgia

Matrix: Groundwater

Pace SDG Nos: 92622414

Introduction

A data quality evaluation (DQE) was performed on the radium data reported for the Semiannual Event #18 (August 2022) conducted at Ash Ponds I and 2 at Plant Mitchell, located in Albany, Georgia. The samples were collected and analyzed per the protocols presented in the *Draft* Plant Mitchell *Field Sampling Plan* (FSP) (SCS, 2016). The following sections provide summary discussions of the required data qualifications for the analytical methods for samples collected. A Level II DQE was performed on the samples analyzed by the fixed-based laboratory within these sample delivery groups (SDGs). A Level II DQE consists of review of the following criteria: sample integrity, holding times, method blanks, laboratory control samples (LCSs), matrix spikes/matrix spike duplicate (MS/MSD) recoveries and relative percent differences (RPDs), post digestion spikes (PDS), where applicable, laboratory and field duplicate RPDs, field and/or equipment blanks, and reporting limits. Additionally, the data summary tables generated from the electronic data deliverable (EDD) were compared to the laboratory hardcopy data report to verify that the EDD and laboratory data report agree.

The data were reviewed using the laboratory's precision and accuracy limits, the method requirements, and any requirements listed in the FSP. It should be noted that at the time of this review, a finalized QAPP was not provided. DQE data qualifications were applied, if necessary, using the procedures in USEPA Region IV Data Validation Standard Operating Procedures (USEPA, 2011) and the USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review (USEPA, 2020), as guidance, and professional judgment using the following qualifiers:

<u>Qualifier</u>	<u>Usable Data</u>
J	The analyte was positively identified but the result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in
	the sample.
	SCS Definition: Value J indicates the substance was detected at such low levels
	that the precision of the laboratory instruments could not produce as reliable of a value. Therefore, the value displayed (value J) is qualified by the laboratory as estimated.
UJ.	The analyte was analyzed for but was not detected above the level of the
03	reported sample reporting/method detection limit. The reported method detection limit is approximate and may be inaccurate or imprecise.
U	Analyte was analyzed for but was not detected above the level of the reported sample reporting/method detection limit. Note: SCS does not use the "U" flag except when reporting results for radium that are detected below the Minimum
	Detection Concentration (MDC).
U*	This analyte should be considered "not-detected" because it was detected in an associated blank at a similar level.

SDG Nos: 92622414 Page 1 of 8

Qualifier Unusable Data

R The sample results are rejected due to deficiencies in the ability to analyze the

sample and meet QC criteria. The presence or absence of the analyte cannot be

confirmed and the data are unusable.

UR The analyte was analyzed for but was not detected above the level of the

reported sample reporting or method detection, however the data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The analyte may or may

not be present in the sample.

The analytical results for the samples reported in this SDG are usable with the qualifications discussed in this narrative. A summary of the data with associated qualifiers is presented in **Table 1**.

Deliverables

The data package as submitted to WSP USA Environment & Infrastructure Inc. (WSP) is complete to perform a Level II DQE for United States Environmental Protection Agency (USEPA) Methods SW9315 and SW9320.

Sample Integrity

The groundwater samples were submitted to Pace Analytical Services, Inc. (Pace) in Peachtree Corners, Georgia and analyzed for metals, anions, and total dissolved solids (TDS) and reported separately in SDG 92622406. Samples were sent from Pace's Georgia facility to their laboratory in Greenburg, Pennsylvania and analyzed for radium-226, radium-228, and total radium by Methods SW9315 and SW9320.

Based on the information provided on the Chain-of-Custody (COC) forms, the field samples arrived at the laboratory intact and within the temperature range and preservation requirements. Completed COC documents are included in the data package.

Sample Identification

This SDG contains the following groundwater and quality control (QC) samples:

GPC Sample ID	Pace	Sample	DQE	GPC Sample ID	Pace	Sample	DQE
•	Sample ID	Date	Level	•	Sample ID	Date	Level
MIT-PZ-1D-WG-20220824	PZ-1D	08/24/22	П	MIT-PZ-25-WG-20220824	PZ-25	08/24/22	П
MIT-PZ-2D-WG-20220824	PZ-2D	08/24/22	П	MIT-PZ-31-WG-20220824	PZ-31	08/24/22	П
MIT-PZ-7D-WG-20220825	PZ-7D	08/25/22	II	MIT-PZ-32-WG-20220824	PZ-32	08/24/22	II
MIT-PZ-14-WG-20220825	PZ-14	08/25/22	Ш	MIT-PZ-33-WG-20220824	PZ-33	08/24/22	Ш
MIT-PZ-15-WG-20220825	PZ-15	08/25/22	Ш	MIT-PZ-57-WG-20220826	PZ-57	08/26/22	Ш
MIT-PZ-16-WG-20220825	PZ-16	08/25/22	Ш	QC Samples			
MIT-PZ-17-WG-20220825	PZ-17	08/25/22	Ш	MIT-APA12-EB-01-WQ-20220826	EB-01	08/26/22	П
MIT-PZ-18-WG-20220825	PZ-18	08/25/22	Ш	MIT-APA12-FB-01-WQ-20220824	FB-01	08/24/22	Ш
MIT-PZ-19-WG-20220825	PZ-19	08/25/22	Ш	MIT-APA12-FD-001-WQ-20220824	FD-01	08/24/22	Ш
MIT-PZ-23A-WG-20220825	PZ-23A	08/25/22	П	MIT-APA12-FD-002-WQ-20220825	FD-02	08/25/22	11

These samples were collected from Ash Ponds 1 and 2 between August 24 and August 26, 2022. Sample DUP-01 is a field duplicate of PZ-1D, and DUP-02 is a field duplicate of PZ-18. The field QC blanks include FB-1, a field blank sample, and EB-1, an equipment blank.

SDG Nos: 92622414 Page 2 of 8

GPC created new sample IDs specific to their database; however, Pace LIMS could not accommodate the GPC sample IDs and reported the samples with the simpler established format.

The analytical results for the radium data are usable with the qualifications discussed in this narrative. A summary of the data quality is presented below.

Radium (SW9315/SW9320)

The samples were submitted to Pace for radium-226 (Ra-226), radium-228 (Ra-228), and total radium by Methods SW9315 and SW9320. Total radium was measured by calculation. Each of the Level II components were within QC limits except for field blank contamination.

Holding Times

The sample analyses were performed within the 6-month analysis holding time.

Method Blanks

One of the method blanks contained reportable concentrations of radium above the minimum detectable concentration (MDC); however, no qualification was required because the associated results were not detected in the respective samples.

Laboratory Control Sample (LCS)

The LCS recoveries were within QC limits.

Laboratory Duplicate Precision

A laboratory duplicate was not performed on any project sample in this SDG.

Field Duplicate Precision

Two blind field duplicate samples were collected and submitted to the laboratory for this sampling event. Sample DUP-1 is associated with monitoring well PZ-1D, and DUP-2 is associated with monitoring well PZ-18. RPDs were evaluated for results greater than 5 times the MDC. Radium was not detected in either sample duplicate pair, therefore, precision could not be assessed.

Sampling Accuracy (Equipment Blanks, Field Blanks)

Field accuracy was measured through the collection of equipment/rinsate blanks and field blanks. The equipment blank sample EB-1 and field blank, FB-01 did not contain Ra-226 and Ra-228 above the MDC.

Carrier and Tracer Yield Recoveries

The carrier and tracer yield recoveries for the samples and QC were not provided.

SDG Nos: 92622414 Page 3 of 8

Reporting Limits/Minimum Detectable Concentrations

The RLs (MDCs) were below the screening level of 5 pCi/L for samples submitted for the analysis of radium-226 and radium-228 by Methods SW9315 and SW9320.

Sample results in which the values were reported at concentrations below the MDC were flagged "U" and considered not detected.

Overall Site Evaluation and Professional Judgment Flagging Changes

The chemical data included in this SDG was validated in general accordance with the guidelines contained in the project work plan. DQE flags were not applied or edited based on professional judgment, and the data are usable without qualification.

References

SCS, 2016. *Draft Field Sampling Plan – Plant Mitchell*, Georgia Power Company, Earth Science and Environmental Engineering Technical Services, Southern Company Services, Inc. (SCS), August 17, 2016.

US EPA, 2011. Data Validation Standard Operating Procedures. Science and Ecosystem Support Division. Region IV. Athens, GA. September.

USEPA, 2020. EPA National Functional Guidelines for Inorganic Superfund Methods Data Review, Final, EPA-542-R-20-006, November 2020.

Prepared by/Date: <u>JPM 10/27/22</u> Checked By/Date: <u>DWK 10/28/22</u>

SDG Nos: 92622414 Page 4 of 8

TABLE 1 SUMMARY OF DATA QUALIFIERS

SDG Nos: 92622414 Page 5 of 8

Data Validation Narrative – SDG 92622414

Plant Mitchell Ash Ponds 1 and 2

Wood Project No. 6122160170

August 2022

TABLE 1 SUMMARY OF DATA QUALIFIERS SAMPLE DELIVERY GROUP 92622414 SAMPLING DATES: August 24-26, 2022 Plant Mitchell Ash Ponds 1 and 2

Field Sample ID	Location ID	Туре	SDG	Method	Parameter Name	Lab Result	Lab Qual	Val Qual	Reason Codes	Units
				NO QUALIFIC	ATION REQUIRED					

Notes:

No qualification was required for the data reported in this sample delivery group.

Prepared by/Date: <u>JPM 10/27/22</u> Checked by/Date: <u>DWK 10/28/22</u>

DQE CHECKLISTS

SDG Nos: 92622414 Page 6 of 8

LEVEL II DATA QUALITY VALIDATION RECORD

Project: Plant Mitchell CCR Semiannual Event 18

Project No: 6122160170.2203.****

Method: Radium-226, Radium-228, Total Radium by EPA 9315 and EPA 9320

Laboratory and Lot: Pace SDG: 92622414 (Pace-Greensburg, PA)

Reviewer/Date: J. McIntyre 10/26/22 Senior Reviewer/Date: D. Knaub 10/28/22

YES NO NA COMMENTS Χ **Case Narrative and COC Completeness Review** No case narrative is included with Level II data package from Pace. X Sample Preservation and cooler temperature met (HNO₃ to pH<2) 5.8, 5.9, 3.8, 4.8, 5.1, 5.4 °C. OK Χ Holding times met (180 days) Collected: 08/24/22-8/26/22 Analyzed: Ra-226: 09/22/22 Analyzed: Ra-228: 09/13/22, 09/21/22, 10/04/22 Total Ra: 09/22/22, 10/05/22 X QC Blanks Review (net blank value <MDC) p. 30 Ra-228 (2572179) = present but <MDC p. 31 Ra-226 (2574652) = present but <MDC p. 32 Ra-228 (2599416) = present but <MDC p. 33 Ra-226 (2572345) = present but <MDC p. 34 Ra-228 (2574648) = **0.757** pCi/L (associated sample PZ-57) Assoc. result ND, no flag Field/Equipment Blanks: p. 15 FB-1 = present but <MDC (negative Ra-226 result < negative MDC) p. 28 EB-1 = present but <MDC Χ Laboratory Control Sample (LCS) recovery within lab limits (60-135%) p. 58 LCS68670 Ra-228 = 84.37% P. 59 LCS68728 Ra-228 = 113.74% P. 60 LCS68728/LCSD69055 Ra-228 = 84.92, 89.91% RPD = 5.7 p. 61 LCS68700/LCSD68700 Ra-226 = 93.92, 114.68% RPD = 20.57 p. 62 LCS68731/LCSD68731 Ra-226 = 104.14, 92.84% RPD = 11.48 Χ Lab Duplicate - Field Duplicate precision goals met (lab limits); lab dup every 10 samples (RPD = RER (2σ) <3) Constituent PZ-1D (pCi/L) DUP-1 (pCi/L) RPD present but <MDC Constituent <u>PZ-18 (pCi/L)</u> DUP-2 (pCi/L) RPD present but <MDC Lab Duplicates: (also see LCS precision above) p. 59, 61, and 62 are not samples from this SDG

SDG Nos: 92622414 Page 7 of 8

p. 58 not a sample from this SDG

Matrix Spike recoveries and RPDs within limits (if applicable)

X

YES NO NA COMMENTS

Carrier/Tracer Yield Recovery Ra-226 (Carrier: Ba); Ra-228 (Carrier Ba, Tracer: Y) (30-110%)

Not provided

EDD Data Verification vs. Hardcopy (10% samples for each SDG).

Checked each sample in this SDG, all OK (20 samples total)

SDG Nos: 92622414 Page 8 of 8

2022 Semi-Annual Groundwater Monitoring and Corrective Action Report Georgia Power Company – Plant Mitchell Ash Ponds A, 1, and 2 Putney, Georgia

APPENDIX B

FIELD SAMPLING DATA

Test Date / Time: 8/24/2022 10:47:52 AM

Project: Plant Mitchell CCR **Operator Name:** Ever Guillen

Location Name: PZ-1D
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 71.65 ft
Total Depth: 81.65 ft

Initial Depth to Water: 55.07 ft

Pump Type: QED
Tubing Type: HDPE

Pump Intake From TOC: 76.65 ft Estimated Total Volume Pumped:

9000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 1.54 ft Instrument Used: Aqua TROLL 400

Serial Number: 877800

Test Notes: Sample time =1135. Dup FD-01 collected

Weather Conditions: Hot, humid and some rain

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.1	+/- 5	+/- 10	+/- 0.3	
8/24/2022 10:47 AM	00:00	7.05 pH	24.09 °C	249.84 μS/cm	6.42 mg/L	33.60 NTU	84.5 mV	55.07 ft	200.00 ml/min
8/24/2022 10:52 AM	05:00	7.37 pH	22.19 °C	244.55 μS/cm	2.67 mg/L	29.40 NTU	39.9 mV	56.52 ft	200.00 ml/min
8/24/2022 10:57 AM	10:00	7.43 pH	23.97 °C	250.98 μS/cm	3.17 mg/L	23.10 NTU	34.4 mV	56.63 ft	200.00 ml/min
8/24/2022 11:02 AM	15:00	7.45 pH	25.24 °C	248.72 μS/cm	3.27 mg/L	17.50 NTU	31.4 mV	56.63 ft	200.00 ml/min
8/24/2022 11:07 AM	20:00	7.47 pH	25.93 °C	248.87 μS/cm	2.86 mg/L	13.90 NTU	26.9 mV	56.61 ft	200.00 ml/min
8/24/2022 11:12 AM	25:00	7.46 pH	25.97 °C	246.85 μS/cm	2.68 mg/L	8.80 NTU	27.0 mV	56.61 ft	200.00 ml/min
8/24/2022 11:17 AM	30:00	7.47 pH	25.96 °C	245.88 μS/cm	2.59 mg/L	6.53 NTU	26.5 mV	56.61 ft	200.00 ml/min
8/24/2022 11:22 AM	35:00	7.49 pH	25.81 °C	247.87 μS/cm	2.56 mg/L	5.44 NTU	25.2 mV	56.61 ft	200.00 ml/min
8/24/2022 11:27 AM	40:00	7.48 pH	26.19 °C	248.03 μS/cm	2.53 mg/L	5.12 NTU	25.9 mV	56.61 ft	200.00 ml/min
8/24/2022 11:32 AM	45:00	7.49 pH	26.33 °C	248.17 μS/cm	2.61 mg/L	3.90 NTU	26.9 mV	56.61 ft	200.00 ml/min

Sample ID:	Description:
------------	--------------

Test Properties
Test Type = Low-Flow Test
Test Date / Time = 2022-08-24 10:47:52
Time Offset = -04:00:00
Operator Name = Ever Guillen
Project = Low-Flow Test 133 (2)
Initial Depth to Water = 55.07 ft
Flow Cell Volume = 90 ml
Final Draw Down = 1.54 ft
Estimated Total Volume Pumped = 9000 ml

Pump Properties
Pump Type = QED
Flow Rate = 200 ml/min
Final Flow Rate = 200 ml/min
Pump Intake From TOC = 76.65 m

Tubing Properties
Tubing Type = HDPE

Location Properties Location Name = PZ-1D Location ID = 57008adb-8e66-4ee0-9ae3-8ebe947b6312

Well Properties
Well Diameter = 2 in
Casing Type = PVC
Screen Length = 10 ft
Total Depth = 81.65 ft
Top of Screen = 71.65 ft

Instrument Properties
Device Model = Aqua TROLL 400
Device SN = 877800

						RDO		Oxygen	Actual		Specific		Total						
						Concentr	RDO	Partial	Conductiv		Conductiv		Dissolved	Resistivity	,				
						ation	Saturatio	Pressure	ity	Temperat	ity	Salinity	Solids	(Ωâ‹c	Density	Pressure		pH mV	
		Elapsed	Depth to Flo	ow	Turbidity	(mg/L)	n (%Sat)	(Torr)	(µS/cm)	ure (°C)	(µS/cm)	(PSU)	(ppt)	m)	(g/cm³)	(psi)	pH (pH)	(mV)	ORP (mV)
Date Time		Time	Water (ft) (m	nl/min)	(NTU)	(878537)	(878537)	(878537)	(877800)	(877800)	(877800)	(877800)	(877800)	(877800)	(877800)	(850056)	(21624)	(21624)	(21624)
	8/24/2022 10:47	0:00:00	55.07	200	33.6	6.422483	76.66641	111.46	245.4752	24.0856	249.8386	0.119612	0.162395	4073.732	0.997369	8.27311	7.052401	-7.51066	84.48076
	8/24/2022 10:52	0:05:00	56.52	200	29.4	2.673948	30.7925	44.91541	231.4187	22.18802	244.5534	0.11705	0.15896	4321.172	0.99782	8.240588	7.374349	-25.1091	1 39.94526
	8/24/2022 10:57	0:10:00	56.63	200	23.1	3.171651	37.78129	54.93891	246.0627	23.97321	250.9849	0.120175	0.16314	4064.006	0.997397	8.333333	7.43347	-28.5244	4 34.38943
	8/24/2022 11:02	0:15:00	56.63	200	17.5	3.26847	39.85781	57.82022	249.8545	25.23818	248.723	0.119037	0.16167	4002.329	0.997077	8.335042	7.449057	-29.5044	4 31.43781
	8/24/2022 11:07	0:20:00	56.61	200	13.9	2.864949	35.38456	51.25998	253.3166	25.93468	248.8736	0.119087	0.161768	3947.63	0.996894	8.301745	7.469808	-30.7279	26.92813
	8/24/2022 11:12	0:25:00	56.61	200	8.8	2.680422	33.12574	47.98443	251.4204	25.96865	246.8533	0.118098	0.160455	3977.402	0.996885	8.29596	7.463469	-30.3769	26.9635
	8/24/2022 11:17	0:30:00	56.61	200	6.53	2.585222	31.94578	46.27575	250.3994	25.96272	245.8782	0.117622	0.159821	3993.62	0.996886	8.304152	7.47212	-30.8544	4 26.45242
	8/24/2022 11:22	0:35:00	56.61	200	5.44	2.558704	31.53115	45.68912	251.7139	25.81119	247.8735	0.118603	0.161118	3972.764	0.996927	8.291778	7.489503	-31.8053	3 25.22952
	8/24/2022 11:27	0:40:00	56.61	200	5.12	2.534835	31.45329	45.5411	253.6699	26.19092	248.0281	0.118664	0.161218	3942.131	0.996826	8.30663	7.484661	-31.5765	5 25.90691
	8/24/2022 11:32	0:45:00	56.61	200	3.9	2.606722	32.42854	46.93943	254.4886	26.33282	248.1709	0.118729	0.161311	3929.45	0.996788	8.317773	7.489299	-31.849	9 26.92659

Notes

Test Notes: Sample time =1135. Dup FD-01 collected Weather Conditions: Hot, humid and some rain

Test Date / Time: 8/24/2022 11:01:30 AM

Project: Plant Mitchell CCR **Operator Name**: Daniel Howard

Location Name: PZ-2D
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 70.95 ft
Total Depth: 80.95 ft

Initial Depth to Water: 38.56 ft

Pump Type: QED Dedicated Bladder

Pump

Tubing Type: HDPE

Pump Intake From TOC: 75.95 ft Estimated Total Volume Pumped:

6000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.1 ft Instrument Used: Aqua TROLL 400

Serial Number: 884186

Test Notes:

Sample time 1132. Sample ID: MIT-PZ-2D-WG-20220824

Weather Conditions:

Overcast, slight rain, 75F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 5	+/- 10	+/- 0.3	
8/24/2022 11:01 AM	00:00	7.73 pH	21.06 °C	150.23 μS/cm	1.62 mg/L	2.52 NTU	60.8 mV	38.66 ft	200.00 ml/min
8/24/2022 11:06 AM	05:00	7.95 pH	20.62 °C	159.47 μS/cm	2.22 mg/L	2.56 NTU	63.6 mV	38.66 ft	200.00 ml/min
8/24/2022 11:11 AM	10:00	7.98 pH	20.54 °C	162.45 μS/cm	2.67 mg/L	1.53 NTU	81.6 mV	38.66 ft	200.00 ml/min
8/24/2022 11:16 AM	15:00	7.98 pH	20.59 °C	162.43 μS/cm	2.83 mg/L	1.74 NTU	62.8 mV	38.66 ft	200.00 ml/min
8/24/2022 11:21 AM	20:00	7.98 pH	20.62 °C	163.02 μS/cm	2.93 mg/L	1.46 NTU	80.9 mV	38.66 ft	200.00 ml/min
8/24/2022 11:26 AM	25:00	8.00 pH	20.63 °C	162.43 μS/cm	3.02 mg/L	1.44 NTU	61.4 mV	38.66 ft	200.00 ml/min
8/24/2022 11:31 AM	30:00	8.01 pH	20.64 °C	163.03 μS/cm	3.07 mg/L	1.51 NTU	79.6 mV	38.66 ft	200.00 ml/min

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/25/2022 1:23:00 PM

Project: Plant Mitchell CCR (5) **Operator Name:** Ever Guillen

Location Name: PZ-7D
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 60.37 ft
Total Depth: 60.37 ft

Initial Depth to Water: 34.92 ft

Pump Type: QED
Tubing Type: HDPE

Pump Intake From TOC: 55.37 ft Estimated Total Volume Pumped:

8370 ml

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.03 ft Instrument Used: Aqua TROLL 400

Serial Number: 877800

Test Notes:

Sample time = 1410

Weather Conditions:

Hot-humid- some rain

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.1	+/- 5	+/- 10	+/- 0.3	
8/25/2022 1:23 PM	00:00	7.13 pH	23.81 °C	480.27 μS/cm	3.37 mg/L	28.10 NTU	-30.9 mV	34.92 ft	200.00 ml/min
8/25/2022 1:24 PM	01:51	6.99 pH	22.08 °C	495.17 μS/cm	1.34 mg/L	28.70 NTU	6.0 mV	34.92 ft	200.00 ml/min
8/25/2022 1:29 PM	06:51	6.98 pH	22.27 °C	504.90 μS/cm	0.94 mg/L	23.60 NTU	22.7 mV	34.95 ft	200.00 ml/min
8/25/2022 1:34 PM	11:51	6.99 pH	24.65 °C	496.35 μS/cm	1.39 mg/L	16.90 NTU	19.5 mV	34.95 ft	200.00 ml/min
8/25/2022 1:39 PM	16:51	7.00 pH	25.51 °C	499.53 μS/cm	1.63 mg/L	10.70 NTU	26.3 mV	34.95 ft	200.00 ml/min
8/25/2022 1:44 PM	21:51	7.01 pH	22.18 °C	475.39 μS/cm	1.06 mg/L	6.06 NTU	34.0 mV	34.95 ft	200.00 ml/min
8/25/2022 1:49 PM	26:51	6.98 pH	21.85 °C	485.15 μS/cm	0.99 mg/L	5.02 NTU	35.8 mV	34.95 ft	200.00 ml/min
8/25/2022 1:54 PM	31:51	6.98 pH	21.82 °C	486.70 μS/cm	0.90 mg/L	3.98 NTU	41.9 mV	34.95 ft	200.00 ml/min
8/25/2022 1:59 PM	36:51	6.98 pH	21.82 °C	486.80 μS/cm	0.87 mg/L	2.66 NTU	43.6 mV	34.95 ft	200.00 ml/min
8/25/2022 2:04 PM	41:51	6.98 pH	21.73 °C	486.05 μS/cm	0.83 mg/L	1.73 NTU	38.2 mV	34.95 ft	200.00 ml/min

Sample ID:

Test Date / Time: 8/25/2022 3:10:04 PM

Project: Plant Mitchell CCR (6) **Operator Name:** Ever Guillen

Location Name: PZ-14
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 43.2 ft
Total Depth: 53.2 ft

Initial Depth to Water: 45.55 ft

Pump Type: QED
Tubing Type: HDPE

Pump Intake From TOC: 48.2 ft Estimated Total Volume Pumped:

9000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.06 ft Instrument Used: Aqua TROLL 400

Serial Number: 877800

Test Notes:

Sample time = 1600

Weather Conditions:

Hot - humid- some rain

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.1	+/- 5	+/- 10	+/- 0.3	
8/25/2022 3:10 PM	00:00	7.45 pH	29.75 °C	302.21 μS/cm	6.99 mg/L	21.10 NTU	42.0 mV	45.61 ft	200.00 ml/min
8/25/2022 3:15 PM	05:00	6.95 pH	23.08 °C	452.77 μS/cm	6.03 mg/L	17.30 NTU	62.5 mV	45.61 ft	200.00 ml/min
8/25/2022 3:20 PM	10:00	6.95 pH	22.69 °C	452.16 μS/cm	6.02 mg/L	12.60 NTU	49.1 mV	45.61 ft	200.00 ml/min
8/25/2022 3:25 PM	15:00	6.95 pH	22.81 °C	452.98 μS/cm	5.88 mg/L	8.98 NTU	61.6 mV	45.61 ft	200.00 ml/min
8/25/2022 3:30 PM	20:00	6.94 pH	22.58 °C	453.83 μS/cm	5.76 mg/L	6.54 NTU	48.1 mV	45.61 ft	200.00 ml/min
8/25/2022 3:35 PM	25:00	6.93 pH	22.54 °C	453.90 μS/cm	5.66 mg/L	5.32 NTU	61.1 mV	45.61 ft	200.00 ml/min
8/25/2022 3:40 PM	30:00	6.93 pH	22.85 °C	456.56 μS/cm	5.65 mg/L	3.96 NTU	46.8 mV	45.61 ft	200.00 ml/min
8/25/2022 3:45 PM	35:00	6.93 pH	22.90 °C	456.33 μS/cm	5.62 mg/L	2.73 NTU	53.8 mV	45.61 ft	200.00 ml/min
8/25/2022 3:50 PM	40:00	6.93 pH	22.74 °C	454.99 μS/cm	5.59 mg/L	1.55 NTU	53.2 mV	45.61 ft	200.00 ml/min
8/25/2022 3:55 PM	45:00	6.93 pH	22.45 °C	455.19 μS/cm	5.58 mg/L	0.67 NTU	45.0 mV	45.61 ft	200.00 ml/min

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/25/2022 1:26:17 PM

Project: Plant Mitchell CCR (6) **Operator Name**: Daniel Howard

Location Name: PZ-15
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 73.22 ft
Total Depth: 83.22 ft

Initial Depth to Water: 31.85 ft

Pump Type: QED Dedicated Bladder

Pump

Tubing Type: HDPE

Pump Intake From TOC: 78.22 ft Estimated Total Volume Pumped:

8000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.21 ft Instrument Used: Aqua TROLL 400

Serial Number: 884186

Test Notes:

Sample time 1408.

Weather Conditions:

Overcast, temp 80F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 5	+/- 10	+/- 0.3	
8/25/2022 1:26 PM	00:00	7.20 pH	25.47 °C	580.78 μS/cm	4.04 mg/L	2.28 NTU	-94.5 mV	31.98 ft	200.00 ml/min
8/25/2022 1:31 PM	05:00	7.17 pH	24.70 °C	515.88 μS/cm	2.02 mg/L	1.83 NTU	-100.0 mV	31.98 ft	200.00 ml/min
8/25/2022 1:36 PM	10:00	7.16 pH	24.49 °C	516.50 μS/cm	1.53 mg/L	3.80 NTU	-114.9 mV	31.98 ft	200.00 ml/min
8/25/2022 1:41 PM	15:00	7.16 pH	24.51 °C	517.32 μS/cm	1.24 mg/L	1.85 NTU	-114.7 mV	31.99 ft	200.00 ml/min
8/25/2022 1:46 PM	20:00	7.16 pH	24.46 °C	517.78 μS/cm	0.97 mg/L	1.03 NTU	-111.0 mV	32.02 ft	200.00 ml/min
8/25/2022 1:51 PM	25:00	7.16 pH	24.34 °C	517.77 μS/cm	0.81 mg/L	0.57 NTU	-108.7 mV	32.02 ft	200.00 ml/min
8/25/2022 1:56 PM	30:00	7.16 pH	24.29 °C	517.32 μS/cm	0.66 mg/L	0.66 NTU	-104.2 mV	32.04 ft	200.00 ml/min
8/25/2022 2:01 PM	35:00	7.16 pH	24.38 °C	517.47 μS/cm	0.56 mg/L	0.46 NTU	-99.0 mV	32.06 ft	200.00 ml/min
8/25/2022 2:06 PM	40:00	7.15 pH	24.48 °C	517.74 μS/cm	0.46 mg/L	0.41 NTU	-94.2 mV	32.06 ft	200.00 ml/min

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/25/2022 11:45:05 AM

Project: Plant Mitchell CCR (5) **Operator Name**: Daniel Howard

Location Name: PZ-16
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 43.19 ft
Total Depth: 53.19 ft

Initial Depth to Water: 36.3 ft

Pump Type: QED Dedicated Bladder

Pump

Tubing Type: HDPE

Pump Intake From TOC: 48.19 ft Estimated Total Volume Pumped:

5000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min

Final Draw Down: 0 ft

Instrument Used: Aqua TROLL 400

Serial Number: 884186

Test Notes:

Sample time 1212. Sample ID: MIT-PZ-16-WG-20220825

Weather Conditions:

Overcast, temp 77 F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 5	+/- 10	+/- 0.3	
8/25/2022 11:45 AM	00:00	7.28 pH	22.81 °C	502.97 μS/cm	5.68 mg/L	0.45 NTU	0.7 mV	36.30 ft	200.00 ml/min
8/25/2022 11:50 AM	05:00	7.15 pH	22.62 °C	506.54 μS/cm	2.15 mg/L	0.65 NTU	84.7 mV	36.30 ft	200.00 ml/min
8/25/2022 11:55 AM	10:00	7.14 pH	22.60 °C	494.43 μS/cm	1.88 mg/L	1.30 NTU	127.2 mV	36.30 ft	200.00 ml/min
8/25/2022 12:00 PM	15:00	7.15 pH	22.54 °C	493.70 μS/cm	1.82 mg/L	1.14 NTU	134.3 mV	36.30 ft	200.00 ml/min
8/25/2022 12:05 PM	20:00	7.15 pH	22.53 °C	492.92 μS/cm	1.84 mg/L	1.09 NTU	137.3 mV	36.30 ft	200.00 ml/min
8/25/2022 12:10 PM	25:00	7.14 pH	22.43 °C	492.83 μS/cm	1.84 mg/L	0.92 NTU	104.3 mV	36.30 ft	200.00 ml/min

Sai	mple ID:	Description:
-----	----------	--------------

Test Date / Time: 8/25/2022 11:38:32 AM

Project: Plant Mitchell CCR (4) **Operator Name:** Ever Guillen

Location Name: PZ-17
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 52.7 ft
Total Depth: 62.7 ft

Initial Depth to Water: 35.03 ft

Pump Type: QED
Tubing Type: HDPE

Pump Intake From TOC: 57.7 ft Estimated Total Volume Pumped:

6000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.08 ft Instrument Used: Aqua TROLL 400

Serial Number: 877800

Test Notes:

Sample time = 1210

Weather Conditions:

Hot- humid- some rain

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.1	+/- 5	+/- 10	+/- 0.3	
8/25/2022 11:38 AM	00:00	7.34 pH	25.74 °C	443.93 μS/cm	7.26 mg/L	31.10 NTU	-78.2 mV	35.03 ft	200.00 ml/min
8/25/2022 11:43 AM	05:00	7.06 pH	22.31 °C	462.63 μS/cm	0.19 mg/L	26.20 NTU	-44.1 mV	35.11 ft	200.00 ml/min
8/25/2022 11:48 AM	10:00	7.06 pH	22.25 °C	464.31 μS/cm	0.11 mg/L	21.40 NTU	-40.0 mV	35.11 ft	200.00 ml/min
8/25/2022 11:53 AM	15:00	7.06 pH	22.22 °C	468.34 μS/cm	0.10 mg/L	16.90 NTU	-36.3 mV	35.11 ft	200.00 ml/min
8/25/2022 11:58 AM	20:00	7.05 pH	22.27 °C	469.30 μS/cm	0.11 mg/L	12.30 NTU	-33.1 mV	35.11 ft	200.00 ml/min
8/25/2022 12:03 PM	25:00	7.04 pH	22.27 °C	472.13 μS/cm	0.11 mg/L	7.18 NTU	-31.0 mV	35.11 ft	200.00 ml/min
8/25/2022 12:08 PM	30:00	7.05 pH	22.05 °C	472.92 μS/cm	0.12 mg/L	4.73 NTU	-29.0 mV	35.11 ft	200.00 ml/min

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/25/2022 9:42:35 AM

Project: Plant Mitchell CCR (3) **Operator Name:** Ever Guillen

Location Name: PZ-18 Well Diameter: 2 in **Casing Type: PVC** Screen Length: 10 ft Top of Screen: 53.18 ft Total Depth: 63.18 ft

Initial Depth to Water: 31.51 ft

Pump Type: QED Tubing Type: HDPE

> Pump Intake From TOC: 58.18 ft **Estimated Total Volume Pumped:**

10000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min

Final Draw Down: 0 ft

Instrument Used: Aqua TROLL 400

Serial Number: 877800

Test Notes:

Sample time = 1035. Dup FD-02 collected

Weather Conditions:

Hot-humid- rain

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.1	+/- 5	+/- 10	+/- 0.3	
8/25/2022 9:42 AM	00:00	6.70 pH	24.24 °C	441.05 μS/cm	7.90 mg/L	33.20 NTU	176.7 mV	31.51 ft	200.00 ml/min
8/25/2022 9:47 AM	05:00	6.72 pH	22.75 °C	651.93 μS/cm	0.88 mg/L	27.10 NTU	42.2 mV	31.51 ft	200.00 ml/min
8/25/2022 9:52 AM	10:00	6.80 pH	23.39 °C	634.53 µS/cm	1.79 mg/L	21.30 NTU	30.5 mV	31.51 ft	200.00 ml/min
8/25/2022 9:57 AM	15:00	6.81 pH	23.33 °C	639.42 µS/cm	2.01 mg/L	16.90 NTU	24.9 mV	31.51 ft	200.00 ml/min
8/25/2022 10:02 AM	20:00	6.79 pH	23.08 °C	644.75 μS/cm	0.73 mg/L	11.50 NTU	24.5 mV	31.51 ft	200.00 ml/min
8/25/2022 10:07 AM	25:00	6.77 pH	22.89 °C	647.67 μS/cm	0.20 mg/L	8.79 NTU	32.3 mV	31.51 ft	200.00 ml/min
8/25/2022 10:12 AM	30:00	6.76 pH	23.02 °C	648.95 µS/cm	0.19 mg/L	6.22 NTU	33.1 mV	31.51 ft	200.00 ml/min
8/25/2022 10:17 AM	35:00	6.76 pH	23.08 °C	648.01 µS/cm	0.18 mg/L	5.17 NTU	36.4 mV	31.51 ft	200.00 ml/min
8/25/2022 10:22 AM	40:00	6.76 pH	22.98 °C	648.66 µS/cm	0.19 mg/L	3.98 NTU	36.6 mV	31.51 ft	200.00 ml/min
8/25/2022 10:27 AM	45:00	6.76 pH	22.92 °C	648.81 µS/cm	0.18 mg/L	1.31 NTU	37.1 mV	31.51 ft	200.00 ml/min
8/25/2022 10:32 AM	50:00	6.76 pH	22.99 °C	648.77 μS/cm	0.18 mg/L	0.37 NTU	37.1 mV	31.51 ft	200.00 ml/min

Sample ID:	Description:
------------	--------------

Created using VuSitu from In-Situ, Inc.

Test Date / Time: 8/25/2022 10:02:03 AM

Project: Plant Mitchell CCR (4) **Operator Name**: Daniel Howard

Location Name: PZ-19
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 52.63 ft
Total Depth: 62.63 ft

Initial Depth to Water: 34.02 ft

Pump Type: QED Dedicated Bladder

Pump

Tubing Type: HDPE

Pump Intake From TOC: 57.63 ft Estimated Total Volume Pumped:

5000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.05 ft Instrument Used: Aqua TROLL 400

Serial Number: 884186

Test Notes:

Sample time 1028. SAMPLE ID: MIT-PZ-19-WG-20220825

Weather Conditions:

Overcast, temp 74F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 5	+/- 10	+/- 0.3	
8/25/2022 10:02 AM	00:00	7.00 pH	23.97 °C	747.53 μS/cm	3.96 mg/L	3.06 NTU	66.5 mV	34.07 ft	200.00 ml/min
8/25/2022 10:07 AM	05:00	6.67 pH	22.75 °C	864.90 μS/cm	0.71 mg/L	0.25 NTU	98.9 mV	34.07 ft	200.00 ml/min
8/25/2022 10:12 AM	10:00	6.67 pH	22.63 °C	861.49 μS/cm	0.38 mg/L	0.62 NTU	127.1 mV	34.07 ft	200.00 ml/min
8/25/2022 10:17 AM	15:00	6.67 pH	22.67 °C	861.18 μS/cm	0.34 mg/L	0.24 NTU	127.0 mV	34.07 ft	200.00 ml/min
8/25/2022 10:22 AM	20:00	6.67 pH	22.69 °C	863.79 μS/cm	0.35 mg/L	0.22 NTU	98.4 mV	34.07 ft	200.00 ml/min
8/25/2022 10:27 AM	25:00	6.67 pH	22.68 °C	858.98 µS/cm	0.37 mg/L	0.15 NTU	124.1 mV	34.07 ft	200.00 ml/min

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/25/2022 3:42:03 PM

Project: Plant Mitchell CCR (8) **Operator Name**: Daniel Howard

Location Name: PZ-23A
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 57.21 ft
Total Depth: 67.21 ft

Pump Type: QED Dedicated Bladder

Pump

Tubing Type: HDPE

Pump Intake From TOC: 62.21 ft Estimated Total Volume Pumped:

5000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.31 ft Instrument Used: Aqua TROLL 400

Serial Number: 884186

Test Notes: Sample time 1608

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 5	+/- 10	+/- 0.3	
8/25/2022 3:42 PM	00:00	6.76 pH	26.26 °C	763.12 μS/cm	2.23 mg/L	8.31 NTU	93.0 mV	53.22 ft	200.00 ml/min
8/25/2022 3:47 PM	05:00	6.76 pH	24.52 °C	732.91 µS/cm	2.23 mg/L	7.18 NTU	93.8 mV	53.22 ft	200.00 ml/min
8/25/2022 3:52 PM	10:00	6.76 pH	24.37 °C	724.45 µS/cm	2.20 mg/L	6.25 NTU	128.8 mV	53.22 ft	200.00 ml/min
8/25/2022 3:57 PM	15:00	6.76 pH	24.23 °C	724.96 µS/cm	2.16 mg/L	3.53 NTU	131.9 mV	53.20 ft	200.00 ml/min
8/25/2022 4:02 PM	20:00	6.76 pH	24.35 °C	722.87 µS/cm	2.10 mg/L	2.94 NTU	132.8 mV	53.20 ft	200.00 ml/min
8/25/2022 4:07 PM	25:00	6.76 pH	24.44 °C	728.37 µS/cm	2.08 mg/L	2.52 NTU	96.3 mV	53.18 ft	200.00 ml/min

Samples

Sample ID:	Description:
------------	--------------

Created using VuSitu from In-Situ, Inc.

Test Date / Time: 8/24/2022 3:19:00 PM

Project: Plant Mitchell CCR (3) **Operator Name**: Daniel Howard

Location Name: PZ-25
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 52.19 ft
Total Depth: 63.19 ft

Initial Depth to Water: 32.83 ft

Pump Type: QED Dedicated Bladder

Pump

Tubing Type: HDPE

Pump Intake From TOC: 58.19 ft Estimated Total Volume Pumped:

5000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.1 ft Instrument Used: Aqua TROLL 400

Serial Number: 884186

Test Notes:

Sample time 1545. Sample ID: MIT-PZ-25-WG-20220824.

Weather Conditions:

Overcast, temp 85 F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 5	+/- 10	+/- 0.3	
8/24/2022 3:19 PM	00:00	7.21 pH	25.65 °C	463.44 μS/cm	5.62 mg/L	1.16 NTU	-25.1 mV	32.91 ft	200.00 ml/min
8/24/2022 3:24 PM	05:00	7.10 pH	24.02 °C	466.15 μS/cm	2.34 mg/L	1.78 NTU	-32.9 mV	32.92 ft	200.00 ml/min
8/24/2022 3:29 PM	10:00	7.10 pH	23.82 °C	466.89 μS/cm	0.65 mg/L	3.48 NTU	-47.8 mV	32.92 ft	200.00 ml/min
8/24/2022 3:34 PM	15:00	7.10 pH	23.88 °C	467.03 μS/cm	0.62 mg/L	2.80 NTU	-71.5 mV	32.92 ft	200.00 ml/min
8/24/2022 3:39 PM	20:00	7.10 pH	23.97 °C	466.31 μS/cm	0.59 mg/L	1.12 NTU	-40.9 mV	32.92 ft	200.00 ml/min
8/24/2022 3:44 PM	25:00	7.10 pH	24.01 °C	466.70 μS/cm	0.57 mg/L	1.40 NTU	-71.5 mV	32.93 ft	200.00 ml/min

Sai	mple ID:	Description:
-----	----------	--------------

Test Date / Time: 8/24/2022 1:20:32 PM

Project: Plant Mitchell CCR **Operator Name:** Ever Guillen

Location Name: PZ-31
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 51.6 ft
Total Depth: 61.6 ft

Initial Depth to Water: 41.67 ft

Pump Type: QED
Tubing Type: HDPE

Pump Intake From TOC: 56.6 ft Estimated Total Volume Pumped:

7000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 1.24 ft Instrument Used: Aqua TROLL 400

Serial Number: 877800

Test Notes:

Sample time= 1400

Weather Conditions:

Hot- humid- some rain

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.1	+/- 5	+/- 10	+/- 0.3	
8/24/2022 1:20 PM	00:00	7.69 pH	26.09 °C	273.27 μS/cm	7.93 mg/L	24.60 NTU	43.5 mV	41.91 ft	200.00 ml/min
8/24/2022 1:25 PM	05:00	7.05 pH	21.71 °C	445.73 μS/cm	5.60 mg/L	17.10 NTU	38.1 mV	42.91 ft	200.00 ml/min
8/24/2022 1:30 PM	10:00	7.04 pH	21.61 °C	427.18 μS/cm	5.25 mg/L	14.30 NTU	40.0 mV	42.91 ft	200.00 ml/min
8/24/2022 1:35 PM	15:00	7.05 pH	21.56 °C	445.78 μS/cm	5.44 mg/L	10.70 NTU	38.0 mV	42.91 ft	200.00 ml/min
8/24/2022 1:40 PM	20:00	7.05 pH	21.50 °C	443.94 μS/cm	5.16 mg/L	7.29 NTU	42.5 mV	42.91 ft	200.00 ml/min
8/24/2022 1:45 PM	25:00	7.04 pH	21.42 °C	443.93 μS/cm	5.05 mg/L	5.33 NTU	44.6 mV	42.91 ft	200.00 ml/min
8/24/2022 1:50 PM	30:00	7.03 pH	21.33 °C	443.97 μS/cm	4.96 mg/L	3.17 NTU	43.0 mV	42.91 ft	200.00 ml/min
8/24/2022 1:55 PM	35:00	7.04 pH	21.20 °C	437.37 μS/cm	4.96 mg/L	1.03 NTU	42.7 mV	42.91 ft	200.00 ml/min

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/24/2022 1:33:51 PM

Project: Plant Mitchell CCR (2) **Operator Name**: Daniel Howard

Location Name: PZ-32
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 55.3 ft
Total Depth: 65.3 ft

Initial Depth to Water: 40.64 ft

Pump Type: QED Dedicated Bladder

Pump

Tubing Type: HDPE

Pump Intake From TOC: 60.3 ft Estimated Total Volume Pumped:

7000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.04 ft Instrument Used: Aqua TROLL 400

Serial Number: 884186

Test Notes:

Sample time 1410. Sample ID: MIT-PZ32-WG-20220824.

Weather Conditions:

Overcast, 83F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 5	+/- 10	+/- 0.3	
8/24/2022 1:33 PM	00:00	7.35 pH	21.82 °C	342.36 μS/cm	2.95 mg/L	1.07 NTU	41.0 mV	40.68 ft	200.00 ml/min
8/24/2022 1:38 PM	05:00	7.33 pH	21.23 °C	337.70 μS/cm	2.76 mg/L	0.39 NTU	62.1 mV	40.68 ft	200.00 ml/min
8/24/2022 1:43 PM	10:00	7.33 pH	21.11 °C	332.74 μS/cm	2.59 mg/L	0.35 NTU	86.9 mV	40.68 ft	200.00 ml/min
8/24/2022 1:48 PM	15:00	7.34 pH	20.95 °C	331.62 μS/cm	2.38 mg/L	0.49 NTU	91.0 mV	40.68 ft	200.00 ml/min
8/24/2022 1:53 PM	20:00	7.34 pH	20.99 °C	331.33 μS/cm	2.26 mg/L	0.20 NTU	91.6 mV	40.68 ft	200.00 ml/min
8/24/2022 1:58 PM	25:00	7.33 pH	20.85 °C	330.94 μS/cm	2.11 mg/L	0.22 NTU	92.5 mV	40.68 ft	200.00 ml/min
8/24/2022 2:03 PM	30:00	7.33 pH	20.95 °C	329.59 μS/cm	2.02 mg/L	0.22 NTU	91.8 mV	40.68 ft	200.00 ml/min
8/24/2022 2:08 PM	35:00	7.34 pH	20.76 °C	330.19 μS/cm	1.97 mg/L	0.15 NTU	91.3 mV	40.68 ft	200.00 ml/min

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/24/2022 3:10:47 PM

Project: Plant Mitchell CCR (2) **Operator Name:** Ever Guillen

Location Name: PZ-33
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 63.6 ft
Total Depth: 73.6 ft

Initial Depth to Water: 51.49 ft

Pump Type: QED
Tubing Type: HDPE

Pump Intake From TOC: 68.6 ft Estimated Total Volume Pumped:

6000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 1.22 ft Instrument Used: Aqua TROLL 400

Serial Number: 877800

Test Notes:

Sample time = 1545

Weather Conditions:

Hot-humid-some rain

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.1	+/- 5	+/- 10	+/- 0.3	
8/24/2022 3:10 PM	00:00	7.15 pH	23.97 °C	458.72 μS/cm	2.82 mg/L	24.10 NTU	-8.8 mV	52.71 ft	200.00 ml/min
8/24/2022 3:15 PM	05:00	7.12 pH	23.39 °C	463.28 μS/cm	1.02 mg/L	20.30 NTU	13.9 mV	52.71 ft	200.00 ml/min
8/24/2022 3:20 PM	10:00	7.11 pH	23.21 °C	462.87 μS/cm	0.53 mg/L	16.90 NTU	22.0 mV	52.71 ft	200.00 ml/min
8/24/2022 3:25 PM	15:00	7.11 pH	23.08 °C	461.38 μS/cm	0.31 mg/L	12.10 NTU	27.3 mV	52.71 ft	200.00 ml/min
8/24/2022 3:30 PM	20:00	7.10 pH	23.34 °C	463.17 μS/cm	0.25 mg/L	8.72 NTU	30.6 mV	52.71 ft	200.00 ml/min
8/24/2022 3:35 PM	25:00	7.10 pH	23.32 °C	461.57 μS/cm	0.20 mg/L	5.39 NTU	32.9 mV	52.71 ft	200.00 ml/min
8/24/2022 3:40 PM	30:00	7.10 pH	23.52 °C	463.96 μS/cm	0.19 mg/L	3.07 NTU	35.8 mV	52.71 ft	200.00 ml/min

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/26/2022 10:42:59 AM

Project: Plant Mitchell CCR (9) **Operator Name**: Daniel Howard

Location Name: PZ-57
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 63.39 ft
Total Depth: 73.39 ft

Initial Depth to Water: 30.82 ft

Pump Type: Sample Pro Bladder

pump

Tubing Type: HDPE

Pump Intake From TOC: 68.4 ft Estimated Total Volume Pumped:

7000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.32 ft Instrument Used: Aqua TROLL 400

Serial Number: 884186

Test Notes:

Sample time 1120. Sample ID: MIT-PZ-57-WG-20220826.

Weather Conditions:

Partly cloudy, 77F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 5	+/- 10	+/- 0.3	
8/26/2022 10:42 AM	00:00	7.09 pH	23.53 °C	614.03 μS/cm	0.78 mg/L	14.10 NTU	69.3 mV	31.14 ft	200.00 ml/min
8/26/2022 10:47 AM	05:00	7.09 pH	23.61 °C	583.90 μS/cm	0.50 mg/L	18.90 NTU	51.0 mV	31.14 ft	200.00 ml/min
8/26/2022 10:52 AM	10:00	7.08 pH	23.79 °C	584.94 μS/cm	0.42 mg/L	15.60 NTU	37.0 mV	31.14 ft	200.00 ml/min
8/26/2022 10:57 AM	15:00	7.09 pH	23.66 °C	582.04 μS/cm	0.36 mg/L	15.70 NTU	30.8 mV	31.14 ft	200.00 ml/min
8/26/2022 11:02 AM	20:00	7.09 pH	23.70 °C	582.62 μS/cm	0.32 mg/L	11.40 NTU	29.6 mV	31.14 ft	200.00 ml/min
8/26/2022 11:07 AM	25:00	7.09 pH	23.64 °C	582.05 μS/cm	0.29 mg/L	9.14 NTU	25.1 mV	31.14 ft	200.00 ml/min
8/26/2022 11:12 AM	30:00	7.09 pH	23.60 °C	581.39 μS/cm	0.25 mg/L	4.99 NTU	40.0 mV	31.14 ft	200.00 ml/min
8/26/2022 11:17 AM	35:00	7.09 pH	23.60 °C	583.06 μS/cm	0.21 mg/L	2.37 NTU	50.3 mV	31.14 ft	200.00 ml/min

Sample ID:	Description:
------------	--------------

Test Date / Time: 10/11/2022 2:54:04 PM

Project: Plant Mitchell (3)
Operator Name: Ever Guillen

Location Name: PZ-25
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 52 ft
Total Depth: 62 ft

Initial Depth to Water: 34.32 ft

Pump Type: QED
Tubing Type: HDPE

Pump Intake From TOC: 62 ft Estimated Total Volume Pumped:

8000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.44 ft Instrument Used: Aqua TROLL 400

Serial Number: 843285

Test Notes:

Sample time = 1540

Weather Conditions:

Clear-hot-humid

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 5	+/- 10	+/- 0.3	
10/11/2022 2:54 PM	00:00	7.23 pH	29.08 °C	380.40 μS/cm	2.83 mg/L	7.93 NTU	-45.7 mV	34.32 ft	200.00 ml/min
10/11/2022 2:59 PM	05:00	7.12 pH	25.18 °C	388.54 μS/cm	0.55 mg/L	7.22 NTU	-118.7 mV	34.76 ft	200.00 ml/min
10/11/2022 3:04 PM	10:00	7.13 pH	25.04 °C	387.60 μS/cm	0.29 mg/L	5.72 NTU	-126.3 mV	34.76 ft	200.00 ml/min
10/11/2022 3:09 PM	15:00	7.13 pH	24.86 °C	390.04 μS/cm	0.25 mg/L	4.37 NTU	-129.4 mV	34.76 ft	200.00 ml/min
10/11/2022 3:14 PM	20:00	7.13 pH	24.55 °C	387.33 μS/cm	0.24 mg/L	3.39 NTU	-129.2 mV	34.76 ft	200.00 ml/min
10/11/2022 3:19 PM	25:00	7.13 pH	24.54 °C	388.33 μS/cm	0.23 mg/L	1.88 NTU	-145.9 mV	34.76 ft	200.00 ml/min
10/11/2022 3:24 PM	30:00	7.14 pH	24.96 °C	389.38 μS/cm	0.23 mg/L	1.22 NTU	-133.2 mV	34.76 ft	200.00 ml/min
10/11/2022 3:29 PM	35:00	7.14 pH	25.07 °C	390.08 μS/cm	0.22 mg/L	0.87 NTU	-134.0 mV	34.76 ft	200.00 ml/min
10/11/2022 3:34 PM	40:00	7.13 pH	24.86 °C	388.97 µS/cm	0.22 mg/L	1.03 NTU	-133.9 mV	34.76 ft	200.00 ml/min

Sample ID:

Test Date / Time: 10/11/2022 12:37:05 PM

Project: Plant Mitchell (2) Operator Name: Ever Guillen

Location Name: PZ-32
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 60 ft
Total Depth: 70 ft

Initial Depth to Water: 41.63 ft

Pump Type: QED
Tubing Type: HDPE

Pump Intake From TOC: 65 ft Estimated Total Volume Pumped:

7000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.16 ft Instrument Used: Aqua TROLL 400

Serial Number: 843285

Test Notes:

Sample time = 1315

Weather Conditions:

Cool-cloudy-humid

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 5	+/- 10	+/- 0.3	
10/11/2022 12:37 PM	00:00	7.70 pH	23.71 °C	252.44 μS/cm	8.63 mg/L	4.33 NTU	83.0 mV	41.63 ft	200.00 ml/min
10/11/2022 12:42 PM	05:00	7.42 pH	20.59 °C	274.70 μS/cm	1.50 mg/L	3.38 NTU	19.0 mV	41.78 ft	200.00 ml/min
10/11/2022 12:47 PM	10:00	7.39 pH	20.82 °C	274.20 μS/cm	1.53 mg/L	2.96 NTU	36.5 mV	41.78 ft	200.00 ml/min
10/11/2022 12:52 PM	15:00	7.39 pH	20.86 °C	271.27 μS/cm	1.34 mg/L	2.21 NTU	39.2 mV	41.79 ft	200.00 ml/min
10/11/2022 12:57 PM	20:00	7.38 pH	21.09 °C	272.69 μS/cm	1.33 mg/L	1.38 NTU	41.7 mV	41.79 ft	200.00 ml/min
10/11/2022 1:02 PM	25:00	7.39 pH	21.15 °C	272.30 μS/cm	1.34 mg/L	1.10 NTU	43.2 mV	41.79 ft	200.00 ml/min
10/11/2022 1:07 PM	30:00	7.39 pH	21.34 °C	271.44 μS/cm	1.40 mg/L	0.98 NTU	44.4 mV	41.79 ft	200.00 ml/min
10/11/2022 1:12 PM	35:00	7.37 pH	21.18 °C	271.22 μS/cm	1.48 mg/L	0.94 NTU	45.8 mV	41.79 ft	200.00 ml/min

Sample ID:	Description:
------------	--------------

PLANT MITCHELL FIELD SAMPLING REPORT ASH PONDS 1 AND 2

Project Number: 6122-16-0170.2202

Wood E&I Solutions, Inc.

1075 BIG SHANTY ROAD NW SUITE 100 KENNESAW GA 30144

SAMPLING EVEN	T: 20)22 Sem	i-Annual Event	1; <u>X</u> 2022	2 Semi-Annu	ıal Event 2; OTHER						
WELL ID / SAMPL WELL MATERIAL:	PVC	ss _	_OTHER		08 <u>26</u>		MATRIX: Gr	oundwater				
SAMPLE METHOD DUP./REP. OF:		-	ver pun	~ <i>P</i>	DEPTH T	AMETER:O WATER:EPTH:	_	GRAB (x) CO	MPOSITE ()			
Pump Intake Set a or Tubing Inlet Set at					PURGE V [0.163 x v [0.653 x v	WATER COLUMN HEIGHT:PURGE VOLUME: [0.163 x water column height (ft) x 3 (well volumes) for 2" wells] [0.653 x water column height (ft) x 3 (well volumes) for 4" wells] [1.47 x water column height (ft) x 3 (well volumes) for 6" wells]						
TIME	VOL. PI		DO (±10% for DO > 0.5 mg/L for DO < 0.5 mg/L record only	ORP (mV)	pH (+/- 0.1		TEMP (°C)	TURB. (NTU)	Pump Rate ml/min. (& pump setting) (100 ml/min)	Water Level (Ft BTOC) ¹		
Initial:	(9)	,			, , , , , , , , , , , , , , , , , , , ,			[== 1110]	()	(115100)		

	ļ				ļ							
							<u> </u>					
					_		***************************************					
· · · · · · · · · · · · · · · · · · ·	 											
	ļ											
	-											
												
	-		***************************************									
					- 							
NOTES:	rate no g	reater t	han 100 ml/min a	and the wate	er level is abo	d when 3 consecutive was	ater level meas	surements vary	by 0.3 foot or less	at a pumping		
			dry, allow to recl					1293	, , , , , ,	670 Arm Am		
					le (ro	Bladder pun	p 45e 1	O Bamp	Ir well	PZ-57		
SAMPLE DATE :	14 Se 4	193	agized A.	31147	pel 1	vater (Chev	nworle	(773 <u>7</u> -	18-57			
SAMPLE DATE: _ SAMPLE TIME:	09	0/1	<i></i>			Pu						
		4-20			рH	<u> </u>						
CONTAINER SIZE/TYPE	NO.		DDESE		check	ANALYTICAL METHOD		ANI	ALYSIS			
250 mL/Poly	1	ATHER MENTERS	"	to pH <2	1 < 2	SW6010D/SW6020B/S W7470A			& IV Metals			
250 mL/Poly	1		Cool	to 6°C	****	EPA 300.0 R2.1		Арр. І	II Anions			
500 mL/Poly	1		Cool	to 6°C		SM2540C			rds			
1 L/Poly	2		HNO3	to pH <2	142	EPA 9315/9320		Radium 226	& 228 Combined			
	***************************************		M49-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	OF	UEDAL INEC	DA4 A TION						
WEATHER:	-37	77		حبوب	NERAL INFO	7 MOF						
SHIPPED VIA:	FED-X	TIX	Clowe	/	enf	15.0						
SHIPPED TO:	PACE La		ries - 110 Techr icole.d'oleo@p			e Corners, GA 30092 PH	: (770) 734-42	03 POC: Nicole	e D'Oleo (O) 704-9	977-0940 (M)		
SAMPLER:	Jan	(0.)	Howar	1		OBSERVER:						
				_								

PLANT MITCHELL FIELD SAMPLING REPORT ASH PONDS 1 AND 2

Project Number: 6122-16-0170.2202

Wood E&I Solutions, Inc. 1075 BIG SHANTY ROAD NW SUITE 100 KENNESAW GA 30144

PHONE: (770) 421-3400 / FAX: (770) 421-3486

				11011411107	12-10-100 / 1	100 (110) 121 0100				
SAMPLING EVEN	T: 20)22 Sem				al Event 2; OTHER			1942.775.7	
WELL ID / SAMPL	:PVC	ss_	OTHER	NQ-2022(0824		MATRIX: Gr	oundwater		
SAMPLE METHO	D: D'. [rect	Pour			- Carriero				
DUD /BED OF						AMETER:		CDAD (w) CO	MDORITE ()	
DUP./REP. OF:					TOTAL D	O WATER:	****	GRAB (x) CO	MPOSITE()	
Pump Intake Set a	at (btoc):	-			WATER C	OLUMN HEIGHT:	=			
or	` , _				PURGE V	OLUME:				
Tubing Inlet Set a	t (btoc):_	-			[0.163 x w	vater column height (ft)	x 3 (well volu	mes) for 2" wel	is]	
•					[0.653 _, x w	ater column height (ft)	x 3 (well volu	mes) for 4" wel	ls]	
					[1.47 x wa	ter column height (ft) x	3 (well volum	nes) for 6" wells	3]	
	VOL. PI	5	DO (±10% for DO > 0.5 mg/L for DO < 0.5 mg/L record	ORP (mV)	pH (+/- 0.1	, ,	TEMP (°C)	TURB. (NTU)	Pump Rate ml/min. (& pump setting) (100	Water Level
TIME	(ga	ai)	only	record only	pH units)	[+/- 5%]	Record only	[≤5 NTU]	ml/mln)	(Ft BTOC) ¹
Initial:	 								()	
	-									· · · · · · · · · · · · · · · · · · ·

	-									
					<u> </u>					
	 									
										
NOTES:						I d when 3 consecutive wa ove the top of the screen.		L surements vary	by 0.3 foot or less	at a pumping
	If well is	purged	dry, allow to rec	harge and sa	ample within	24 hrs.				
	Turbidity	/ ≤5 NT	Us Dei	0012B	dity	DE I ASTI	N wat	25		
	<u> </u>	4	<u>Che</u>	m Wor	<u>-12 "</u>	732-18-5				
SAMPLE DATE:_ SAMPLE TIME:	¥/2 10	00	2.2							
CONTAINER SIZE/TYPE	NO.		PRESE	RVATIVE	p H Check	ANALYTICAL METHOD		AN.	ALYSIS	
250 mL/Poly	1		HNO3	to pH <2	42	SW6010D/SW6020B/S W7470A		App. III	& IV Metals	
250 mL/Poly	11			to 6°C		EPA 300.0 R2.1			III Anions	
500 mL/Poly	1			to 6°C		SM2540C			TDS	
1 L/Poly	2	<u> </u>	HNO3	to pH <2	<u> </u>	EPA 9315/9320		Radium 226	& 228 Combined	
		<u> </u>						·····		
		MARCHANIA MARKATAN	MANUFACTURE AND AND ADDRESS OF THE PARTY OF	GEN	IERAL INFO	RMATION		****		
WEATHER:	(2)	100	Cast	chand	,	rain	······································			
SHIPPED VIA:	FED-X									
SHIPPED TO:			ries - 110 Techi icole.d'oleo@p			Corners, GA 30092 PH ill NC lab)	: (770) 734-42	203 POC: Nicol	e D'Oleo (O) 704-9	977-0940 (M)

OBSERVER:

EVER GUILLEN

SAMPLER:

PLANT MITCHELL FIELD SAMPLING REPORT ASH PONDS 1 AND 2

Project Number: 6122-16-0170.2202

Wood E&I Solutions, Inc.

1075 BIG SHANTY ROAD NW SUITE 100 KENNESAW GA 30144

PHONE: (770) 421-3400 / FAX: (770) 421-3486

	SAMPLING EVENT	T: 2022 Sem	i-Annual Event	1; <u>X</u> 2022 :	Semi-Annu	al Event 2; OTHER				
	WELL ID / SAMPLI WELL MATERIAL:	PVC SS	OTHER	•	n		MATRIX: Gr	oundwater		
	SAMPLE METHOD DUP./REP. OF:	_) DEDICATO	ED BLADDEN	WELL DIA	METER: 2 (1) D WATER: 55.07		GRAB (x) CO	MPOSITE ()	
	Pump Intake Set a		4 76.6	5	TOTAL DE	EPTH: 1 GH-2+ S	14277		3 = 3,/3 0 //	26.58
	or Tubing Inlet Set at	(btoc):	<u>.</u>		[0.653 x w	OLUME: 3,700 (ft) vater column height (ft) vater column height (ft) xter column height (ft) x	x 3 (well volu x 3 (well volu	mes) for 4" wel	is]	
			DO (±10% for DO > 0.5 mg/L			The solution regist (10) X	Viven voidin	1037101 0 100113	Pump Rate	
	TIME	VOL. PURGED (gal)	for DO < 0.5 mg/L record only	ORP (mV) record only	pH (+/- 0.1 pH units)	SPEC. COND. (μs/cm) [+/- 5%]	TEMP (°C) Record only	TURB. (NTU) [≤5 NTU]	ml/min. (& pump setting) (100 ml/min)	Water Level (Ft BTOC) ¹
	Initial: 1048 🏇	0125	6.42	84.5	7.05	249.84	24,09	33.6	200 ()	55,07
5,0	1053 1000		2.67	39,9	7.37	244,55	22.19	29.4	200	56,52
10	1658 150	8.75	3,17	34,4	7.43	250.98	23.97	23.1	200	56.63
15	1103 2000	1.0	3,27	2,86	7,45		25,24	17.5	200	56.63
20	1108 25,0	1,25	2.86	26.9	7,47	248.87	25,93	13.9	200	56,61
25	1113 3000	1.5	2,68	27,0	7.46	25-77 246,85	25,97	8.80	200	56.61
30	1118 3500	1.75	2.59	26.5	7.47	245.88	25.96	6153	200	56.61
35	1123 400	2.0	2.56	25.2	7,49	247.87	25.81	5,44	200	56.61
40	1128 -	2,25	2,53	25.9	7.48	248,03	26,19	5,12	200	56,61
45	1133 -	2.5	2.61	26.9	7,49	248.17	26,33	3,90	200	56.61
	1135	Collect	Some	le-						
	NOTES:	rate no greater t	nan 100 ml/min	and the water	level is abo	d when 3 consecutive wa we the top of the screen.		surements vary	by 0.3 foot or less	at a pumping
		If well is purged		harge and sar	mple within :					
		Turbidity ≤ 5 NT				PRESE	RVED SA	PMPLES	$PH = \langle 2.0 \rangle$	<u> </u>
	041401.5.0455	0 244 172	ellected	<u>, cluplic</u>	<u>at C 36.</u>	mple! AFM!	r-Apaia	-FD-001-	WG-202208	324
	SAMPLE DATE : SAMPLE TIME :	8-24-z								_
	CONTAINER					ANALYTICAL				
	SIZE/TYPE	NO.	PRESE	RVATIVE		METHOD	******	ANA	ALYSIS	
	250 mL/Poly	1		to pH <2 to 6°C		SW6010D/SW6020B/S W7470A			& IV Metals	
	250 mL/Poly	1				EPA 300.0 R2.1			Il Anions	
	500 mL/Poly 1 L/Poly	2		to 6°C to pH <2		SM2540C EPA 9315/9320			TDS & 228 Combined	****
Ì				•	· · · · · · · · · · · · · · · · · · ·					
				GEN	ERAL INFO	RMATION				
	WEATHER:	HUT-HU	~10- 501	16 RA1	N					
ĺ	SHIPPED VIA:	FED-X								
		PACE Laborato				Corners, GA 30092 PH	: (770) 734-42	03 POC: Nicole	e D'Oleo (O) 704-	977-0940 (M)

OBSERVER:

PLANT MITCHELL FIELD SAMPLING REPORT ASH PONDS 1 AND 2

Project Number: 6122-16-0170.2202

Wood E&I Solutions, Inc.

1075 BIG SHANTY ROAD NW SUITE 100 KENNESAW GA 30144

SAMPLING EVEN	T: 2022 S	Semi-Annual Event	1; <u>X</u> 2022 \$	Semi-Annu	al Event 2; OTHER					
WELL ID / SAMPL WELL MATERIAL SAMPLE METHOD DUP./REP. OF: Pump Intake Set a or Tubing Inlet Set a	: XPVC _ s D: QED Bladd at (btoc): _ 7	<u>Dedicated</u> er Pump (i		WELL DIAMETER: DEPTH TO WATER: WATER COLUMN HEIGHT: DEPTH: WATER COLUMN HEIGHT: [0.163 x water column height (ft) x 3 (well volumes) for 2" wells] [0.653 x water column height (ft) x 3 (well volumes) for 4" wells] [1.47 x water column height (ft) x 3 (well volumes) for 6" wells]						
TIME Initial: 11 0 1 11 0 6 11 1 1 11 1 6 11 2 1 11 2 6 11 3 1	VOL. PURGI (gal) 0 0.25 0.5 0.75 1,25	DO (±10% for DO > 0.5 mg/L for DO < 0.5 mg/L record only 1.6.2 2.2.2 2.67 2.67 3.02 3.02	ORP (mV) record only 60.3 63.6 81.6 62.8 80.9 61.4	pH (+/- 0.1 pH units) 7,73 7,95 7,98 7,98 7,98 8,00	SPEC. COND. (µs/cm) [+/-5%] 150.23 159.47 162.43 163.02 162.43 163.03	TEMP (°C) Record only 21.06 20.62 20.59 20.62 20.63 20.64	TURB. (NTU) [55 NTU] 2.52 2.56 1.53 1.74 1.46 1.51	Pump Rate ml/min. (& pump setting) (100 ml/min) 200 () 200 () 200 () 200 () 200 () 200 ()	Water Level (Ft BTOC) ¹ 38.66 38.66 38.66 38.66 38.66 38.66	
NOTES:	rate no great	er than 100 ml/min jed dry, allow to rec	and the water	level is abo	d when 3 consecutive wa ve the top of the screen. 24 hrs.	ater level meas	urements vary	by 0.3 foot or less	at a pumping	
SAMPLE DATE : _ SAMPLE TIME :	1122								-	
CONTAINER SIZE/TYPE	NO.		RVATIVE / C	p H Check	ANALYTICAL METHOD SW6010D/SW6020B/S		ANA	ALYSIS		
250 mL/Poly	1		to pH <2	<2	W7470A		App. III	& IV Metals		
250 mL/Poly 500 mL/Poly	1 1		to 6°C		EPA 300.0 R2.1			II Anions		
1 L/Poly	2	·· - ··································	to pH <2	~ 2	SM2540C EPA 9315/9320			rDS & 228 Combined		
************************			GENE	ERAL INFO	RMATION		·	T-100		
WEATHER:		cast 5		lain	75°F					
SHIPPED VIA: SHIPPED TO:					Corners, GA 30092 PH	: (770) 734-42	03 POC: Nicole	D'Oleo (O) 704-9	977-0940 (M)	
SAMPLER:	104-407-450	1: nicole.d'oleo@p		·	II NC lab) OBSERVER:			<u></u>		

PLANT MITCHELL FIELD SAMPLING REPORT ASH PONDS 1 AND 2

Project Number: 6122-16-0170.2202

Wood E&I Solutions, Inc.

1075 BIG SHANTY ROAD NW SUITE 100 KENNESAW GA 30144

SAMPLING EVEN	T: 2022 Se	mi-Annual Event 1	; <u>X</u> 2022	Semi-Annu	ial Event 2; OTHER	· · · · · · · · · · · · · · · · · · ·		***************************************	
WELL ID / SAMPL WELL MATERIAL SAMPLE METHOD	Vario on			ee Eur	mp)	MATRIX: Gr	oundwater		
DUP./REP. OF:				WELL DIA	AMETER: <u>Z'</u> O WATER: <u>34.9</u> 2	<u>.</u>	GRAB (x) CO	MPOSITE ()	
Pump Intake Set a	t (btoc): <i>5</i> 5	737		WATER C	EPTH: <u>60.37</u> COLUMN HEIGHT: <u>2</u> COLUME: 12.97	5,45 X	0,17 = 4,32	. ×3 = 12.9	7
Tubing Inlet Set at	(btoc):	1000		[0.163 x w	vater column height (ft) vater column height (ft) ater column height (ft) x	x 3 (well volu	mes) for 4" wel	ls]	
TIME	VOL. PURGED (gal)	only	ORP (mV) record only	pH (+/- 0.1 pH units)	SPEC. COND. (μs/cm) [+/- 5%]	TEMP (°C) Record only	TURB. (NTU) [≤5 NTU]	Pump Rate ml/min. (& pump setting) (100 ml/min)	Water Level (Ft BTOC) ¹
Initial: 1323 0,0	0,1	3.37	-30,9	7,13	480,27	23.81	28.1	Z00()	34.92
1325 1151	0.15	1134	6,0	6.99	BB 495:17	22.08	28.7	7.00	34.92
1330 6,51			22.7	6.98		22.27	23.6	200	34.25
1335 1151	0.50	1.39	19.5	6,99		24.65	16.9	200	34.95
1:340 1651	0:75	1,63	263	7,00		25,51	10,7	200	34,95
1345 2151	1,0	1,06	34.0	7,01		22.18	6,06	200	34.95
1350 2651	1.25	0,99	35.8	6.98		21.85	5.02	200	34.95
1355 3151	1.5		41.9	6.98		21.82	3,98	200	34.95
1400 3651	1.75		43,6	6,78	486.80	21.82	2,66	200	39.95
1405 4151 1410 Co	2.0 llect	500.00	38.2	6.98	486.05	21.73	1.73	200	34.95
1710 (0	wy	Somple	-			***************************************	· · · · · · · · · · · · · · · · · · ·		
		 							
NOTES:	rate no greater		nd the water	level is abo	d when 3 consecutive wa we the top of the screen. 24 hrs.		urements vary l	by 0.3 foot or less	at a pumping
	Turbidity ≤ 5 N	TUs							
				PRES	SERVED SAMPL	ES PH	= (2,0)	
SAMPLE DATE :	8-25-2								•
SAMPLE TIME :	1410	Notice of the Annual Control of the							
CONTAINER					ANALYTICAL				
SIZE/TYPE	NO.	PRESER	VATIVE		METHOD	the statement of the statement	ANA	ALYSIS	
250 mL/Poly	1	HNO3 to	·		SW6010D/SW6020B/S W7470A		App. III 8	& IV Metals	
250 mL/Poly	1	Cool to			EPA 300.0 R2.1			II Anions	
500 mL/Poly	1	Cool to			SM2540C			rds .	
1 L/Poly	2	HNO3 to	pH <2		EPA 9315/9320		Radium 226 8	& 228 Combined	
								· · · · · · · · · · · · · · · · · · ·	
		the state of the s	GENE	RAL INFO	PMATION			***********	
VEATHER:	Um - 11	UMID - SO)//U					
		VMIN 30	1-15 L/	1//					
CUIDDED TO	PACE Laborato 704-467-4501: ı	ories - 110 Techno nicole.d'oleo@pac	ology Pkwy, celabs.com	Peachtree (Huntersvi	Corners, GA 30092 PH II NC lab)	: (770) 734-42	03 POC: Nicole	D'Oleo (O) 704-9	977-0940 (M)
		CEN			OBSERVER:				

PLANT MITCHELL FIELD SAMPLING REPORT ASH PONDS 1 AND 2

Project Number: 6122-16-0170.2202

Wood E&I Solutions, Inc.

1075 BIG SHANTY ROAD NW SUITE 100 KENNESAW GA 30144

SAMPLING EVENT	Γ:20	22 Sem	ni-Annual Event	1; <u>X</u> 2022 S	Semi-Annu	al Event 2; OTHER			A. P	
WELL ID / SAMPLI	EID: MI	T-PZ-	-14-WG-202	208 <i>25</i>			MATRIX: Gr	oundwater		
WELL MATERIAL:	X PVC	ss _	_ OTHER		~ \					
SAMPLE METHOD	: Cow	row	(DEDICATED	BLADVERT	(שמנט	- //				
					WELLDIA	AMETER: 2/				
DUP./REP. OF:		40	201		DEATH IC	D WATER: <u>45,55</u> EPTH: <u>53,20</u>		GRAB (x) CO	MPOSITE ()	
Pump Intake Set a	t (btoc):	70	,20'		WATER	OLUMN HEIGHT: 7.	_ 65~v 0.17	1-1.30 x	3:3.90	
or	t (btoo)					OLUME: 3.90	55 76 -117 6	-11001), t	
Tubing Inlet Set at	(htoc):					ater column height (ft)	— v 3 (woll volu	mae) for 2" wal	lo1	
rabing into out at	(5100)1					ater column height (ft)				
						ter column height (ft) x		•	-	
	T		DO (±10% for	****	l					
			DO > 0.5 mg/L						Pump Rate	
			for DO < 0.5						mi/min. (& pump	l
TIME	VOL. PL		mg/L record only	ORP (mV) record only	pH (+/- 0.1 pH units)	SPEC. COND. (μs/cm) [+/- 5%]	TEMP (°C) Record only	TURB. (NTU) [≤5 NTU]	setting) (100 mi/min)	Water Level (Ft BTOC) ¹
Initial: 1510 0,0	(ga		6,99	42.0	7,45					
1515 5,0	0,2		6.03	62,5	6,95	302.21	29,75	21,1	2000 ()	45,61
	0.5		6,02	GEO 491		452,16	23,08	17.3	200 200	45,61
1525 15.0	0.7		5188	61,6	6.95		22.81	12.6	200	45,61
1530 ZO.0	1,0		5,76	48.1	6,94		22.58	6,54	200	45,61
1535 25,0	1.2		5,66	61.1	6.93		22.54	5,32	200	45,61
1540 30.0	1.5		5,65	46.8	6.93		22.85	3,96	200	
1545 35,0	1:75		5.62	53.8	6.93	456.33	22.90	2,73	200	45,61
1550 40.0	2.6		5,59	53,7	6,93		22.74	1155	200	45,61
1555 45,0	2.0		5.58	45:0	6.93	455.19	22,45	0,67	200	45,61
1600	Coll		SAMPLE			1,33.7.1		0701		13/61
			2777 (7 6 2							
NOTE O						d when 3 consecutive wa		surements vary	by 0.3 foot or less	at a pumping
NOTES:						ove the top of the screen.				
	Turbidity		dry, allow to recl			··········	P11-	120		
	Turblaity	3 3 141			RESERI	VED SAMPLES	1/1=	42.0		
SAMPLE DATE : _	B-25.	-22								
SAMPLE TIME :										
CONTAINER	ļ					AŅALYTICAL				
SIZE/TYPE	NO.	W	PRESE	RVATIVE	e	METHOD		ANA	ALYSIS	
250 mL/Poly	1 HN03 to pH <2 SW6010D/SW6020B/S App. III & IV Metals									
250 mL/Poly	1			to 6°C		EPA 300.0 R2.1		Арр. І	ll Anions	
500 mL/Poly	1		Cool	to 6°C		SM2540C			rds	
1 L/Poly	2		HNO3 I	to pH <2		EPA 9315/9320		Radium 226 8	& 228 Combined	
				·						

A/E ATUED.		17		GENE	RAL INFO	RMATION	······································			

	GL	NERAL INFORMATION					
WEATHER: HOT - HUMID - SOME RAIN							
SHIPPED VIA: FED-X							
SHIPPED TO:	PACE Laboratories - 110 Technology Pkv 704-467-4501: nicole.d'oleo@pacelabs.co	vy, Peachtree Corners, GA 30092 PH: (770) 734-4203 POC: Nicole D'Oleo (O) 704-977-0940 (M) om (Huntersvill NC lab)					
SAMPLER:	ER GUILLEN	OBSERVER:					

PLANT MITCHELL FIELD SAMPLING REPORT ASH PONDS 1 AND 2

Project Number: 6122-16-0170.2202

Wood E&I Solutions, Inc.

1075 BIG SHANTY ROAD NW SUITE 100 KENNESAW GA 30144

SAMPLING EVENT	Γ: 20	22 Sem	i-Annual Event	1; <u>X</u> 2022	Semi-Annu	al Event 2;	OTHER				
WELL ID / SAMPL WELL MATERIAL: SAMPLE METHOD DUP./REP. OF: Pump Intake Set a	X PVC : Q E T 3 Va t (btoc):	Diss Diss Diss Diss Diss Diss Diss Diss	other edicate pump	1	WELL DIA DEPTH TO TOTAL DI WATER O PURGE V	WELL DIAMETER: 2 DEPTH TO WATER: 31.25 TOTAL DEPTH: 33.22 WATER COLUMN HEIGHT: 51.37 PURGE VOLUME:					
Tubing Inlet Set at	(btoc):							•	mes) for 2" wel mes) for 4" wel	-	
				v.				•	nes) for 6" wells	-	
TIME Initial: 1326 1331 4336	0.25 2.02 -100.0 2.7 515.88 24.76 1.73 200 31.9										
137	0.	3	1.27	-114.7	7.16	517.7	32_	2451	1.87		31.99
1337	1.7	5	7.8	-108.7	7.16	517	77	24.34	0.57	200	32.02
1356	1,5	O	0.66	704.2	7,16	517.3	32	24.29	0.66	200	32,04
1401	1.7	5	g.you	-99,0	7.16	517.4	7	24.38	0.46	200	32.06
1406	2.0	2	0.71	-94.2	7.15	511.7	14	24,48	0.41	200	32.06
	1										
NOTES:	rate no g	ation of reater tl	water column w nan 100 ml/min	/III be conside and the water	red achieve · level is abo	d when 3 conse eve the top of th	ecutive wa ne screen.	ater level meas	surements vary	by 0.3 foot or less	at a pumping
			dry, allow to rec								
	Turbidity	≤ 5 NT	Us								
SAMPLE DATE :	3/7	5/2	<u> </u>				• • • • • • • • • • • • • • • • • • • •				-
SAMPLE TIME :		08			- 11						
CONTAINER	110		22505		en la	ANALYTI					
SIZE/TYPE	NO.				<u>check</u>	METHO SW6010D/SW				ALYSIS	
250 mL/Poly	1		HNO3	to pH <2	<u> </u>	W7470			App. III	& IV Metals	
250 mL/Poly	1	······································		to 6°C		EPA 300.0	R2.1		App. I	III Anions	
500 mL/Poly	1			to 6°C		SM254				TDS	
1 L/Poly	2		HNO3	to pH <2	42	EPA 9315	/9320		Radium 226	& 228 Combined	
	W. W. C. C. C. C. C. C. C. C. C. C. C. C. C.			GEN	ERAL INFO	RMATION	-	- ····	······································		***************************************
WEATHER: Over cast, Temp 800F											
SHIPPED VIA:	FED-X			,	o '						
			ries - 110 Tech icole.d'oleo@p				30092 PH	: (770) 734-42	03 POC: Nicol	e D'Oleo (O) 704-9	977-0940 (M)
SAMPLER: 3											

PLANT MITCHELL FIELD SAMPLING REPORT ASH PONDS 1 AND 2

Project Number: 6122-16-0170.2202

Wood E&I Solutions, Inc.

1075 BIG SHANTY ROAD NW SUITE 100 KENNESAW GA 30144

SAMPLING EVEN	T: 202	2 Semi- A nnual Event	1; <u>X</u> 2022 :	Semi-Annu	al Event 2;OTHER					
WELL MATERIAL:	: X PVC _	-PZ-16-WG-202 ss_other bedicated	•		a	MATRIX: Gr	oundwater			
DUP./REP. OF:			(Low-low)	TOTAL DE	PTH: _53.19	 T 18 00	GRAB (x) CO	MPOSITE()		
Pump Intake Set a	ıt (btoc):	10.11			***************************************	6.89				
or Tubing Inlet Set at	t (htoc):			PURGE V	ocume: rater column height (ft) :	 v 3 (woll volu	mae) for 2" wal	le1		
rubing inter oct at	(5:00)	· · · · · · · · · · · · · · · · · · ·		-	ater column height (ft):	•	•	-		
					ter column height (ft) x	,	•	-		
	1		I	T				T	1	
		DO (±10% for DO > 0.5 mg/L			Pump Rate					
		for DO < 0.5	000 / 10	11.4.4.6.4	0050 00MB (()			ml/min. (& pump	144-41	
TIME	VOL. PUR		ORP (mV) record only	pH (+/- 0.1 pH units)	SPEC. COND. (μs/cm) [+/- 5%]	TEMP (°C) Record only	TURB. (NTU) [≤5 NTU]	setting) (100 ml/min)	Water Level (Ft BTOC) ¹	
Initial: 1145	O	5.68	0.7	7.28	502.97	22.81	0.45	200()	36.38	
1150	0.2	5 1.15	84.7	7.15	506.54	22.62	1,65	200	36,38	
1155	0.5		127.2	7.14	494,43	22.60	1,30	200	36,38	
1200	0.7	W	1343	7.15	493.70	22.54	1,14	200	36,38	
12.05	J. C	1.84	137.3	7.15	492.92	22.53	1,09	200	36.38	
1210	1.2.	5 1.87	104,3	1.14	492.83	22.43	0.42	200	36.38	

						· · · · · · · · · · · · · · · · · · ·				
NOTES:	rate no gre	eater than 100 ml/min	and the water	level is abo	d when 3 consecutive wa ve the top of the screen.	iter level meas	urements vary	by 0.3 foot or less	at a pumping	
		urged dry, allow to rec	harge and sar	nple within	24 hrs.					
	Turbidity s	2 2 14 1 0 2								
SAMPLE DATE :	S125	12								
SAMPLE TIME :	1212									
CONTAINER			9	PH 9	ANALYTICAL					
SIZE/TYPE	NO.	PRESE		check	METHOD		ANA	ALYSIS		
250 mL/Poly	1	HNO3	to pH <2		SW6010D/SW6020B/S W7470A		App. III	& IV Metals		
250 mL/Poly	1		to 6°C		EPA 300.0 R2.1			II Anions		
500 mL/Poly	1		to 6°C		SM2540C			rds		
1 L/Poly	2	HNO3	to pH <2	~ 2_	EPA 9315/9320		Radium 226	& 228 Combined		
l										
		· · · · · · · · · · · · · · · · · · ·	GENI	ERAL INFO	RMATION					
WEATHER:	Duo	cost, Te	mp 7"	7°F			······································			
SHIPPED VIA:	FED-X	,	7							
SHIPPED TO:	704-467-4	oratories - 110 Techi 501: nicole.d'oleo@p		(Huntersvi		: (770) 734-42	03 POC: Nicol	e D'Oleo (O) 704-	377-0940 (M)	
SAMPLER: DA	SAMPLER: Daniel Howard OBSERVER:									

PLANT MITCHELL FIELD SAMPLING REPORT ASH PONDS 1 AND 2

Project Number: 6122-16-0170.2202

Wood E&I Solutions, Inc.

1075 BIG SHANTY ROAD NW SUITE 100 KENNESAW GA 30144

SAMPLING EVENT	Γ: 2022 Sen	ni-Annual Event	1; <u>X</u> 2022	Semi-Annu	al Event 2; OTHER							
WELL ID / SAMPL WELL MATERIAL: SAMPLE METHOD				e Ras)	weren 2 "	MATRIX: Gr	oundwater					
DUP./REP. OF:				DEPTH TO	WELL DIAMETER: Z DEPTH TO WATER: 35,03 GRAB (x) COMPOSITE () TOTAL DEPTH: 62,70							
Pump Intake Set a	t (btoc):	7.70		WATER C	OLUMN HEIGHT: 27 OLUME: 14,/1	FR 27.6	7×0,17=	4.70×3	= 14.11			
Tubing Inlet Set at	(btoc):			[0.653 x w	[0.163 x water column height (ft) x 3 (well volumes) for 2" wells] [0.653 x water column height (ft) x 3 (well volumes) for 4" wells] [1.47 x water column height (ft) x 3 (well volumes) for 6" wells]							
TIME	VOL. PURGED (gal)	DO (±10% for DO > 0.5 mg/L for DO < 0.5 mg/L record only	ORP (mV) record only	pH (+/- 0.1 pH units)	SPEC. COND. (μs/cm) [+/- 5%]	TEMP (°C) Record only	TURB. (NTU) [≤5 NTU]	Pump Rate ml/min. (& pump setting) (100 ml/min)	Water Level			
Initial: 11380,0	0,1	7.26	-78.2	7,34	443,93	25.74	31.1	200 ()	35.03			
1143 5,0	0.25	0,19	-44,1	7,06	462,63	22.31	26,2	200	35111			
1148 10.0	0.50	8.11	-40.0	7,06	464.31	22.25	21.4	200	35.11			
1153 15,0	0.75	0,10	-363	7,06	468.34	22,22	16.9	200	35,11			
1158 20.0	1.0	0,11	-33.1	7,05	469,30	22.27	12,3	200	35,11			
120 25.0	1,25	0,11	-31.0	7,04	472.13	22.27	7.18	200	35,11			
1200 30,0	1.50	0,12	-z9.0	7105	472.92	22.05	4,73	200	35,11			
1210	Collect Sample											

·			***************************************									
NOTES:					d when 3 consecutive wa ve the top of the screen.	ater level meas	urements vary	by 0.3 foot or less	at a pumping			
	If well is purged	dry, allow to rec	harge and sar	mple within 2	24 hrs.	*						
	Turbidity ≤ 5 N	ΓUs							····			
				PRF	SERVED SAMPL	ES PH.	= 12.0					
SAMPLE DATE : _	8-25-2	2		,,,,,,								
SAMPLE TIME :	1210								•			
CONTAINER					ANALYTICAL							
SIZE/TYPE	NO.	PRESE	RVATIVE		METHOD		AN	ALYSIS				
250 mL/Poly	1	HNO3	to pH <2		SW6010D/SW6020B/S W7470A		App. III	& IV Metals				
250 mL/Poly	1		to 6°C		EPA 300.0 R2.1		App. I	II Anions				
500 mL/Poly	1		to 6°C		SM2540C			rds				
1 L/Poly	2	HNO3	to pH <2		EPA 9315/9320		Radium 226	& 228 Combined				
						.,						
	**************************************		CENI	ERAL INFO	RMATION		- 17 H. V					
WEATHER:	14 11				CHAINA		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
	<u> 770-7 — Н</u> FED-X	0m0-51	ME KAI	N			****					
PHIDDED TO:		ries - 110 Tech	nology Pkwy, acelabs.com	Peachtree (Huntersvi	Corners, GA 30092 PH II NC lab)	: (770) 734-42	03 POC: Nicole	∋ D'Oleo (O) 704-9	977-0940 (M)			
	168 GUI				OBSERVER:				***			

PLANT MITCHELL FIELD SAMPLING REPORT ASH PONDS 1 AND 2

Project Number: 6122-16-0170.2202

Wood E&I Solutions, Inc.

1075 BIG SHANTY ROAD NW SUITE 100 KENNESAW GA 30144

SAMPLING EVENT	: 202	22 Sem	i-Annual Event	1; <u>X</u> 2022 \$	Semi-Annu	al Event 2; OTHER				
WELL ID / SAMPLE	= 15. MI*	T_D7_	.18_\MC_202	208 25			MATRIX O			
							MATRIX: Gr	oundwater		
WELL MATERIAL: SAMPLE METHOD	·LOW	_ 33 _ £1 pin	J DEDICA	TED BLADD	ER PUMP	.) "				
DUP./REP. OF: M	NT-AF	PAIR	-FD002-	WG-2022	DEPTH TO	WATER: 31.51 EPTH: 63,18		GRAB (x) CO	MPOSITE ()	
		מיייים	0.01	0825	TOTAL DE	PTH: 63,18	=	n and against	20 . 41 111	
Pump Intake Set at	t (btoc):_	<u> 5 8</u>	2118			OLUMN HEIGHT:	31.61X	0117 = 513	50 X 16.14	
or						OLUME: 16,14	_			
Tubing Inlet Set at	(btoc):				[0.163 x w	ater column height (ft)	x 3 (well volur	nes) for 2" wel	ls]	
					[0.653 x w	ater column height (ft)	x 3 (well volur	nes) for 4" wel	ls]	
					[1.47 x wa	ter column height (ft) x	3 (well volum	es) for 6" wells	s]	
	T		DO (±10% for		1			· · · · · · · · · · · · · · · · · · ·	T	
			DO > 0.5 mg/L						Pump Rate	
			for DO < 0.5						ml/min. (& pump	
71145	VOL. PU		mg/L record	ORP (mV)	pH (+/- 0.1		TEMP (°C)	TURB. (NTU)	setting) (100	Water Level
TIME	(gal	1)	only	record only	pH units)	[+/- 5%]	Record only	[≤5 NTU]	ml/min)	(Ft BTOC)
Initial: 942 0.0	0,	1	7,90	176.7	6.70	941:05	24.24	33.2	200 ()	31,5
947550	0.2		0.88	42,2	6.72	651.93	22.75	27,1	200	31.51
952 10,0	0.5	-	\$1.79	30.5	6.80	634.53	23,39	21.3	200	31,51
957 150	0.7		2.01	24.9	6.81	639,42	23,33	16.9	200	31,51
1002 20,0	1.0		0.73	24,5	6.79	644. 75	23.08	11.5	2.00	31.51
1007 25.0	1,29	5	0.20	32.3	6.77	647,69	22.89	8.79	200	31.5"
1012 30,0	1.5		0,19	33.1	676	648.95	23,02	6,22	200	31.5
100 3510	1.7		0.18	36,4	6.76	648.01	23,08	51/1	200	31,57
1022 40.0	2.0		0,19	36.6	6.76	348.66	22.98	3,98	200	31.50
1027 45,0	2.29		0,18	37.1	6.76	348.81	22.92	1.31	200	31.5-1
1032 50.0	2.5	e Aur	0.18	37.1	6.76	348.77	22.99	0,37	200	31.51
1035	Colle	es_	Sample							
	1									
NOTES.						d when 3 consecutive wa ve the top of the screen.	iter level meas	urements vary l	by 0.3 foot or less	at a pumping
NOTES:			dry, allow to rec							
	Turbidity			T	Α	5.6	En			
	Taibiaity	30141	000	recrex	Date Lect	rote sample	FD-00			
SAMPLE DATE :	8-25	-22	-		TRESE	RVED SAMPLES	THIS	2.0		
SAMPLE TIME :	103						***************************************			•
	100									
CONTAINER						ANALYTICAL				
SIZE/TYPE	NO.		PRESE	RVATIVE		METHOD		AN	ALYSIS	
250 mL/Poly	1		HNO3	to pH <2		SW6010D/SW6020B/S W7470A		App. III a	& IV Metals	
250 mL/Poly	1		Cool	to 6°C		EPA 300.0 R2.1		App. l	II Anions	
500 mL/Poly	1			to 6°C		SM2540C		7	rds	
1 L/Poly	2		HNO3	to pH <2		EPA 9315/9320		Radium 226 8	& 228 Combined	

				GEN	RAL INFO	RMATION				

	GEN	ERAL INFORMATION
WEATHER:	HOT-HUMID - RAIN	
SHIPPED VIA:	FED-X	
SHIPPED TO:	PACE Laboratories - 110 Technology Pkwy 704-467-4501: nicole.d'oleo@pacelabs.com	, Peachtree Corners, GA 30092 PH: (770) 734-4203 POC: Nicole D'Oleo (O) 704-977-0940 (M) n (Huntersvill NC lab)
SAMPLER: E	VER GUILLEN	OBSERVER:

SAMPLER:

Daniel Howard

PLANT MITCHELL FIELD SAMPLING REPORT ASH PONDS 1 AND 2

Project Number: 6122-16-0170.2202

Wood E&I Solutions, Inc.

1075 BIG SHANTY ROAD NW SUITE 100 KENNESAW GA 30144 PHONE: (770) 421-3400 / FAX: (770) 421-3486

SAMPLING EVEN	T: 20:	22 Sem	i-Annual Event	1; <u>X</u> 2022	Semi-Annu	al Event 2; OTHER				
WELL ID / SAMPL WELL MATERIAL: SAMPLE METHOD DUP./REP. OF: Pump Intake Set a or Tubing Inlet Set at	Blad	SS De Wer 57	other dicated property		WELL DIA DEPTH TO TOTAL DI WATER C PURGE V [0.163 x w [0.653 x w	O WATER: 34 6 EPTH: 62,63 OLUMN HEIGHT: 23	x 3 (well volue x 3 (well volue	GRAB (x) CO mes) for 2" wel mes) for 4" wel	 s]	
TIME Initial: 1002 1007 1012 1017 1012 1027	1.6) . 5	DO (±10% for DO > 0.5 mg/L record only 0.38 0.34 0.35 0.37	ORP (mV) record only 120, 5 98, 9 127, 1 127, 0 98, 4 124, 1	pH (+/- 0.1 pH units) 7.00 6.67 6.67 6.67	SPEC. COND. (μs/cm) [+/- 5%] 364, 90 361, 49 461, 18 463, 79 358, 98	TEMP (°C) Record only 23.97 22.75 22.63 12.67 22.68	TURB. (NTU) [\$5 NTU] 3.06 0.25 0.62 0.24 0.22 0.15	Pump Rate ml/min. (& pump setting) (100 ml/min) 200() 200 200 200 200 200	Water Level (Ft BTOC) ¹ 34.07 34.07 34.07 34.07 34.07
NOTES:	rate no gi	reater ti ourged	han 100 ml/min dry, allow to rec	and the water	level is abo	d when 3 consecutive wanter the top of the screen. 24 hrs.		surements vary	by 0.3 foot or less	at a pumping
SAMPLE DATE : _	\$/2	5/2	2.							-
SAMPLE TIME :	102	<u>y</u>	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·			
CONTAINER				1	PH	ANALYTICAL				
SIZE/TYPE	NO.		PRESE	RVATIVE 1	check	METHOD		ANA	ALYSIS	
250 mL/Poly	1		HNO3	to pH <2	<2	SW6010D/SW6020B/S W7470A		App. III	& IV Metals	
250 mL/Poly	1		Cool	to 6°C		EPA 300.0 R2.1		App. I	III Anions	
500 mL/Poly	1		Cool	to 6°C		SM2540C			TDS	
1 L/Poly	2		HNO3	to pH <2	~2	EPA 9315/9320		Radium 226 8	& 228 Combined	

					ERAL INFO	A Marie Marie		······································		· · · · · · · · · · · · · · · · · · ·
WEATHER:	_ <i>U</i> v	ten c	east, c	hance	of ro	ely Temp	740F			
SHIPPED VIA:	FED-X	borsto	rige , 110 Tach	aology Physic	Danchtron	Corners GA 20002 DU	. /770\ 724 42	02 DOC: Nia-1	DIOI00 (0) 704	077 0040 (\$4)
			ries - 110 Tecni icole.d'oleo@p			Corners, GA 30092 PH III NC lab)	: (770) 734-42	ius POU: Nicole	∍ ⊔'Oleo (O) 704-9	<i>311-</i> 0940 (M)

OBSERVER:

PLANT MITCHELL FIELD SAMPLING REPORT ASH PONDS 1 AND 2

Project Number: 6122-16-0170.2202

Wood E&I Solutions, Inc.

1075 BIG SHANTY ROAD NW SUITE 100 KENNESAW GA 30144

SAMPLING EVEN	T: 20	22 Sem	il-Annual Event	1; <u>X</u> 2022	Semi-Ann	ual Event 2; OTHER	Į.			
WELL ID / SAMPL	: X PVC	SS	OTHER				MATRIX: G	roundwater		
SAMPLE METHO	310		er Pun	p/lowflow	WELL DI	IAMETER: 2			624	
DUF./KEP. UF				•	UEPIHI	UVVAIEK: AL &	Į ,	GRAB (x) CO	MPOSITE ()	
Pump Intake Set a	at (btoc):_	5K	760 62	.21	WATER	DEPTH: 0 16.3.6. COLUMN HEIGHT: VOLUME:	4.32	.1		
Tubing Inlet Set a	t (btoc):					water column height (ft)	— x 3 (well volu	mes) for 2" we	lls1	
						water column height (ft)		•	-	
					[1.47 x w	ater column height (ft) x	3 (well volun	nes) for 6" well	s]	
	VOL. PL	RGED	DO (±10% for DO > 0.5 mg/L for DO < 0.5 mg/L record	ORP (mV)	pH (+/- 0.	1 " "	TEMP (°C)	TURB. (NTU)	Pump Rate ml/min. (& pump setting) (100	Water Level
TIME	(ga	1)	only	record only		THE RESERVE TO SHARE THE PARTY OF THE PARTY	Record only	[≤5 NTU]	ml/min)	(Ft BTOC) ¹
Initial: 154	03		3,23	33.8	6.76	ment of the second	26.46	8.36	200()	33,22
1557	DES. 7	<u>)</u>	2.23	1188	6.76		9 4 27	600	200	333 34
1556	0.7	15	2,76	1310	16.76	4200	74.23	4 (2	200	53.26 E3.26
1601	1.0	5	2,10	1728	6.76		24,25	1.94	200	52.21
1606	1.2	5	2,08	96.3	6.76	728.37	24.44	2,52	200	52.18
NOTES:	¹ Stabiliza rate no gi	ation of reater th	water column w nan 100 ml/min :	ill be conside and the water	red achieve r level is ab	ed when 3 consecutive was ove the top of the screen.	ater level meas	curements vary	by 0.3 foot or less	at a pumping
			dry, allow to recl	narge and sa	mple within	24 hrs.				
	Turbidity	≤ 5 NT	Js	···			····			
SAMPLE DATE : _ SAMPLE TIME :	8/2		12							-
CONTAINER				1	rl q	ANALYTICAL				
SIZE/TYPE	NO.	Melonil/in a s raa	PRESE	RVATIVE	<u>check</u>	METHOD	-	AN	ALYSIS	
250 mL/Poly	1		HNO3 f	to pH <2	42	SW6010D/SW6020B/S W7470A		App. III	& IV Metals	
250 mL/Poly	1			to 6°C		EPA 300.0 R2.1		App. I	II Anions	
500 mL/Poly	1			to 6°C		SM2540C			TDS	
1 L/Poly	2		HNO3 t	to pH <2	<2	EPA 9315/9320		Radium 226	& 228 Combined	
	L					<u></u>				·•····································
				GEN	ERAL INFO	RMATION				**************************************
WEATHER:	Ove	r Ca	st, Te	m/82	GF				**************************************	
SHIPPED VIA:	FED-X			<u> </u>			/			
	704-467-4	1501: ni	cole.d'oleo@pa	acelabs.com		· · · · · · · · · · · · · · · · · · ·	: (770) 734-42	us POC: Nicole	D'Oleo (O) 704-9	∂77-0940 (M)
SAMPLER: 7	1 0 00	الم	Hay was a	and a		OBSERVER:				

PLANT MITCHELL FIELD SAMPLING REPORT ASH PONDS 1 AND 2

Project Number: 6122-16-0170.2202

Wood E&I Solutions, Inc.

1075 BIG SHANTY ROAD NW SUITE 100 KENNESAW GA 30144

SAMPLING EVEN	Γ: 2022 Se	emi-Annual Event 1; X 2022	Semi-Annu	ıal Event 2; OTHER				
WELL ID / SAMPLI WELL MATERIAL: SAMPLE METHOD DUP./REP. OF:	X PVC _ss	z-25-WG-202208 <u>24</u> OTHER ledicated r Pumplowflow) WELL DI	AMETER: 2	MATRIX: Gr	oundwater GRAB (x) CO	MPOSITE()	
Pump Intake Set a or Tubing Iniet Set at		8.19	TOTAL D WATER (PURGE V		30,36 - x 3 (well volu	.,	, ,	
				vater column height (ft) ater column height (ft) x	•	•	-	
TIME	VOL. PURGEI (gal)	only record only	pH (+/- 0.1 pH units)	SPEC. COND. (μs/cm) [+/- 5%]	TEMP (°C)	TURB. (NTU) [≤5 NTU]	Pump Rate ml/min. (& pump setting) (100 ml/min)	Water Level (Ft BTOC) ¹
Initial: 1519	0.25	5.62 -25.1	1.21	763.75	23,65	1.16	200()	32.91
1529	0.5	0.65 -47.8	7.10	166.13	20 00	2 /13	200	32.92
1534	0.75	0.62 -71.5	7.10	460.01	73 48	1 40	200	32 00
1529	1.0	0.59 -40.9	7/0	4/6 31	7207	1 12	200	20 00
1544	1.25	0.57 -71.5	7/10	466.70	2401	140	200	31 00
121-1	1.00	113	1000	100,10	2-1000	10-10	200	34.13
			1		<u> </u>			
			ļ					
the second of th								
NOTES:		of water column will be conside r than 100 ml/min and the wate				surements vary	by 0.3 foot or less	at a pumping
	If well is purge	ed dry, allow to recharge and sa	mple within	24 hrs.				
	Turbidity ≤ 5 I	NTUs						
SAMPLE DATE:_ SAMPLE TIME:	8/24/	2.2						•
CONTAINER		1	F1 G	ANALYTICAL	***************************************			· · · · · · · · · · · · · · · · · · ·
SIZE/TYPE	NO.	1	check	METHOD		AN	ALYSIS	
	*****			SW6010D/SW6020B/S				
250 mL/Poly	1	HNO3 to pH <2	<2	W7470A		App. III	& IV Metals	
250 mL/Poly	1	Cool to 6°C		EPA 300.0 R2.1		Арр.	III Anions	
500 mL/Poly	1 ,	Cool to 6°C		SM2540C			TDS	
1 L/Poly	2	HNO3 to pH <2	< 2	EPA 9315/9320		Radium 226	& 228 Combined	
		GEN	IERAL INFO	RMATION				
NEATHER:	Over	east, Temp 5	75°F					
	FED-X							
		tories - 110 Technology Pkwy : nicole.d'oleo@pacelabs.con			: (770) 734-42	03 POC: Nicol	e D'Oleo (O) 704-9	977-0940 (M)
SAMPLER: 1	110'	La Lla Ed	· · · · · · · · · · · · · · · · · · ·	OBSERVER:				

PLANT MITCHELL FIELD SAMPLING REPORT ASH PONDS 1 AND 2

Project Number: 6122-16-0170.2202

Wood E&I Solutions, Inc.

1075 BIG SHANTY ROAD NW SUITE 100 KENNESAW GA 30144

SAMPLING EVEN	T: 20)22 Sem	ni-Annual Event	1; <u>X</u> 2022	Semi-Annu	al Event 2; OTHER				<u> </u>
WELL ID / SAMPL WELL MATERIAL: SAMPLE METHOD	EID: MI PVC	T-PZ- SS_ Fww	31-WG-202 OTHER (DEDICATE	208 <u>24</u> EDBLADDER	Power)	AMETER: 211	MATRIX: Gr	oundwater	/	
DUP./REP. OF:							_	GRAB (x) CO	MPOSITE()	
Pump Intake Set a		56	.01		TOTAL DI	EPTH: 61.60 COLUMN HEIGHT: 19.	- 72 - 0 1	-3.36 ×	3=10,100	
or	it (btoc):_				MAIERO	OLUMN HEIGHT: 1910 OLUME: 10116	17 X VIII	31,50 / 3		
Tubing Inlet Set at	(btoc):					/ater column height (ft)	– x 3 (well volu	mes) for 2" wel	lls1	
_	`					ater column height (ft)	•	•	-	
					[1.47 x wa	ater column height (ft) x	3 (well volum	es) for 6" well:	s]	
TIME Initial: 1320 0,0 1325 5,0 1330 10,0	0.	al)	DO (±10% for DO > 0.5 mg/L for DO < 0.5 mg/L record only	ORP (mV) record only 43.5 38.1	pH (+/- 0.1 pH units) 7.69 7.05	SPEC. COND. (μs/cm) [+/-5%] Z73,27 445773 427:18	TEMP (°C) Record only 26, 09 21.71 21,61	TURB. (NTU) [55 NTU] 2416 17.1	Pump Rate ml/min. (& pump setting) (100 ml/min) 200 () 200	Water Level (Ft BTOC) ¹ 42.9(42.9(42.9)
1335 15,0			5.44	38.0	7.05	445.78	21.56	10,7	200	42.91
1340 20,0	1:2	-5	5.16	42,5	7:05	443.94	21,50	7,29	200	42.81
1345 25,0	113		5.05	44.6	7,04	443.93	21.42	5,33	200	42.91
1350 30,0	1.7		4.96	43.0	7,03	443,97	21.33	3,17	200	42,91
1355 350	200		4,96	142.7	7,04	437,37	21,20	1103	200	42.91
1400 Co	lle		Sampl	La Company	 					
			,							ļ
			-					*********		
	 									
NOTES:	rate no g	reater t	han 100 ml/min	and the water	level is abo	d when 3 consecutive wa ove the top of the screen.		surements vary	by 0.3 foot or less	at a pumping
			dry, allow to rec	harge and sar	nple within					******
	Turbidity	25 N I	Us			PRESER	VED SAM	19LES PA	y = & Z.O	
SAMPLE DATE:	HETT	Q.7	4-22	***************************************		TT THE REAL PROPERTY OF THE PER		······································		
SAMPLE TIME :	1400	0-0	7							-
CONTAINER			*			ANALYTICAL				
SIZE/TYPE	NO.		PRESE	RVATIVE		METHOD		AN	ALYSIS	
250 mL/Poly	1			to pH <2		SW6010D/SW6020B/S			& IV Metals	
250 mL/Poly	1		Cool	to 6°C		W7470A EPA 300.0 R2.1	*****	App.	III Anions	
500 mL/Poly	1		Cool	to 6°C		SM2540C			TDS	
1 L/Poly	2		HNO3	to pH <2		EPA 9315/9320		Radium 226	& 228 Combined	
								· · · · · · · · · · · · · · · · · · ·		
		- 77			ERAL INFO	RMATION				
WEATHER: SHIPPED VIA:	FED-X	- HUM	ID - SOME K	VAIN		4.2.4.				
		borato	ries - 110 Tech	nology Pkwy	Peachtree	Corners, GA 30092 PH	· (770) 734_43	03 POC: Nicol	D'Oleo (O) 704 (077_0040 /84\
SHIPPED TO:			icole.d'oleo@p				. (110)104-42	OUT OU. MICON	5 D 0160 (0) 704-	71 1 -00+0 (IVI)
SAMPLER: EVE	R GO	11466	EN			OBSERVER:				

PLANT MITCHELL FIELD SAMPLING REPORT ASH PONDS 1 AND 2

Project Number: 6122-16-0170.2202

Wood E&I Solutions, Inc.

1075 BIG SHANTY ROAD NW SUITE 100 KENNESAW GA 30144

PHONE: (770) 421-3400 / FAX: (770) 421-3486 SAMPLING EVENT: ____ 2022 Semi-Annual Event 1; _X_ 2022 Semi-Annual Event 2; ____ OTHER WELL ID / SAMPLE ID: MIT-PZ-32-WG-202208 2 MATRIX: Groundwater WELL MATERIAL: KPVC _ SS _ OTHER SAMPLE METHOD: QED Dedicated

Blader pump (louflow) WELL DIAMETER: DEPTH TO WATER: 4 DUP./REP. OF: GRAB (x) COMPOSITE () TOTAL DEPTH: Pump Intake Set at (btoc): 60,30 WATER COLUMN HEIGHT **PURGE VOLUME:** Tubing Inlet Set at (btoc):_ [0.163 x water column height (ft) x 3 (well volumes) for 2" wells] [0.653 x water column height (ft) x 3 (well volumes) for 4" wells] [1.47 x water column height (ft) x 3 (well volumes) for 6" wells] DO (±10% for DO > 0.5 mg/L Pump Rate for DO < 0.5 ml/min. (& pump SPEC. COND. (µs/cm) ORP (mV) TEMP (°C) TURB. (NTU) Water Level VOL. PURGED mg/L record pH (+/- 0.1 setting) (100 only record only pH units) Record only [≤5 NTU] (Ft BTOC)1 (gal) Initial: 13 200 (200 200 00 200 200 200 200 Stabilization of water column will be considered achieved when 3 consecutive water level measurements vary by 0.3 foot or less at a pumping NOTES: rate no greater than 100 ml/min and the water level is above the top of the screen. If well is purged dry, allow to recharge and sample within 24 hrs. Turbidity ≤ 5 NTUs **SAMPLE DATE:** SAMPLE TIME:

CONTAINER			p it	ANALYTICAL	
SIZE/TYPE	NO.	PRESERVATIVE	check	METHOD	ANALYSIS
250 mL/Poly	1	HNO3 to pH <2	1 42	SW6010D/SW6020B/S W7470A	App. iii & IV Metals
250 mL/Poly	1	Cool to 6°C		EPA 300.0 R2.1	App. III Anions
500 mL/Poly	1	Cool to 6°C		SM2540C	TDS
1 L/Poly	2	HNO3 to pH <2	1 < 2	EPA 9315/9320	Radium 226 & 228 Combined

	GENERAL INFORMATION
WEATHER:	Overcust, 1emp 813°F
SHIPPED VIA:	FED-X
SHIPPED TO:	PACE Laboratories - 110 Technology Pkwy, Peachtree Corners, GA 30092 PH: (770) 734-4203 POC: Nicole D'Oleo (O) 704-977-0940 (M) 704-467-4501: nicole.d'oleo@pacelabs.com (Huntersvill NC lab)
SAMPLER: D	aniel Howard OBSERVER:

PLANT MITCHELL FIELD SAMPLING REPORT ASH PONDS 1 AND 2

Project Number: 6122-16-0170.2202

Wood E&I Solutions, Inc.

1075 BIG SHANTY ROAD NW SUITE 100 KENNESAW GA 30144

SAMPLING EVENT	T: 2022 Se	mi-Annual Event	1; <u>X</u> 2022 §	Semi-Annu	al Event 2; OTHER				-
WELL ID / SAMPLI WELL MATERIAL: SAMPLE METHOD	EID: MIT-PZ <u>V</u> FVC _ SS : LOW FLOW	Z-33-WG-202 other <u>(dedicated</u>	208 <u>24</u> Beadver F		211	MATRIX: Gr	oundwater		
DUP./REP. OF:				DEPTH TO	AMETER: O WATER:	_	GRAB (x) CO	MPOSITE ()	
Pump Intake Set a	t (htoc): 68	3.60		WATER C	EPTH: <u>73,6<i>0</i></u> :OLUMN HEIGHT: <u>2.</u> 2	- 7.17 × .1	7 = 375	×3=11.2	.7
or	. (0.00),			PURGE V	OLUME: 11.27	<u> </u>	(),.,	// J == ///-	- •
Tubing inlet Set at	(btoc):				ater column height (ft)	 x 3 (well voluı	mes) for 2" wel	ls]	
				[0.653 x w	ater column height (ft)	x 3 (well volui	mes) for 4" wel	is]	
				[1.47 x wa	iter column height (ft) x	3 (well volum	es) for 6" wells	3]	
	VOL. PURGED	I	ORP (mV)	pH (+/- 0.1	, ,	TEMP (°C)	TURB. (NTU)	Pump Rate ml/min. (& pump setting) (100	Water Level
Initial: 1510 0.0	(gal)	2.82	record only	pH units)	[+/- 5%]	Record only	[≤5 NTU]	ml/min)	(Ft BTOC) ¹
1515 5.0	0.25	1,02	13.9	7.12	458.72 463.28	23,97	24.1	200	52,71 52,71
1520 10,0	0.50	0.53	22.0	7:11	462-87	23,21	16.9	200	52,71
1525 1510	0.75	0130	27.3	7,11	461.38	23,08	12,1	200	52.71
1530 200	1.0	0.25	30.6	7,10	463.17	23.34	8.72	200	52.71
1535 250	1.25	0.20	32.9	7,10	461,57	23.32	5,39	200	52.71
1540 300	1.5	0,19	35.8	7,10	463.96	23,52	3,07	ZUU	52.71
1545	Colle	67 30	mpl	2					******
		1							
	-								
	4		4,000,000,000,000						
NOTES:	rate no greater	than 100 ml/min	and the water	level is abo	d when 3 consecutive was ove the top of the screen.	iter level meas	urements vary	by 0.3 foot or less	at a pumping
		d dry, allow to rec	harge and san	nple within	24 hrs.	~~~~			
	Turbidity ≤ 5 N	IIUs			D	(1) 0 =	2 1711 - 1	1 = 3	
SAMPLE DATE :	8-24-2	2_			PRESERVE) JAMYLE	SPASK	, 610	
SAMPLE TIME :	1545								•
CONTAINER					ANALYTICAL				
SIZE/TYPE	NO.	PRESE	RVATIVE		METHOD		ANA	ALYSIS	
250 mL/Poly	1	HNO3	to pH <2		SW6010D/SW6020B/S W7470A		App. III	& IV Metals	
250 mL/Poly	1		to 6°C		EPA 300.0 R2.1	·····		II Anions	
500 mL/Poly	2		to 6°C		SM2540C			rds	
1 L/Poly	2 HNO3 to pH <2 EPA 9315/9320 Radium 226 & 228 Combined								
			GENE	RAL INFO	RMATION				
WEATHER:		UMID - SO	ME RAIN						
******	FED-X PACE Laborat	Ories . 110 Tech	nology Pkygy	Peachtree	Corners, GA 30092 PH	(770) 724 42	03 BOC: Nicel	D'Olog (O) 704 (77 0040 (84)
SHIPPED TO:	704-467-4501:	nicole.d'oleo@p	acelabs.com	(Huntersvi	ill NC lab)	. (110) 104*42	JJ I JO, NIGOR	, 5 Oleo (O) (04-8	,,,,-0940 (IVI)
SAMPLER: EVE	R GUIL	LEN			OBSERVER:				

PLANT MITCHELL FIELD SAMPLING REPORT ASH PONDS 1 AND 2

Project Number: 6122-16-0170.2202

Wood E&I Solutions, Inc.

1075 BIG SHANTY ROAD NW SUITE 100 KENNESAW GA 30144

SAMPLING EVEN	T: 2022 S	emi-Annual Event	1; <u>X</u> 2022	Semi-Annu	ıal Event 2; OTHER				
WELL ID / SAMPL WELL MATERIAL: SAMPLE METHOD DUP./REP. OF: Pump Intake Set a or Tubing Inlet Set at	XPVC_s Sistemple Blalde t (btoc):	S_OTHER Pro Pumplo 8.4		WELL DI. DEPTH T TOTAL D WATER C PURGE V [0.163 x v		x 3 (well volu	GRAB (x) CO mes) for 2" wel mes) for 4" wel	ls] ls]	
TIME Initial: 1043 1043 1058 1103 1108 1113	VOL. PURGE (gal) 0.25 0.5 0.75 1.0 1.25 1.5 1.75	DO (±10% for DO > 0.5 mg/L for DO < 0.5 mg/L record only D. 78 0.50 0.42 0.36 0.32 0.25 0.25	ORP (mV) record only 69.3 51.0 37.0 30.8 29.6 75.1 40.0 50.3	pH (+/- 0.1		TEMP (°C) Record only 2 5,53 23.61 23.79 23.66 23.70 23.64 23.60	TURB. (NTU) [\$5 NTU] 14,1 15,6 15,7 11,4 4,94 2,37	Pump Rate ml/min. (& pump setting) (100 ml/min) 200 () 200 () 200 () 200 () 200 () 200 () 200 () 200 ()	Water Level (Ft BTOC) ¹ 31,14 31,14 31,14 31,14 31,14 31,14
NOTES:	rate no greate	r than 100 ml/min ed dry, allow to recl	and the water	level is abo	d when 3 consecutive wa ove the top of the screen. 24 hrs.	ater level meas	urements vary t	by 0.3 foot or less	at a pumping
SAMPLE DATE:	1/20						·		
			4 4	H c		·····	***************************************		
CONTAINER SIZE/TYPE	NO.	DDEGE	RVATIVE C	heck	ANALYTICAL METHOD			LVOIO	
250 mL/Poly	1			< 2	SW6010D/SW6020B/S W7470A			LYSIS & IV Metals	
250 mL/Poly	1	Cool	to 6°C		EPA 300.0 R2.1	7.0.7	App. II	l Anions	
500 mL/Poly	1	Cool	to 6°C		SM2540C			'DS	
1 L/Poly	2	HNO3 t	to pH <2 \	ح 2	EPA 9315/9320		Radium 226 8	228 Combined	· ·
			GENE	ERAL INFO					
WEATHER:	Partly	Cloudy, "	Temp 7	7°F					
SHIPPED TO:	PACE Labora 704-467-4501	· •	nology Pkwy,	Peachtree (Huntersvi	Corners, GA 30092 PH: II NC lab)	(770) 734-420	03 POC: Nicole	D'Oleo (O) 704-9	77-0940 (M)
SAMPLER: D	aniel 1	toward			OBSERVER:				

SAMPLER: EVER GUILLEN

PLANT MITCHELL FIELD SAMPLING REPORT ASH PONDS 1 AND 2

Project Number: 6122-16-0170.2202

Wood E&I Solutions, Inc.

1075 BIG SHANTY ROAD NW SUITE 100 KENNESAW GA 30144 PHONE: (770) 421-3400 / FAX: (770) 421-3486

SAMPLING EVENT	: 2022 S	emi-Annual Event	; <u>X</u> 2022 S	iemi-Annua	I Event 2 (RESAMPLE)	;OTHER	1			
WELL ID / SAMPLE	EID: MIT-A	PA12-EB-01-	WQ-20221	oll		MATRIX: G	roundwater			
WELL MATERIAL:				-						
SAMPLE METHOD										
				WELL DIA	METER:					
DUPJREP. OF:				DEPTH TO	WATER:	_ GRAB (x) COMPOSITE ()				
					EPTH:	_				
Pump Intake Set at	t (btoc):			WATER C	OLUMN HEIGHT:					
or				PURGE V	OLUME:	_				
Tubing Inlet Set at	(btoc):			[0.163 x w	ater column height (ft)	x 3 (well volu	mes) for 2" we	lis]		
					ater column height (ft)					
				[1.47 x wa	ter column height (ft) x	3 (well volun	nes) for 6" well:	5]		
	VOL. PURGE	DO (±10% for DO > 0.5 mg/L for DO < 0.5 mg/L record	ORP (mV)	pH (+/- 0.1	SPEC. COND. (µs/cm)	TEMP (°C)	TURB. (NTU)	Pump Rate ml/min. (& pump setting) (100	Water Level (Fi	
TIME	(gal)	only	record only	pH units)	[+/- 5%]	Record only	[≤5 NTU]	ml/min)	BTOC)1	
Initial:								()		
	1			İ						
	1									
						1				
						i				
	 									
	 									
	1 Ctabilization	of water column u	ill be consider	ed achiever	when 3 consecutive was	ter level measi	rements vary h	v 0 3 foot or less o	t a aumaine	
NOTES:	rate no great	er than 100 ml/min	and the water	level is abo	ve the top of the screen.	ici icirci ilicasi	bicinents vary b	y 0.5 look of less a	t a pumping	
NOTES:		ed dry, allow to rec								
	Turbidity ≤ 5				ED FROM SA	MPLING	TUBING I	FOR PZ-3	2.0	
SAMPLE DATE : _	10-11-7	2								
SAMPLE TIME : _	820									
CONTAINER					ANALYTICAL	1				
SIZE/TYPE	NO.		RVATIVE		METHOD			ALYSIS		
250 mL/Poly	1		to pH <2		SW7470A			ercury		
500 mL/Poly	1	Coo	to 6°C		SM2540C			TDS		
						L				
			GEN	ERAL INFO	DMATION					
		01-121 1		LIVAL INTO	NMATION					
WEATHER:	FED-X	CLOU)Y-	TUMID							
SHIPPED VIA:		stories - 110 Tech	nology Pkysy	Peachtree	Corners, GA 30092 PH	: (770) 734.42	03 POC: Nicol	D'Oleo (O) 704 (77 0040 (14)	
SHIPPED TO:	704-467-4501	: nicole.d'oleo@p	acelabs.com	(Huntersvi	II NC lab)	. (0) 104-42	POG. MICON	B D OIBO (O) 704-1	777-U94U (M)	

OBSERVER:

PLANT MITCHELL FIELD SAMPLING REPORT ASH PONDS 1 AND 2

PHONE: (770) 421-3400 / FAX: (770) 421-3486

SAMPLING EVENT: ___ 2022 Semi-Annual Event 1; _X 2022 Semi-Annual Event 2 (RESAMPLE); ___ OTHER

Project Number: 6122-16-0170.2202

Wood E&I Solutions, Inc.
1075 BIG SHANTY ROAD NW SUITE 100 KENNESAW GA 30144

SAMPLE METHO	D:	_ OTHER							
					METER:				
DUP/REP. OF:					O WATER:		GRAB (x) CO	MPOSITE ()	
Duma Intoha Sat	nt (htm.)				EPTH:				
Pump Intake Set	er (Droc):				OLUMN HEIGHT:				
Tubing Inlet Set a	it (htoc):				OLUME: rater column height (ft)	 2 /well welve	\ for 2" we	11-1	
rabing must bet t					rater column neight (ft) rater column height (ft)				
					iter column height (ft) x				
	-	·							
	VOL. PURGED	DO (±10% for DO > 0.5 mg/L for DO < 0.5 mg/L record	ORP (mV)	pH (+/- 0.1	11	TEMP (°C)	TURB. (NTU)	Pump Rate ml/min. (& pump setting) (100 ml/min)	Water Level (F BTOC) ¹
TIME Initial:	(gal)	only	record only	pH units)	[+/- 5%]	Record only	[≤5 NTU]	()	2100,
unces.	+	 	<u> </u>						
	1	†							
	1								
······································	†								
	_								
	1								
	1		m kidaa			and a second			
NOTES:	rate no greater t	than 100 ml/min a	and the water	level is abov	when 3 consecutive wat we the top of the screen.	er ievei measu	rements vary by	y 0.3 foot or less a	t a pumping
		dry, allow to rech							
	Turbidity ≤ 5 N	US CALL	ECTED (70	2-60				
SAMPLE DATE :	10-11-77								
SAMPLE TIME :	1000								
CONTAINER	T				ANALYTICAL				
SIZE/TYPE	NO.	PRESE	RVATIVE		METHOD		ANA	ALYSIS	
250 mL/Poly	1		to pH <2		SW7470A		Me	rcury	
500 mL/Poly	1	1 Cool to 6°C			SM2540C	TDS			
			GENE	RAL INFO	RMATION				
WEATHER:	10 0	U		INAL INI O	AMATION .				
SHIPPED VIA:	FED-X	oudy - Hi	MID						
SHIPPED TO:		ries - 110 Techr	nology Pkwy,	Peachtree	Corners, GA 30092 PH:	(770) 734-42	03 POC: Nicole	D'Oleo (O) 704-9	77-0940 (M)

SAMPLER: EVEL GUILLEN

PLANT MITCHELL FIELD SAMPLING REPORT ASH PONDS 1 AND 2

Project Number: 6122-16-0170.2202

Wood E&I Solutions, Inc.

1075 BIG SHANTY ROAD NW SUITE 100 KENNESAW GA 30144 PHONE: (770) 421-3400 / FAX: (770) 421-3486

SAMPLING EVENT: ___ 2022 Semi-Annual Event 1; _X_ 2022 Semi-Annual Event 2 (RESAMPLE); ___ OTHER

WELL ID / SAMPL	EID: MIT-PZ-	25-WG-202	210 <u>11</u>			MATRIX: G	roundwater						
WELL MATERIAL:	PVCSS _	OTHER		0	_								
SAMPLE METHOD	: Low Fran	U- DEDICA	ITED BUR	DIER fur	-11								
DUPJREP. OF: FD-DI				DEPTH TO	METER: 2 WATER: 34.32	<u>2</u>	GRAB (x) COMPOSITE ()						
Duma Intaka Sat a	d (bean)				PTH:								
Pump Intake Set a	it (bloc)				OLUMN HEIGHT:								
Or Tubica latet Set of	(04==).				OLUME:) f = - 08	11-1					
Tubing Inlet Set at	(btoc):				ater column height (ft)								
					ater column height (ft)								
				[1.47 x wa	ter column height (ft) x	c 3 (well volun	nes) for 6" well:	5]					
TIME	VOL. PURGED	DO (±10% for DO > 0.5 mg/L for DO < 0.5 mg/L record only	ORP (mV)	pH (+/- 0.1 pH units)	SPEC. COND. (με/cm) [+/- 5%]	TEMP (°C)	TURB. (NTU) [S5 NTU]	Pump Rate ml/min. (& pump setting) (100 ml/min)	Water Level (F				
Initial: 1455 1.0		2.83	-450	7,23	380,40	29,08	7,93	200 ()	34.32				
1459 50	0.25	0.55	-118.7	7:12	388.59	25,18	7,22	200	34.76				
1504 10,0	0.50	0.29	-126.3	7,13	387.60	25,04	5,72	200	39.76				
1509 15,0		0, 25	- 129,4	7,13	390.04	24.86	4,37	200	34,76				
1514 20.0		0,24	-129,2	7,13	387.33	24,55	5,39	200	34,76				
1519 ZSID		0.23	-145.9	7,13	388,33	24.54	1,88	200	34.76				
1524 30,0	1,5	0,23	-133.2	7.14	389,38	24.96	1.22	200	34.76				
1529 35.0	1175	0.22	-134,0	7.14	390,08	25.07	0187	200	34.76				
1534 40.0	2.0	0.22	- 133.9	7.13	388.97	24.86	403	200	34.76				
1540	Cellec		MPLE	,,,,									
15.70		-											
NOTES:	¹ Stabilization of water column will be considered achieved when 3 consecutive water level measurements vary by 0.3 foot or less at a pumping rate no greater than 100 ml/min and the water level is above the top of the screen.								a pumping				
		dry, allow to reci	harge and sam	ple within 2	4 hrs.								
	Turbidity ≤ 5 N	rus Co	WECTED	FD-	01 @ THIS	COCHI	100						
SAMPLE DATE :	10-11-22												
SAMPLE TIME : _	1540												
CONTAINER				1	ANALYTICAL	1							
SIZE/TYPE	NO. PRESERVATIVE				METHOD	ANALYSIS							
250 mL/Poly	1		to pH <2		SW7470A	Mercury							
500 mL/Poly	1	Cool	to 6°C		SM2540C		TDS						
			GENE	RAL INFO	RMATION								
	0.7.1	1/ - 11.					CLEAR-HOT-HUMID						
WEATHER: SHIPPED VIA:	CLEAL -	HOT - HU	MID										

OBSERVER:

PLANT MITCHELL FIELD SAMPLING REPORT ASH PONDS 1 AND 2

Project Number: 6122-16-0170.2202

Wood E&I Solutions, Inc.

1075 BIG SHANTY ROAD NW SUITE 100 KENNESAW GA 30144

				Semi-Annu	ual Event 2 (RESAMPLI	E); OTHE	R			
WELL ID / SAMPLE ID: MIT-PZ-2D-WG-202210				MATRIX: Groundwater						
WELL MATERIAL:	PVCSS_	_ OTHER	A							
SAMPLE METHOD	DEDICATE.	D BLADDEL !	Eme -Lou	Low	.,,					
				WELL DIA	METER: Z					
DUPJREP. OF:				DEPTH TO	WATER: 39,58	•	GRAB (x) CO	MPOSITE ()		
					PTH:			1222 2740		
Pump Intake Set a	t (btoc):				OLUMN HEIGHT:					
or					OLUME:					
Tubing Inlet Set at	(btoc):				rater column height (ft)	— × 3 (well vol:	imes) for 2" wi	ells)		
		(x			rater column height (ft)	ects as sections of section				
					iter column height (ft) x					
	T	DO (±10% for				l				
		DO > 0.5 mg/L				1		Pump Rate		
	MOI BURGER	for DO < 0.5	000/	-11/// 04	CDEC COND (- 1)		T. 100 (A)T. 13	ml/min. (& pump	Water Level	
TIME	VOL. PURGED (gal)	mg/L record only	ORP (mV) record only	pH (+/- 0.1 pH units)	SPEC. COND. (μs/cm) [+/- 5%]	TEMP (°C) Record only	TURB. (NTU) [≤5 NTU]	setting) (100 ml/min)	(Ft BTOC)	
Initial: 0.0	0,1		249.53	5111	1:14	21.92	4.33	200 ()	39.58	
1040 05.0	0.25	9,05	179.9	6,20	214,32	21.55	3.45	200	39.87	
1095 10	0.5	2.98	174.9	4,90	144,67	20.29	2,30	200	39.87	
1050 15	0.75	2.80	121.1	7,38	142.80	70,11	2.18	200	39.87	
1055 20	1.0	3,24	51.6	7.60	191,16	20,02	1,30	200	39.87	
1100 25	1,25	3,54	20,0	7.73	139,36	20.19	1,39	200	39.87	
1105 30	1.5	3.70	9,1	7.81	138,51	20,29	1.47	200	39.87	
1110 35	1.75	3.80	5,0	7.85	136.33	20,28	0,99	200	39.87	
1115 40	2.0	3.88	1,6	7.89	135.57	20:15	1.08	2,00	39.87	
1120 45	2.25	3,91	1,2	7.93	135,04	20,38	1,24	200	39.87	
1125 50	2.5	3,94	0.8	7.94	134,36	20.33	0,96	200	39.87	
1130	Calle	et Sar	ale							
			/							
	¹ Stabilization o	f water column y	will be conside	red achieve	ed when 3 consecutive w	vater level me	asurements var	ry by 0.3 foot or les	ss at a	
NOTES:	pumping rate no greater than 100 ml/min and the water level is above the top of the screen. If well is purged dry, allow to recharge and sample within 24 hrs.									
	Turbidity ≤ 5 NTUs									
		<u>,</u>								
SAMPLE DATE : _	10-11-27									
SAMPLE TIME : _	1130									
CONTAINER					ANALYTICAL					
SIZE/TYPE	NO.				METHOD ANALYSIS					
500 mL/Poly	1	1 Cool to 6°C			SM2540C	TDS				
	<u> </u>									
			GENI	ERAL INFO	RMATION					
MEATHED.	C	L								
WEATHER: SHIPPED VIA:	EED Y	LOUDY - H								
UNIFFED TIA.	PACE Laborato	ries - 110 Tech	nology Pkwy	, Peachtre	e Corners, GA 30092 P	H: (770) 734-	4203 POC: Nic	ole D'Oleo (O) 70	4.077	
	(M) /U4-40/-131	OT. HICOIG.G CIG	o@pacelabs.		ersvill NC lab) OBSERVER:			-35(5) 10		
SAMPLER: EVE	er Guich	EN								

PLANT MITCHELL FIELD SAMPLING REPORT ASH PONDS 1 AND 2

Project Number: 6122-16-0170.2202

Wood E&I Solutions, Inc.

1075 BIG SHANTY ROAD NW SUITE 100 KENNESAW GA 30144

WELL ID / SAMPLE ID: MIT-PZ-32-WG-20210	SAMPLING EVEN	T: 2022 :				ual Event 2 (RESAMPL	E); OTHE	R		
DUP/REP. OF:	WELL MATERIAL	PVC S	S OTHER		the earn	Y	MATRIX: G	roundwater		
WATER COLUMN HEIGHT: PURGE VOLUME:			- OLADJEL	L TUMP ()	WELL DIA	METER: 2 D WATER: 41.6	3	GRAB (x) CO	MPOSITE ()	
D.163 x water column height (ft) x 3 (well volumes) for 2" wells] [0.65 x water column height (ft) x 3 (well volumes) for 4" wells] [1.47 x water column height (ft) x 3 (well volumes) for 6" wells]	100 000 000 000 000 000 000 000 000 000			WATER COLUMN HEIGHT:						
NOTES:	Tubing Inlet Set a	t (btoc):			[0.163 x w [0.653 x w	rater column height (ft) rater column height (ft)	x 3 (well volu	imes) for 4" we	ells]	
Initial:	TIME		DO > 0.5 mg/L for DO < 0.5 mg/L record	N 15%	D 0	TO 15 (1)	. 10 2		ml/min. (& pump setting) (100	1/2 most electric approximation at the problem of the
124 5,0 0,25 1,50 19,0 7,42 274,70 20,59 3,36 200 4/.72 124 19,0 0,59 1,53 36.5 7,39 274,20 20,92 2.96 200 4/.79 125 15,0 0,75 1,34 39,12 7,39 271,27 20,86 2.21 200 4/.79 125 25,0 1,0 1,33 4/.7 7,38 272,69 21,09 7,38 200 4/.79 130 25,0 1,25 1,34 43,12 7,39 272,30 21,15 1,10 200 4/.79 130 30,0 1,5 1,40 44,4 7,39 272,30 21,15 1,10 200 4/.79 130 35,0 1,75 1,48 45,8 7,31 271,22 21,18 0,94 2,00 4/.79 131 35,0 1,75 1,48 45,8 7,31 271,22 21,18 0,94 2,00 4/.79 131 35,0 1,75 1,48 45,8 7,31 271,22 21,18 0,94 2,00 4/.79 131 35,0 1,75 1,48 45,8 7,31 271,22 21,18 0,94 2,00 4/.79 131 35,0 1,75 1,48 45,8 7,31 271,22 21,18 0,94 2,00 4/.79 131 35,0 1,75 1,48 45,8 7,31 271,22 21,18 0,94 2,00 4/.79 131 35,0 1,75 1,48 45,8 7,31 271,22 21,18 0,94 2,00 4/.79 131 35,0 1,75 1,48 45,8 7,31 271,22 21,18 0,94 2,00 4/.79 131 35,0 1,75 1,48 45,8 7,31 271,22 21,18 0,94 2,00 4/.79 131 35,0 1,75 1,48 45,8 7,31 271,22 21,18 0,94 2,00 4/.79 14,00 3,00 3,00 4/.79 3,00 4/.79 15 3,00 3,00 4/.79 3,00 4/.79 15 3,00 3,00 4/.79 3,00 4/.79 15 3,00 3,00 4/.79 4/.79 4/.79 4/.79 131 35,0 1,75 1,48 45,8 7,31 271,22 21,18 0,94 2,00 4/.79 131 35,0 1,75 1,48 45,8 7,31 271,22 21,18 2,19 2,00 4/.79 131 35,0 1,75 1,48 45,8 7,31 271,22 21,18 2,19 2,00 4/.79 131 35,0 1,75 1,48 45,8 7,31 271,22 21,18 2,19						- 10 APPROVA			200 ()	41.63
1246 10,0 0.50 1.53 36.5 7.39 274.20 20.92 2.96 200 41.79 1251 15.0 0.75 1.34 39.7 7.39 271.27 20.86 2.21 200 41.79 1256 2x0 1.0 1.33 41.7 7.38 272.69 21.09 4.38 200 41.79 1306 30.0 1.5 1.34 43.2 7.39 272.30 21.15 1.10 200 41.79 1306 30.0 1.5 1.48 45.8 7.31 272.30 21.15 1.10 200 41.79 1311 35.0 1.75 1.48 45.8 7.31 271.22 21.18 0.99 2.00 41.79 1315 2145 2540 2540 2540 2540 2540 2540 2540 NOTES: Turbidity s 5 NTUs									208	
125 150									200	
1.56 2.0									200	41.79
130 25,0 1,25 1,34 43,2 7,39 272,30 21,34 0,98 200 41,79 1316 39,0 1,5 1,49 44,4 7,39 372,271,49 21,34 0,98 200 41,79 1317 35,0 1,75 1,48 45,8 7,37 271,22 21,18 0,94 200 41,79 1318 35,0 1,75 1,48 45,8 7,37 271,22 21,18 0,94 200 41,79 1319 35,0 1,75 1,48 45,8 7,37 271,22 21,18 0,94 200 41,79 1315 35,0 1,75 1,48 45,8 7,37 271,22 21,18 0,94 200 41,79 1315 35,0 1,75 1,48 45,8 7,37 271,22 21,18 0,94 200 41,79 1315 35,0 1,75 1,48 45,8 7,37 271,22 21,18 0,94 200 41,79 1315 35,0 1,75 1,48 45,8 7,37 271,22 21,18 0,94 200 41,79 1316 35,0 1,75 1,48 45,8 7,37 271,22 21,18 0,94 200 41,79 1316 35,0 1,75 1,48 45,8 7,37 271,22 21,18 0,94 200 41,79 1316 35,0 1,75 1,48 45,8 7,37 271,22 21,18 0,94 200 41,79 1316 35,0 1,75 1,48 45,8 7,37 271,22 21,18 0,94 200 41,79 1317 35,0 1,75 1,48 45,8 7,37 271,22 21,18 0,94 200 41,79 1316 35,0 1,75 1,48 45,8 7,37 271,22 21,18 0,94 200 41,79 1316 35,0 1,75 1,48 45,8 7,37 271,22 21,18 0,94 200 41,79 1316 35,0 1,75 1,48 45,8 7,37 271,22 21,18 0,94 200 41,79 1316 35,0 1,75 1,48 45,8 7,37 271,22 21,18 0,94 200 41,79 1316 35,0 1,25										91.79
1.306 30.0 1.5 1.40 44.4 7.39 873. 271.44 21.34 0.98 2.00 41.79 1.311 35.0 1.35 1.48 45.8 7.37 271.22 21.18 0.94 2.00 91.79 1.315 Sample	0.54.8.800					Part of the cold (Section)	Mark House, violation of the control of	120	200	41,79
1316 135 1.48 45.8 7.37 271,22 21.18 0.194 2.00 41.79 1315 Callect Sample			1,40	44.4	7.39	271.44	21,34		200	41.79
NOTES: Stabilization of water column will be considered achieved when 3 consecutive water level measurements vary by 0.3 foot or less at a pumping rate no greater than 100 ml/min and the water level is above the top of the screen.				45.8	7.37	271,22	21.18	0.94	200	41.79
NOTES: pumping rate no greater than 100 ml/min and the water level is above the top of the screen.		Collect	Samp	le						
NOTES: pumping rate no greater than 100 ml/min and the water level is above the top of the screen.										
NOTES: pumping rate no greater than 100 ml/min and the water level is above the top of the screen.										
NOTES: pumping rate no greater than 100 ml/min and the water level is above the top of the screen.										
NOTES: pumping rate no greater than 100 ml/min and the water level is above the top of the screen.			+							
NOTES: pumping rate no greater than 100 ml/min and the water level is above the top of the screen.						1 1 - 0 0				
If well is purged dry, allow to recharge and sample within 24 hrs. Turbidity ≤ 5 NTUs SAMPLE DATE: 10-1(-22- SAMPLE TIME: 13.55 CONTAINER SIZE/TYPE NO. PRESERVATIVE METHOD ANALYSIS 500 mL/Poly 1 Cool to 6°C SM2540C TDS GENERAL INFORMATION WEATHER: Cool-Coolby - HomiD SHIPPED VIA: FED-X SHIPPED TO: PACE Laboratories - 110 Technology Pkwy, Peachtree Corners, GA 30092 PH: (770) 734-4203 POC: Nicole D'Oleo (O) 704-977-0940 (M) 704-467-4501: nicole.d'oleo@pacelabs.com (Huntersvill NC lab)	NOTES.	Stabilizatio	n of water column wi	III be conside I) ml/min and	the water le	evel is above the top of t	ater ievei mea he screen.	asurements var	by 0.3 foot or les	is at a
Turbidity ≤ 5 NTUS SAMPLE DATE: D - 1 - Z - Z - Z - Z - Z - Z - Z - Z - Z -	NOTES:									
SAMPLE DATE: 10-1(-72) SAMPLE TIME: 1315 CONTAINER SIZE/TYPE NO. PRESERVATIVE METHOD ANALYSIS 500 mL/Poly 1 Cool to 6°C SM2540C TDS GENERAL INFORMATION WEATHER: Cool - Cool Dy - Homid SHIPPED VIA: FED.X SHIPPED TO: (M) 704-467-4501: nicole.d'oleo@pacelabs.com (Huntersvill NC lab)					•					
SAMPLE TIME: CONTAINER SIZE/TYPE NO. PRESERVATIVE METHOD ANALYSIS 500 mL/Poly 1 Cool to 6°C SM2540C TDS GENERAL INFORMATION WEATHER: CHOCL—CLOUDY—HUMID SHIPPED VIA: FED-X PACE Laboratories - 110 Technology Pkwy, Peachtree Corners, GA 30092 PH: (770) 734-4203 POC: Nicole D'Oleo (O) 704-977-0940 SHIPPED TO: (M) 704-467-4501: nicole.d'oleo@pacelabs.com (Huntersvill NC lab)		10.0.0.0								
SAMPLE TIME: CONTAINER SIZE/TYPE NO. PRESERVATIVE METHOD ANALYSIS 500 mL/Poly 1 Cool to 6°C SM2540C TDS GENERAL INFORMATION WEATHER: CHOCL—CLOUDY—HUMID SHIPPED VIA: FED-X PACE Laboratories - 110 Technology Pkwy, Peachtree Corners, GA 30092 PH: (770) 734-4203 POC: Nicole D'Oleo (O) 704-977-0940 SHIPPED TO: (M) 704-467-4501: nicole.d'oleo@pacelabs.com (Huntersvill NC lab)	SAMPLE DATE :	10-11-7	22,							
CONTAINER SIZE/TYPE NO. PRESERVATIVE METHOD ANALYSIS 500 mL/Poly 1 Cool to 6°C SM2540C TDS GENERAL INFORMATION WEATHER: C60 - C60 Dy - HUM I D SHIPPED VIA: SHIPPED TO: PACE Laboratories - 110 Technology Pkwy, Peachtree Corners, GA 30092 PH: (770) 734-4203 POC: Nicole D'Oleo (O) 704-977-0940 [M) 704-467-4501: nicole.d'oleo@pacelabs.com (Huntersvill NC lab)										_
SIZE/TYPE NO. PRESERVATIVE METHOD ANALYSIS 500 mL/Poly 1 Cool to 6°C SM2540C TDS GENERAL INFORMATION WEATHER: C60 - C60 Dy - HUMID SHIPPED VIA: FED-X PACE Laboratories - 110 Technology Pkwy, Peachtree Corners, GA 30092 PH: (770) 734-4203 POC: Nicole D'Oleo (O) 704-977-0940 SHIPPED TO: (M) 704-467-4501: nicole.d'oleo@pacelabs.com (Huntersvill NC lab)						ANALYTICAL		,		
GENERAL INFORMATION GENERAL INFORMATION WEATHER: Cool to 6°C SM2540C TDS GENERAL INFORMATION WEATHER: Cool to 6°C SM2540C TDS GENERAL INFORMATION WEATHER: SHIPPED VIA: FED-X PACE Laboratories - 110 Technology Pkwy, Peachtree Corners, GA 30092 PH: (770) 734-4203 POC: Nicole D'Oleo (O) 704-977-0940 SHIPPED TO: (M) 704-467-4501: nicole.d'oleo@pacelabs.com (Huntersvill NC lab)		NO. PRESERVATIVE				METHOD	ANALYSIS			
WEATHER: CGOL - CLOUDY - HUMID SHIPPED VIA: FED-X PACE Laboratories - 110 Technology Pkwy, Peachtree Corners, GA 30092 PH: (770) 734-4203 POC: Nicole D'Oleo (O) 704-977-0940 (M) 704-467-4501: nicole.d'oleo@pacelabs.com (Huntersvill NC lab)						SM2540C	TDS			
WEATHER: CGOL - CLOUDY - HUMID SHIPPED VIA: FED-X PACE Laboratories - 110 Technology Pkwy, Peachtree Corners, GA 30092 PH: (770) 734-4203 POC: Nicole D'Oleo (O) 704-977-0940 (M) 704-467-4501: nicole.d'oleo@pacelabs.com (Huntersvill NC lab)										
WEATHER: CGOL - CLOUDY - HUMID SHIPPED VIA: FED-X PACE Laboratories - 110 Technology Pkwy, Peachtree Corners, GA 30092 PH: (770) 734-4203 POC: Nicole D'Oleo (O) 704-977-0940 (M) 704-467-4501: nicole.d'oleo@pacelabs.com (Huntersvill NC lab)										
SHIPPED VIA: FED-X PACE Laboratories - 110 Technology Pkwy, Peachtree Corners, GA 30092 PH: (770) 734-4203 POC: Nicole D'Oleo (O) 704-977-0940 SHIPPED TO: (M) 704-467-4501: nicole.d'oleo@pacelabs.com (Huntersvill NC lab)					RAL INFO	RMATION				
PACE Laboratories - 110 Technology Pkwy, Peachtree Corners, GA 30092 PH: (770) 734-4203 POC: Nicole D'Oleo (O) 704-977-0940 SHIPPED TO: (M) 704-467-4501: nicole.d'oleo@pacelabs.com (Huntersvill NC lab)			- CLOUDY -	HUMID						
SHIPPED TO: (M) 704-467-4501: nicole.d'oleo@pacelabs.com (Huntersvill NC lab)	SHIPPED VIA:	PACE I show	ratories - 110 Techn	ology Pkwy	. Peachtre	Corners, GA 30092 P	H: (770) 734-4	203 POC: Nies	de D'Oles (O) To	
ORSEDVED.	SHIPPED TO:	(M) 704-467-	4501: nicole.d'oleo	@pacelabs.	com (Hunte	ersvill NC lab)	()	FOC. NICC	704 U UIGO (U) 704	-977- 0940
OAMIT LEIN VIII TO TO TO TO TO TO TO TO TO TO TO TO TO	SAMPIED.									
	SAMPLEN.									

2022 Semi-Annual Groundwater Monitoring and Corrective Action Report Georgia Power Company – Plant Mitchell Ash Ponds A, 1, and 2 Putney, Georgia

APPENDIX B CALIBRATION DATA

Date: <u>0,12,4/2,2</u> Time: 0,8,2,5	Wood. Project No.		Pine Sonde ID:	184186	
Prepared By: Daniel Hovard	6122160	770.220	Rine Handset ID: Battery Voltage %:		
Checked By:	• •	•	Dattory Voltage 70.		
CALI	BRATION PRIOR TO) SAMPI ING			
DISSOLVED OXYGEN (DO)	<u> </u>	J JAMII LING	:	VALUE	7
Was DO membrane changed?	Yes No 🖊	Date:	Time:	VALUE	=
Current Air Temperature °C (meter reading):			Tano.	0 × 00	-
Current Barometric Pressure (from Weather				25,73	_
Channel or NOAA.gov, which is corrected to					1
sea level):					
Elevation Corrected Barometric Pressure to	Ex.: 30.02 in. Hg x 25	5.4 = mm Hg; su	btract 2.54 mm Hg for ev	very mbar	-
enter into YSI DO calibration:	100 ft. above sea level	: 565/100 x 2.5	4 = 14.4 mm Hg	1010,9	
Theoretical DO (mg/L) from DO table based				101019	1
on current temperature and elevation corrected					
pressure:					
DO concentration before Calibration (mg/L):	Depending on meter	version, this n	nay not be available.		7
DO concentration after Calibration (mg/L):				7:76	mal
% Recovery (actual/theory x 100)	Range is 90 to 110%				7.3"
DO Charge (DO ch):	Acceptable Range is				
DO Gain (should be between -0.7 and 1.5):	Exit Calibration men	u and go to A	dvanced/Cal Constants	1.047729	1 4/4
Note:		****			10
CONDUCTIVITY [Note: Calibrate before pH to av					1
Calibration standard used (mS/cm)	Lot # 19	150155		11,413	1
Temperature (°C)				1.634	25.
Reading before Calibration (mS/cm)				11.635	1
Reading AFTER Calibration (mS/cm)				1.413	
Conductivity Cell Constant (unitless):				0.992	
Note: Be sure conductivity cell is submerged and free of bubb	les (gently tap sonde on table	e)			4
oH 7.0 value before calibration:]
of 7.0 value after calibration:	Let 21010	066 8	122	7.20	
H 7.0 mV (range is -50 to +50 mV):			25.33	7.00	1
pH 10 value before calibration:			7	1-4:7	
pH 10 value after calibration:	Lot 2108	80189 6	5/22	10.11	
			25.33	10.00	
pH 10 mV (range is -130 to -230 mV): H 4.0 value before calibration:				173.0	
H 4.0 value after calibration:	Lot 214°	10032	1/23	14.13	
H 4.0 mV (range is 130 to 230 mV):			25,33	4.0	
,				169.1	
ote: Span between ph 4 and 7, and 7 and 10 should be between XIDATION/REDUCTION POTENTIAL (O	en 165 to 180 mV				
alibration Temperature (°C):	Lot 2114	8143	4/23	228.6	
).231+0.0013(25-T) x	1000 = mV	(T is Temperature °C)	25,37	
eading before calibration (mV):				224.6	
eading after calibration (mV):				228.6	
ote: mV theory will change with temperature,	so calculate based on	your current to	emp.		
JRBIDITY Note: Lens wiper should be parked 180 of	egrees from the optics.				
NTU Turbidity Standard		Before Cal:	After Cal:	10	
NTU Turbidity Standard		Before Cal:	After Cal:		
NTU Turbidity Standard		Before Cal:	After Cal:		
NTU Turbidity Check STD		Before Cal:	After Cal:		
NTU Turbidity Check STD		Before Cal:	After Cal:		
ALIBRATION SUCCESSFUL?					

Lamotte Tur bidity meter SN: 6411-1416

Date: 8/25/22	
Time: 0.530	
Prepared By: Daniel	Howard
Checked By:	

Wood. Project No. 61221601770.2202

Pine Sonde ID:	884186
Pine H andset ID:_	
Battery Voltage %:	100

CALIBRATION PRIOR TO SAMPLING DISSOLVED OXYGEN (DO) VALUE Was DO membrane changed? Yes No V Date: Time: Current Air Temperature °C (meter reading): 2356 Current Barometric Pressure (from Weather Channel or NOAA.gov, which is corrected to sea level): Elevation Corrected Barometric Pressure to Ex.: 30.02 in. Hg x 25.4 = mm Hg; subtract 2.54 mm Hg for every mbar enter into YSI DO calibration: 100 ft. above sea level: $565/100 \times 2.54 = 14.4 \text{ mm Hg}$ 1008.0 Theoretical DO (mg/L) from DO table based on current temperature and elevation corrected pressure: DO concentration before Calibration (mg/L): Depending on meter version, this may not be available. 8.42 DO concentration after Calibration (mg/L): 8.04 % Recovery (actual/theory x 100) Range is 90 to 110% Recovery 99.26 DO Charge (DO ch): Acceptable Range is 25 to 75 DO Gain (should be between -0.7 and 1.5): Exit Calibration menu and go to Advanced/Cal Constants CONDUCTIVITY [Note: Calibrate before pH to avoid carry-over from pH standards (i.e. pH buffers are conductive)] Calibration standard used (mS/cm) Lot #19150155 .413 Temperature (°C) Reading before Calibration (mS/cm) Reading AFTER Calibration (mS/cm) ,413 Conductivity Cell Constant (unitless): Note: Be sure conductivity cell is submerged and free of bubbles (gently tap sonde on table) pH 7.0 value before calibration: -0+21010066 8122 02 pH 7.0 value after calibration: 23.85 7,00 pH 7.0 mV (range is -50 to +50 mV): -5,5 pH 10 value before calibration: Lot 21080189 6/22 10.06 pH 10 value after calibration: 23,97 10.00 pH 10 mV (range is -130 to -230 mV): 175.7 pH 4.0 value before calibration: Lot 21470032 4.02 pH 4.0 value after calibration: 24.06 4.00 pH 4.0 mV (range is 130 to 230 mV): Note: Span between ph 4 and 7, and 7 and 10 should be between 165 to 180 mV OXIDATION/REDUCTION POTENTIAL (ORP) Calibration Temperature (°C): Lot 21140143 4/23 Theoretical Calibration standard (mV) $0.231 + 0.0013(25 - T) \times 1000 = mV$ (T is Temperature °C) 2303 Reading before calibration (mV): Reading after calibration (mV): Note: mV theory will change with temperature, so calculate based on your current temp. TURBIDITY Note: Lens wiper should be parked 180 degrees from the optics. NTU Turbidity Standard Before Cal: After Cal: 10 NTU Turbidity Standard Before Cal: After Cal: NTU Turbidity Standard Before Cal: After Cal: NTU Turbidity Check STD Before Cal: After Cal:

Before Cal:

After Cal:

Lamotte Turbility meter SNIGHII-1416

NTU Turbidity Check STD

CALIBRATION SUCCESSFUL?

Date: <u>9 / 26 / 22</u> Time: 052 0	
Time: 052 0	. 0
Prepared By: Daniel	Howard
Checked By:	

Wood. Project No. 6122160170.2262

Pine Sonde ID:	884186
Pine Handset ID	
Battery Voltage 9	6: 93

CALIBRATION PRIOR TO SAMPLING

DISSOLVED OXYGEN (DO)				VALUE
Was DO membrane changed?	Yes	No Date:	Time:	VALUE
Current Air Temperature °C (meter reading):				12201
Current Barometric Pressure (from Weather				23.76
Channel or NOAA.gov, which is corrected to				į
sea level):	1			ļ
Elevation Corrected Barometric Pressure to	Ex.: 30.02 in.	$Hg \times 25.4 = mm Hg; st$	ibtract 2.54 mm Hg for every	mbar
enter into YSI DO calibration:	100 ft. above s	sea level: 565/100 x 2.5	4 = 14.4 mm Hg	1007.8
Theoretical DO (mg/L) from DO table based		· · · · · · · · · · · · · · · · · · ·		11001.0
on current temperature and elevation corrected	1			
pressure;				1
DO concentration before Calibration (mg/L):	Depending or	n meter version, this i	nay not be available.	8.38
DO concentration after Calibration (mg/L):				7.98
% Recovery (actual/theory x 100)	Range is 90 t	o 110% Recovery		9077
DO Charge (DO ch):	Acceptable R	ange is 25 to 75		
DO Gain (should be between -0.7 and 1.5):	Exit Calibrati	on menu and go to A	dvanced/Cal Constants	1.033428
Note:				11000 27/0
CONDUCTIVITY [Note: Calibrate before pH to a	void carry-over fron	n pH standards (i.e. pH buff	ers are conductive)]	
Calibration standard used (mS/cm)	Lot	19150150	<u> </u>	1,413
Temperature (°C)				23.66
Reading before Calibration (mS/cm)				
Reading AFTER Calibration (mS/cm)				1.413
Conductivity Cell Constant (unitless):				7.00
Note: Be sure conductivity cell is submerged and free of bub	bles (gently tap sone	de on table)		LLLVO
Н				
H 7.0 value before calibration:	L. T	21010066	8/22	7.02
H 7.0 value after calibration:		<u> </u>	23.78	7.00
H 7.0 mV (range is -50 to +50 mV):			(A) () (A)	THE RESERVE OF THE PERSON OF T
pH 10 value before calibration:	1 3 %	21080189	6/22	-6,4
pH 10 value after calibration:		NIO Q DI GI	23.88	10.01
pH 10 mV (range is -130 to -230 mV):			<u> </u>	10.00
H 4.0 value before calibration:	Lot	21470032	4/23	776.1
H 4.0 value after calibration:		214 10032	7/20	4.03
H 4.0 mV (range is 130 to 230 mV):			24.03	4.00
ote: Span between ph 4 and 7, and 7 and 10 should be between	en 165 to 180 mV			165.6
XIDATION/REDUCTION POTENTIAL (C			**************************************	
alibration Temperature (°C):	1 7	211444112	11/2	1711 044
. ,	0.231+0.00130	21140143 25-T) x 1000 = mV	H/23 (T is Temperature °C)	24,24
eading before calibration (mV):	0.231 (0.0015)	23-1) 1 1000 - 111 V	(1 is reimperature C)	230.1
eading after calibration (mV):				230,2
ote: mV theory will change with temperature,	so calculata ba	and on rious assess to		230.
URBIDITY Note: Lens wiper should be parked 180	degrees from the	ontics	emp.	
NTU Turbidity Standard	acgrees a out the			
NTU Turbidity Standard		Before Cal:	- ·-· I	0
NTU Turbidity Standard		Before Cal:		10.9
NTU Turbidity Standard NTU Turbidity Check STD		Before Cal:		0.65
NTU Turbidity Check STD		Before Cal:		
LIBRATION SUCCESSFUL?		Before Cal:	After Cal:	
1. Matte Turk D'+	1 1 1			

Lamotte Turbiditymeter SN:6411-1416

Date: 8-24-22	
Time: 900	α
Prepared By: EVER	GUILLEN
Checked By:	

Wood. Project No.

Pine Sonde ID:_	877800
Pine Handset IE	D:
Battery Voltage	%:

CALIBRATION PRIOR TO SAMPLING

DISSOLVED OXYGEN (DO)		VALUE
Was DO membrane changed?	YesNo_ Uate: Time:	
Current Air Temperature °C (meter reading):	2473	24-64
Current Barometric Pressure (from Weather		
Channel or NOAA.gov, which is corrected to		
sea level):		
Elevation Corrected Barometric Pressure to	Ex.: 30.02 in. Hg x $25.4 = mm$ Hg; subtract 2.54 mm Hg for every	/
enter into YSI DO calibration:	100 ft. above sea level: 565/100 x 2.54 = 14.4 mm Hg 10 10 6/10	758.01
Theoretical DO (mg/L) from DO table based		
on current temperature and elevation corrected		
pressure:		1
DO concentration before Calibration (mg/L):	Depending on meter version, this may not be available.	6.91
DO concentration after Calibration (mg/L):		7181
% Recovery (actual/theory x 100)	Range is 90 to 110% Recovery	
DO Charge (DO ch):	Acceptable Range is 25 to 75	
DO Gain (should be between -0.7 and 1.5):	Exit Calibration menu and go to Advanced/Cal Constants	1,059867
Note:		111001001
CONDUCTIVITY [Note: Calibrate before pH to av	oid carry-over from pH standards (i.e. pH buffers are conductive)]	
Calibration standard used (mS/cm)	LOT# 19410200	4413
Геmperature (°C)		24.37
Reading before Calibration (mS/cm)		1.721
Reading AFTER Calibration (mS/cm)		1.413
Conductivity Cell Constant (unitless):	0.917	1.054867
ote: Be sure conductivity cell is submerged and free of bubb	les (gently tap sonde on table)	A PARTY OF THE PROPERTY OF THE PARTY OF THE
H		
H 7.0 value before calibration:	21380102 4/23	7.27
H 7.0 value after calibration:		7.0
H 7.0 mV (range is -50 to +50 mV):		-4,7
pH 10 value before calibration:	20080056 4/23	10:07
pH 10 value after calibration:		10.0
pH 10 mV (range is -130 to -230 mV):		100
		The second little section is a second
H 4.0 value before calibration:	21470037 4/23	-171.0
H 4.0 value before calibration: H 4.0 value after calibration:	21470032 4/23	-171.0 4,28
	21470032 4/23	-171.0 4.28 4.0
H 4.0 value after calibration: H 4.0 mV (range is 130 to 230 mV):		-171.0 4,28
H 4.0 value after calibration:	en 165 to 180 mV	-171.0 4.28 4.0
H 4.0 value after calibration: H 4.0 mV (range is 130 to 230 mV): ote: Span between ph 4 and 7, and 7 and 10 should be between XIDATION/REDUCTION POTENTIAL (O	en 165 to 180 mV RP)	-171.0 4.28 4.0 161.0
H 4.0 value after calibration: H 4.0 mV (range is 130 to 230 mV): ote: Span between ph 4 and 7, and 7 and 10 should be between XIDATION/REDUCTION POTENTIAL (O alibration Temperature (°C):	en 165 to 180 mV RP) 21140143 4/23	-171.0 4,28 4,0 167.0
H 4.0 value after calibration: H 4.0 mV (range is 130 to 230 mV): ote: Span between ph 4 and 7, and 7 and 10 should be between XIDATION/REDUCTION POTENTIAL (O alibration Temperature (°C):	en 165 to 180 mV RP)	-171.0 4,28 4,0 161.0 26.10 228
H 4.0 value after calibration: H 4.0 mV (range is 130 to 230 mV): ote: Span between ph 4 and 7, and 7 and 10 should be between XIDATION/REDUCTION POTENTIAL (Oralibration Temperature (°C): neoretical Calibration standard (mV)	en 165 to 180 mV RP) 21149(43 4/23 0.231+0.0013(25-T) x 1000 = mV (T is Temperature °C)	-171.0 4,28 4,0 167.0 26.10 228 225,2
H 4.0 value after calibration: H 4.0 mV (range is 130 to 230 mV): ote: Span between ph 4 and 7, and 7 and 10 should be between XIDATION/REDUCTION POTENTIAL (O alibration Temperature (°C): neoretical Calibration standard (mV) eading before calibration (mV): cading after calibration (mV):	en 165 to 180 mV RP) 21140143 231+0.0013(25-T) x 1000 = mV (T is Temperature °C)	-171.0 4,28 4,0 161.0 26.10 228
H 4.0 value after calibration: H 4.0 mV (range is 130 to 230 mV): hte: Span between ph 4 and 7, and 7 and 10 should be between XIDATION/REDUCTION POTENTIAL (O alibration Temperature (°C): heoretical Calibration standard (mV) rading before calibration (mV): rading after calibration (mV): hte: mV theory will change with temperature, so	en 165 to 180 mV RP) 21140(43 4/23 0.231+0.0013(25-T) x 1000 = mV (T is Temperature °C) so calculate based on your current temp.	-171.0 4,28 4,0 167.0 26.10 228 225,2
H 4.0 value after calibration: H 4.0 mV (range is 130 to 230 mV): te: Span between ph 4 and 7, and 7 and 10 should be between XIDATION/REDUCTION POTENTIAL (Oralibration Temperature (°C): neoretical Calibration standard (mV) eading before calibration (mV): eading after calibration (mV): ote: mV theory will change with temperature, so URBIDITY Note: Lens wiper should be parked 180 of	en 165 to 180 mV RP) 21140(43 4/23 0.231+0.0013(25-T) x 1000 = mV (T is Temperature °C) so calculate based on your current temp. degrees from the optics.	-171.0 4,28 4,0 161.0 26.10 228 225,2 227.6
H 4.0 value after calibration: H 4.0 mV (range is 130 to 230 mV): ote: Span between ph 4 and 7, and 7 and 10 should be between XIDATION/REDUCTION POTENTIAL (O alibration Temperature (°C): neoretical Calibration standard (mV) reading before calibration (mV): reading after calibration (mV): ote: mV theory will change with temperature, so JRBIDITY Note: Lens wiper should be parked 180 of 10 NTU Turbidity Standard	en 165 to 180 mV RP) 21149143 2231+0.0013(25-T) x 1000 = mV (T is Temperature °C) so calculate based on your current temp. degrees from the optics. Before Cal: -0.19 After Cal:	-171.0 4.28 4.0 161.0 26.10 228 225.2 227.6
H 4.0 value after calibration: H 4.0 mV (range is 130 to 230 mV): ote: Span between ph 4 and 7, and 7 and 10 should be between XIDATION/REDUCTION POTENTIAL (Oralibration Temperature (°C): concertical Calibration standard (mV) cading before calibration (mV): cading after calibration (mV): concertical Calibration (mV): cading after calibration (mV): cading after calibration (mV): concertical Calibration (mV): cading before calibration (mV): cading after calibration (mV): concertical Calibration (mV): cading after calibration (mV): cading after calibration (mV): concertical Calibration (mV): cading after calibration (mV): concertical Calibration (mV): cading before calibration (mV): cading after calibration (mV): concertical Calibration (mV): cading after calibration (mV): concertical Calibration (mV): cading after calibration (mV): concertical Calibration (mV): con	en 165 to 180 mV RP) 2 14 9 4 2 3 2.231+0.0013(25-T) x 1000 = mV (T is Temperature °C) So calculate based on your current temp. Regrees from the optics. Before Cal: -0.19 After Cal: Before Cal: /0.1 After Cal:	-171.0 4,28 4,0 161.0 26.10 228 225,2 227.6
H 4.0 value after calibration: H 4.0 mV (range is 130 to 230 mV): te: Span between ph 4 and 7, and 7 and 10 should be between XIDATION/REDUCTION POTENTIAL (Oralibration Temperature (°C): neoretical Calibration standard (mV) teading before calibration (mV): teading after calibration (mV): teading after calibration (mV): teading after calibration (mV): teading after calibration (mV): tete: mV theory will change with temperature, so IRBIDITY Note: Lens wiper should be parked 180 or TONTU Turbidity Standard NTU Turbidity Standard NTU Turbidity Standard	en 165 to 180 mV RP) 21140143 223 2231+0.0013(25-T) x 1000 = mV (T is Temperature °C) So calculate based on your current temp. Regrees from the optics. Before Cal: -0.19 After Cal: Before Cal: After Cal: Before Cal: After Cal:	-171.0 4.28 4.0 161.0 26.10 228 225.2 227.6
H 4.0 value after calibration: H 4.0 mV (range is 130 to 230 mV): ote: Span between ph 4 and 7, and 7 and 10 should be between XIDATION/REDUCTION POTENTIAL (Oralibration Temperature (°C): concertical Calibration standard (mV) cading before calibration (mV): cading after calibration (mV): concertical Calibration (mV): cading after calibration (mV): cading after calibration (mV): concertical Calibration (mV): cading before calibration (mV): cading after calibration (mV): concertical Calibration (mV): cading after calibration (mV): cading after calibration (mV): concertical Calibration (mV): cading after calibration (mV): concertical Calibration (mV): cading before calibration (mV): cading after calibration (mV): concertical Calibration (mV): cading after calibration (mV): concertical Calibration (mV): cading after calibration (mV): concertical Calibration (mV): con	en 165 to 180 mV RP) 2 14 9 4 2 3 2.231+0.0013(25-T) x 1000 = mV (T is Temperature °C) So calculate based on your current temp. Regrees from the optics. Before Cal: -0.19 After Cal: Before Cal: /0.1 After Cal:	-171.0 4.28 4.0 161.0 26.10 228 225.2 227.6

Date:_	8-25-22	
Time:_	815	
Prepare	ed By: EVER GUILLEN	
Checke	ed By:	

Wood. Project No.

Pine Sonde ID:
Pine Handset ID: 877800
Battery Voltage %:____

CALIBRATION	PRIOR	TO	SAMPLING

DISSOLVED OXYGEN (DO)		VALU
Was DO membrane changed?	Yes No Date: Time:	
Current Air Temperature °C (meter reading):		29.6
Current Barometric Pressure (from Weather		
Channel or NOAA.gov, which is corrected to		
sea level):		
Elevation Corrected Barometric Pressure to	Ex.: 30.02 in. Hg x 25.4 = mm Hg; subtract 2.54 mm Hg for every	CARCALLER BANKS & CO.
enter into YSI DO calibration:	100 ft. above sea level: 565/100 x 2.54 = 14.4 mm Hg 1011.9 mB	758.
Theoretical DO (mg/L) from DO table based		terrer Dimensional Security
on current temperature and elevation corrected		
pressure:		
DO concentration before Calibration (mg/L):	Depending on meter version, this may not be available.	8.3
DO concentration after Calibration (mg/L):		7,9
% Recovery (actual/theory x 100)	Range is 90 to 110% Recovery	
DO Charge (DO ch):	Acceptable Range is 25 to 75	
DO Gain (should be between -0.7 and 1.5):	Exit Calibration menu and go to Advanced/Cal Constants	1.050
Note:		
CONDUCTIVITY [Note: Calibrate before pH to av	oid carry-over from pH standards (i.e. pH buffers are conductive)]	
Calibration standard used (mS/cm)		1.413
Γemperature (°C)		25,0
Reading before Calibration (mS/cm)		1.49
Reading AFTER Calibration (mS/cm)		1.413
Conductivity Cell Constant (unitless):		THE REAL PROPERTY.
Note: Be sure conductivity cell is submerged and free of bubb	les (gently tap sonde on table)	0.86
H		· · · · · · · · · · · · · · · · · · ·
H 7.0 value before calibration:		7,06
H 7.0 value after calibration:		
H 7.0 mV (range is -50 to +50 mV):		7.0
pH 10 value before calibration:	و المراقب الم	<u> </u>
pH 10 value after calibration:		10,0
pH 10 mV (range is -130 to -230 mV):		10.0
H 4.0 value before calibration:	Noted all product at passed by bassed by bassed and passed by bassed by passed by bass	- 174,0
H 4.0 value after calibration:		4107
H 4.0 mV (range is 130 to 230 mV):		4.0
ote: Span between ph 4 and 7, and 7 and 10 should be between	en 165 to 180 mV	163,6
XIDATION/REDUCTION POTENTIAL (O	RP)	
alibration Temperature (°C):		
	1 / (1±0 001 3/75 1) v 1000 = (7 / T = T	25.48
eading before calibration (mV):		228
eading after calibration (mV):		2773
		228.5
ote: mV theory will change with temperature,	so calculate based on your current temp.	
	negrees from the optics.	
URBIDITY Note: Lens wiper should be parked 180		
NTU Turbidity Standard	Before Cal: After Cal:	0,0
ルNTU Turbidity Standard カルNTU Turbidity Standard	Before Cal: After Cal:	-
10 NTU Turbidity Standard 2.0 NTU Turbidity Standard NTU Turbidity Standard	TO C C I	9,92
ルNTU Turbidity Standard カルNTU Turbidity Standard	Before Cal: After Cal:	يندون بالمناوات بعالا

Date: 8-2	6-22	
Time: 830		_
Prepared By:	EVER	GUILLEN
Checked By:		

Wood. Project No.

CALIBRATION	PRIOR TO	O SAMPLING

DISSOLVED OXYGEN (DO)		VALUI
Was DO membrane changed?	Yes No Date: Time:	
Current Air Temperature °C (meter reading):		22.7
Current Barometric Pressure (from Weather		
Channel or NOAA.gov, which is corrected to		
sea level):		
Elevation Corrected Barometric Pressure to	Ex.: 30.02 in. Hg x 25.4 = mm Hg; subtract 2.54 mm Hg for ever	/
enter into YSI DO calibration: Theoretical DO (mg/L) from DO table based	100 ft. above sea level: 565/100 x 2.54 = 14.4 mm Hg 10 11.1 MB	758.3
on current temperature and elevation corrected		
pressure: DO concentration before Calibration (mg/L):		
DO concentration after Calibration (mg/L):	Depending on meter version, this may not be available.	8.76
		8,39
% Recovery (actual/theory x 100)	Range is 90 to 110% Recovery	
DO Charge (DO ch):	Acceptable Range is 25 to 75	
DO Gain (should be between -0.7 and 1.5):	Exit Calibration menu and go to Advanced/Cal Constants	1,03126
Note:		
COMPUCATIVITY [Note: Calibrate before pH to av	oid carry-over from pH standards (i.e. pH buffers are conductive)]	
Calibration standard used (mS/cm)		1.413
Γemperature (°C)		23,6
Reading before Calibration (mS/cm)		1.312
Reading AFTER Calibration (mS/cm)		1,413
Conductivity Cell Constant (unitless):		0,91
Note: Be sure conductivity cell is submerged and free of bubb		
oH		
oH 7.0 value before calibration:		7.0
H 7.0 value after calibration:		7,0
H 7.0 mV (range is -50 to +50 mV):		-7.6
pH 10 value before calibration:		10.04
pH 10 value after calibration:		10.0
pH 10 mV (range is -130 to -230 mV):		-1754
H 4.0 value before calibration:		3,99
H 4.0 value after calibration:		4,0
H 4.0 mV (range is 130 to 230 mV):		162.8
ote: Span between ph 4 and 7, and 7 and 10 should be betwe		
XIDATION/REDUCTION POTENTIAL (O	RP)	
alibration Temperature (°C):		23.79
heoretical Calibration standard (mV)	$0.231+0.0013(25-T) \times 1000 = mV$ (T is Temperature °C)	2281
eading before calibration (mV):		231.2
eading after calibration (mV):		230.7
ote: mV theory will change with temperature,	so calculate based on your current temp.	C164 (
URBIDITY Note: Lens wiper should be parked 180	degrees from the optics.	
NTU Turbidity Standard	Before Cal:019 After Cal:	0,0
၈၀ NTU Turbidity Standard	Before Cal: After Cal:	THE RESIDENCE IN COLUMN 2 IN COLUMN 2
NTU Turbidity Standard	Before Cal: After Cal:	9,93
NTU Turbidity Check STD	Before Cal: After Cal:	
NTU Turbidity Check STD	Before Cal: After Cal: Before Cal: After Cal:	
1110 I di olditi y Check o i b		

Project: PLANT MIRCHELL
Date: 10-11-22
Time:
Sampler: EVER GUILLEN

Wood Environment and Infrastructure

Sonde ID:	88	3965	
Handset ID:			
Battery Voltage	%:_	100	

YSI CALIBRATION PRIOR TO SAMPLING DISSOLVED OXYGEN (DO) VALUE Was DO membrane changed? Yes No U Date: Time: Current Air Temperature °C (meter reading): 18,56 Current Barometric Pressure (from Weather Channel or NOAA.gov, which is corrected to sea level): Elevation Corrected Barometric Pressure to Ex.: 30.02 in. Hg x 25.4 = mm Hg; subtract 2.54 mm Hg for every enter into YSI DO calibration: 100 ft. above sea level: 565/100 x 2.54 = 14.4 mm Hg/, 018,108 Theoretical DO (mg/L) from DO table based on current temperature and elevation corrected DO concentration before Calibration (mg/L): Depending on meter version, this may not be available. 9,08 DO concentration after Calibration (mg/L): 8,07 % Recovery (actual/theory x 100) Range is 90 to 110% Recovery DO Charge (DO ch): Acceptable Range is 25 to 75 DO Gain (should be between -0.7 and 1.5); Exit Calibration menu and go to Advanced/Cal Constants Note: Reference elevation for the Fairfield, AL site is 565 ft. CONDUCTIVITY [Note: Calibrate before pH to avoid carry-over from pH standards (i.e. pH buffers are conductive)] Calibration standard used (mS/cm) LOT# 21500094 EXP. 1.413 Temperature (°C) 18.37 Reading before Calibration (mS/cm) 1.203 Reading AFTER Calibration (mS/cm) 1.287 Conductivity Cell Constant (unitless): 0,917 Note: Be sure conductivity cell is submerged and free of bubbles (gently tap sonde on table) pН pH 7.0 value before calibration: 4/23 21380102 7.06 pH 7.0 value after calibration: pH 7.0 mV (range is -50 to +50 mV): 1.0 pH 10 value before calibration: 20080056 10.48 pH 10 value after calibration: 10.0 pH 10 mV (range is -130 to -230 mV): -162,1 pH 4.0 value before calibration: 2147 0032 4/23 4,08 pH 4.0 value after calibration: 4,0 pH 4.0 mV (range is 130 to 230 mV): Note: Span between ph 4 and 7, and 7 and 10 should be between 165 to 180 mV 172.1 OXIDATION/REDUCTION POTENTIAL (ORP) Calibration Temperature (°C): 21140143 4/23 Theoretical Calibration standard (mV) $0.231 + 0.0013(25 - T) \times 1000 = mV$ 19.53 (T is Temperature °C) Reading before calibration (mV): 228,0 Reading after calibration (mV): 236,2 Note: mV theory will change with temperature, so calculate based on your current YSI temp. 229,2 TURBIDITY Note: Lens wiper should be parked 180 degrees from the optics. 0 NTU Turbidity Standard Before Cal: 1,1 After Cal: 10 100 NTU Turbidity Standard 0.1 Before Cal: 10.9 After Cal: 10.1 YSI CALIBRATION SUCCESSFUL? 2.2. 792

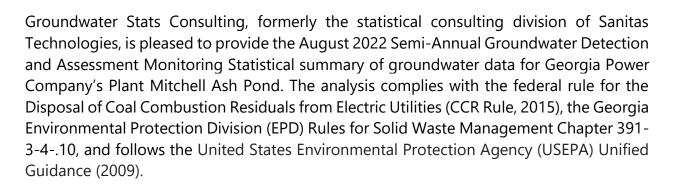
YES

2022 Semi-Annual Groundwater Monitoring and Corrective Action Report Georgia Power Company – Plant Mitchell Ash Ponds A, 1, and 2 Putney, Georgia

APPENDIX C STATISTICAL ANALYSES

GROUNDWATER STATS CONSULTING

SWFPR


February 28, 2023

Southern Company Services Attn: Mr. Joju Abraham 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308-3374

Re: Plant Mitchell Ash Pond

August 2022 Semi-Annual Statistical Analysis

Dear Mr. Abraham,

Sampling for the Appendix III parameters began in 2016, and at least 8 background samples were collected at each of the groundwater monitoring wells. Semi-annual sampling of the majority of Appendix IV constituents has been performed for several years in accordance with the Georgia Department of Natural Resources, Environmental Protection Division groundwater monitoring regulations. A list of all parameters is provided below.

The monitoring well network, as provided by Southern Company Services, consists of the following:

- Upgradient wells: PZ-1D, PZ-2D, PZ-31, and PZ-32
- Downgradient wells: PZ-7D, PZ-14, PZ-15, PZ-16, PZ-17, PZ-18, PZ-19, PZ-23A, PZ-25, PZ-33, and PZ-57

Note that well PZ-23 was abandoned and was replaced with well PZ-23A which was first sampled in March 2020. Since new well PZ-23A was installed in close proximity to well PZ-23, the data from the two wells were combined. Additionally, downgradient well PZ-57 was first sampled on January 2022 and has only been sampled twice. Data for this well were plotted on time series and box plots, and formal statistics will be conducted when a minimum of 4 samples are available for Appendix IV constituents and a minimum of 8 samples are available for Appendix III constituents.

During the August 2022 sample event, mercury for well PZ-25 and TDS for wells PZ-2D, PZ-25, and PZ-32 exceeded their hold time and were resampled in October 2022. Per request of WSP, the samples that exceeded their hold time for mercury and TDS were not included in the data base. Resamples were also collected for pH at wells PZ-2D, PZ-25, and PZ-32 and both the August 2022 and October 2022 observations were included in the database.

Data were sent electronically to Groundwater Stats Consulting, and the statistical analysis was reviewed by Kristina Rayner, Senior Statistician and Founder of Groundwater Stats Consulting.

The Coal Combustion Residuals (CCR) program monitors the constituents listed below. The terms "parameters" and "constituents" are used interchangeably.

- Appendix III (Detection Monitoring) boron, calcium, chloride, fluoride, pH, sulfate, and TDS
- o **Appendix IV** (Assessment Monitoring) antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium

Note that when there are no detections present in downgradient wells for a given constituent, statistical analyses are not required. Summaries of well/constituent pairs with 100% non-detects since 2016 for Appendix IV constituents follow this letter.

Time series plots for Appendix III and IV parameters at all wells are provided for the purpose of screening data at these wells (Figure A). Additionally, a separate section of box plots is included for all constituents at upgradient and downgradient wells (Figure B). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells. Values in background which have been flagged as outliers may be seen in a lighter font and as a disconnected symbol on the graphs. A summary of flagged outliers follows this report (Figure C).

Based on the previous screening, described below, data at all wells for constituents detected in downgradient wells were evaluated for the following: 1) outliers; 2) trends; 3) most appropriate statistical method based on site characteristics of groundwater data upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods are recommended. Power curves were provided with the screening report to demonstrate that the selected statistical methods for the parameters listed above comply with the USEPA Unified Guidance and the Georgia Environmental Protection Division Rules for Solid Waste Management Chapter 391-3-4-.10. The EPA suggests the selected statistical method should provide at least 55% power at 3 standard deviations or at least 80% power at 4 standard deviations.

Summary of Statistical Methods – Appendix III and IV Parameters:

Based on the March 2019 evaluation for state and federal regulatory requirements described below, the following methods were selected for Appendix III and IV constituents:

- Appendix III: Interwell prediction limits, combined with a 1-of-2 resample plan for each Appendix III constituent
- Appendix IV: Confidence intervals on downgradient well data compared against Groundwater Protection Standards (GWPS) for each Appendix IV constituent

The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. Parametric prediction limits (or tolerance limits or confidence intervals as applicable) are utilized when the screened historical data follow a normal or transformednormal distribution. When data cannot be normalized or the majority of data are nondetects, a nonparametric test is utilized. While the false positive rate associated with the parametric limits is based on an annual 10% (5% per semi-annual event) as recommended by the EPA Unified Guidance (2009), the false positive rate associated with the nonparametric limits is dependent upon the available background sample size, number of future comparisons, and verification resample plan. The following approaches are used for handling non-detects (USEPA, 2009):

- No statistical analyses are required on wells and analytes containing 100% nondetects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects in background, simple substitution of one- half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the most recent practical quantification limit (PQL) as reported by the laboratory.

- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits is necessary to accommodate these types of changes. In the interwell case, prediction limits are updated with upgradient well data during each event after careful screening for any new outliers. In some cases, the earlier portion of data are deselected prior to construction of limits to provide sensitive limits that will rapidly detect changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

Summary of Initial Background Screening – Conducted in March 2019

Outlier Analysis

Time series plots were used to identify suspected outliers, or extreme values that would result in limits that are not conservative from a regulatory perspective, in proposed background data. Suspected outliers at all wells for Appendix III and Appendix IV parameters were formally tested using Tukey's box plot method and, when identified, flagged in the computer database with "o" and deselected prior to construction of statistical limits.

Using the Tukey box plot method, several outliers were identified and the reports were submitted with the screening. In cases where the most recent value was identified as an outlier, values were not flagged in the database at that time as they may represent a future trend. If future values do not remain at similar concentrations, these values will be flagged as outliers and deselected. Several low values exist in the data sets and appear on the graphs as possible low outliers relative to the laboratory's Practical Quantitation Limit. However, these values are observed trace values (i.e., measurements reported by the laboratory between the Method Detection Limit and the Practical Quantitation Limit) and, therefore, were not flagged as outliers.

Of the outliers identified by Tukey's method, only a few of these values were flagged in the database as all other values were similar to remaining measurements within a given well or neighboring wells or were non-detects.

When any values are flagged in the database as outliers, they are plotted in a disconnected and lighter symbol on the time series graph. The accompanying data pages display the flagged value in a lighter font as well. A substitution of the most recent reporting limit was applied when varying detection limits existed in data.

Seasonality

No obvious seasonal patterns were observed on the time series plots for any of the detected data; therefore, no deseasonalizing adjustments were made to the data. When seasonal patterns are observed, data may be deseasonalized so that the resulting limits will correctly account for the seasonality as a predictable pattern rather than random variation or a release.

Trend Test Evaluation

While trends may be visual, a quantification of the trend and its significance is needed. The Sen's Slope/Mann Kendall trend test was used to evaluate all data at each well to identify statistically significant increasing or decreasing trends, and the reports were submitted with the screening. In the absence of suspected contamination, significant trending data are typically not included as part of the background data used for construction of prediction limits. This step serves to eliminate the trend and, thus, reduce variation in background. When statistically significant decreasing trends are present, earlier data are evaluated to determine whether earlier concentration levels are significantly different than current reported concentrations and will be deselected as necessary. When the historical records of data are truncated for the reasons above, a summary report will be provided to show the date ranges used in construction of the statistical limits.

The results of the trend analyses were included with the previous screening and showed one statistically significant decreasing trend for chloride at well PZ-25. This trend was relatively low in magnitude when compared to average concentrations; therefore, no adjustments were made to the data set.

913.829.1470

<u>Appendix III – Determination of Spatial Variation</u>

The Analysis of Variance (ANOVA) was used to statistically evaluate differences in average concentrations among upgradient wells, which assists in identifying the most appropriate statistical approach. Interwell tests, which compare downgradient well data to statistical limits constructed from pooled upgradient well data, are appropriate when average concentrations are similar across upgradient wells. Intrawell tests, which compare compliance data from a single well to screened historical data within the same well, are appropriate when upgradient wells exhibit spatial variation; when statistical limits constructed from upgradient wells would not be conservative from a regulatory perspective; and when downgradient water quality is unimpacted compared to upgradient water quality for the same parameter.

The ANOVA identified no variation among upgradient well data for boron and fluoride, making these constituents eligible for interwell analyses. Variation was noted for calcium, chloride, pH, sulfate and TDS. While data were further tested for intrawell eligibility during the screening, interwell methods are used for all Appendix III constituents in accordance with Georgia EPD requirements.

Statistical Analysis of Appendix III Parameters – August 2022 Sample Event

All Appendix III parameters were analyzed using interwell prediction limits. Background (upgradient) well data were re-assessed using time series for potential outliers during this analysis. No new values were flagged as outlier and a summary of previously flagged outliers follows this report (Figure C). Values in background which have been flagged as outliers may be seen in a lighter font and as a disconnected symbol on the time series graphs.

Interwell Prediction Limits

Interwell prediction limits, combined with a 1-of-2 resample plan, were constructed using all historical upgradient well data through August 2022 (Figure D). Interwell prediction limits pool upgradient well data to establish a background limit for an individual constituent. The August 2022 sample from each downgradient well is compared to the background limit to determine whether initial exceedances are present.

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of one additional sample to determine whether the initial exceedance is confirmed. When a resample confirms the initial exceedance, a statistically significant increase is identified and further research would be required to identify the cause of the exceedance (i.e., impact from the site, natural variation, or an off-site source). If the

resample falls within the statistical limit, the initial exceedance is considered to be a false positive result, and, therefore, no exceedance is noted and no further action is necessary. If no resample is collected, the original result is considered a confirmed exceedance. A summary table of the interwell prediction limits follows this letter. The following interwell prediction limit exceedances were noted for the Appendix III parameters:

Boron: PZ-15, PZ-16, PZ-18, PZ-19, PZ-25, PZ-33, PZ-7D

Calcium: PZ-18, PZ-19, PZ-23A

• Chloride: PZ-14, PZ-15, PZ-16, PZ-18, PZ-19

pH: PZ-14, PZ-18, PZ-19, PZ-23A

Sulfate: PZ-14, PZ-15, PZ-16, PZ-17, PZ-18, PZ-19, PZ-23A, PZ-25, PZ-33, and

PZ-7D

• TDS: PZ-15, PZ-17, PZ-18, PZ-19, PZ-23A, and PZ-7D

October 2022 Resample Event

An additional set of interwell prediction limits were constructed using pooled upgradient well data through October 2022 to evaluate the October 2022 resample observations for pH and TDS at downgradient wells PZ-2D, PZ-25, and PZ-32 (Figure E). No exceedances were identified.

<u>Trend Test Evaluation – Appendix III</u>

When prediction limit exceedances are identified in downgradient wells, data are further evaluated using the Sen's Slope/Mann Kendall trend test at the 99% confidence level to determine whether concentrations are statistically increasing, decreasing, or stable (Figure F). Upgradient wells are included in the trend analyses for all parameters found to exceed their prediction limit in downgradient wells to identify whether similar patterns exist upgradient of the site. Upgradient trends are an indication of natural variability in groundwater unrelated to practices at the site. Both a summary and complete graphical results of the trend tests follow this report. Statistically significant trends were identified for the following downgradient and associated upgradient well/constituent pairs:

Increasing:

• Calcium: PZ-18, PZ-31 (upgradient), and PZ-32 (upgradient)

Sulfate: PZ-14 and PZ-23A

Decreasing:

Boron: PZ-33 and PZ-7D

• Chloride: PZ-16, PZ-18, PZ-19, and PZ-31 (upgradient)

• Sulfate: PZ-2D (upgradient), PZ-16, PZ-19, PZ-25, PZ-31 (upgradient),

PZ-33, and PZ-7D

TDS PZ-17 and PZ-7D

Statistical Analysis of Appendix IV Parameters – August 2022 Sample & October 2022 Resample Events

For Appendix IV parameters, confidence intervals for each downgradient well/constituent were compared against corresponding Groundwater Protection Standards (GWPS). GWPS were developed as described below. Downgradient well/constituent pairs containing 100% non-detects do not require analysis. Data from all wells for Appendix IV parameters are reassessed for outliers during each analysis. No new values were flagged and a summary of previously flagged outliers follows this report (Figure C).

Interwell Upper Tolerance Limits

First, interwell tolerance limits were used to calculate site-specific background limits from all available pooled upgradient well data through August 2022 to determine the Alternate Contaminant Level (ACL) for each Appendix IV constituent (Figure G). Parametric limits are constructed when data follow a normal or transformed-normal distribution with a target of 95% confidence and 95% coverage. When data contain greater than 50% non-detects or do not follow a normal or transformed-normal distribution, non-parametric tolerance limits are used.

Groundwater Protection Standards

The background limits were then used when determining the groundwater protection standard (GWPS) under 40 CFR §257.95(h) and Georgia EPD Rule 391-3-4-.10(6)(a). On July 30, 2018, US EPA revised the Federal CCR rule updating GWPS for cobalt, lead, lithium, and molybdenum as described above in 40 CFR §257.95(h)(2). Effective on February 22, 2022, Georgia EPD incorporated the updated GWPS into the current Georgia EPD Rules for Solid Waste Management 391-3-4-.10(6)(a). In accordance with the updated Rules, the GWPS is:

- The maximum contaminant level (MCL) established under §141.62 and §141.66 of this title
- Where an MCL has not been established for a constituent, Federal and State CCR Rules specify levels for cobalt (0.006 mg/L), lead (0.015 mg/L), lithium (0.040 mg/L), and molybdenum (0.100 mg/L)

• The respective background level for a constituent when the background level is higher than the MCL or Federal CCR Rule identified GWPS

Following Georgia EPD Rule requirements and the Federal CCR requirements, GWPS were established for statistical comparison of Appendix IV constituents for this sample event (Figure H).

Confidence Intervals

To complete the statistical comparison to GWPS, confidence intervals were constructed for each of the Appendix IV constituents using data through August 2022 in accordance with the state requirements in each downgradient well (Figure I). Note that data through October 2022 were used for mercury PZ-25 confidence interval. As mentioned above, well/constituent pairs containing 100% non-detects did not require analysis. All downgradient wells contained 100% non-detects for beryllium; therefore, this constituent was not analyzed. The Sanitas software was used to calculate the tolerance limits and the confidence intervals. The confidence intervals were compared to the GWPS established using the Georgia EPD Rules 391-3-4-.10(6)(a). Only when the entire confidence interval is above a GWPS is the downgradient well/constituent pair considered to exceed its respective standard. If there is an exceedance of the GWPS, a statistically significant level (SSL) exceedance is identified. No exceedances were identified and summaries and graphical results of the confidence intervals analyses follow this letter.

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for Plant Mitchell Ash Pond. If you have any questions or comments, please feel free to contact us.

For Groundwater Stats Consulting,

Andrew T. Collins Project Manager

Kristina L. Rayner Senior Statistician

Kristina Rayner

Easton Rayner

Groundwater Analyst

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

100% Non-Detects: Appendix IV Downgradient

Analysis Run 11/18/2022 3:22 PM View: Appendix IV - Confidence Intervals Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Antimony (mg/L) PZ-25

Arsenic (mg/L) PZ-16, PZ-18, PZ-7D

Beryllium (mg/L)

PZ-14, PZ-15, PZ-16, PZ-17, PZ-18, PZ-19, PZ-23A, PZ-25, PZ-33, PZ-7D

Cadmium (mg/L)

PZ-14, PZ-15, PZ-16, PZ-17, PZ-18, PZ-19, PZ-25, PZ-7D

Chromium (mg/L) PZ-15, PZ-17, PZ-25

Cobalt (mg/L) PZ-7D

Lead (mg/L) PZ-14, PZ-17, PZ-25

Lithium (mg/L) PZ-16, PZ-33

Molybdenum (mg/L) PZ-18, PZ-33, PZ-7D

Selenium (mg/L)

PZ-16, PZ-17, PZ-18, PZ-25, PZ-33

Interwell Prediction Limits - Significant Results

	Plan	t Mitchell C	Client: South	ern Company	Data: Mi	itchell Ash	Pond CCR	Printed 11/21/2	2022, 10):41 AM			
Constituent	Well	Upper Li	m. Lower Li	m. Date	Observ.	Observ. Sig. Bg N Bg Mean		Std. Dev.	Std. Dev. %NDs ND Adj.		Transform	<u>Alpha</u>	Method
Boron (mg/L)	PZ-15	0.02661	n/a	8/25/2022	0.21	Yes 64	-4.313	0.3429	9.37	None	ln(x)	0.0007523	Param Inter 1 of 2
Boron (mg/L)	PZ-16	0.02661	n/a	8/25/2022	0.24	Yes 64	-4.313	0.3429	9.37	None	In(x)	0.0007523	Param Inter 1 of 2
Boron (mg/L)	PZ-18	0.02661	n/a	8/25/2022	0.39	Yes 64	-4.313	0.3429	9.37	None	In(x)	0.0007523	Param Inter 1 of 2
Boron (mg/L)	PZ-19	0.02661	n/a	8/25/2022	0.58	Yes 64	-4.313	0.3429	9.37	None	ln(x)	0.0007523	Param Inter 1 of 2
Boron (mg/L)	PZ-25	0.02661	n/a	8/24/2022	0.19	Yes 64	-4.313	0.3429	9.37	None	ln(x)	0.0007523	Param Inter 1 of 2
Boron (mg/L)	PZ-33	0.02661	n/a	8/24/2022	0.32	Yes 64	-4.313	0.3429	9.37	None	In(x)	0.0007523	Param Inter 1 of 2
Boron (mg/L)	PZ-7D	0.02661	n/a	8/25/2022	0.2	Yes 64	-4.313	0.3429	9.37	None	In(x)	0.0007523	Param Inter 1 of 2
Calcium (mg/L)	PZ-18	109.6	n/a	8/25/2022	141	Yes 63	56.47	26.52	1.587	None	No	0.0007523	Param Inter 1 of 2
Calcium (mg/L)	PZ-19	109.6	n/a	8/25/2022	156	Yes 63	56.47	26.52	1.587	None None	No	0.0007523	Param Inter 1 of 2
Calcium (mg/L)	PZ-23A	109.6	n/a	8/25/2022	145	Yes 63	56.47	26.52	1.587	None None	No	0.0007523	Param Inter 1 of 2
Chloride (mg/L)	PZ-14	4.526	n/a	8/25/2022	4.6	Yes 64	1.088	0.2104	0	None	ln(x)	0.0007523	Param Inter 1 of 2
Chloride (mg/L)	PZ-15	4.526	n/a	8/25/2022	6.4	Yes 64	1.088	0.2104	0	None	In(x)	0.0007523	Param Inter 1 of 2
Chloride (mg/L)	PZ-16	4.526	n/a	8/25/2022	6.3	Yes 64	1.088	0.2104	0	None	ln(x)	0.0007523	Param Inter 1 of 2
Chloride (mg/L)	PZ-18	4.526	n/a	8/25/2022	4.6	Yes 64	1.088	0.2104	0	None	In(x)	0.0007523	Param Inter 1 of 2
Chloride (mg/L)	PZ-19	4.526	n/a	8/25/2022	4.6	Yes 64	1.088	0.2104	0	None	In(x)	0.0007523	Param Inter 1 of 2
pH (SU)	PZ-14	9.48	6.96	8/25/2022	6.93	Yes 64	n/a	n/a	0	n/a	n/a	0.0009281	NP Inter (normality) 1 of 2
pH (SU)	PZ-18	9.48	6.96	8/25/2022	6.76	Yes 64	n/a	n/a	0	n/a	n/a	0.0009281	NP Inter (normality) 1 of 2
pH (SU)	PZ-19	9.48	6.96	8/25/2022	6.67	Yes 64	n/a	n/a	0	n/a	n/a	0.0009281	NP Inter (normality) 1 of 2
pH (SU)	PZ-23A	9.48	6.96	8/25/2022	6.76	Yes 64	n/a	n/a	0	n/a	n/a	0.0009281	NP Inter (normality) 1 of 2
Sulfate (mg/L)	PZ-14	6.172	n/a	8/25/2022	10.7	Yes 64	1.633	0.4252	0	None	sqrt(x)	0.0007523	Param Inter 1 of 2
Sulfate (mg/L)	PZ-15	6.172	n/a	8/25/2022	75.5	Yes 64	1.633	0.4252	0	None	sqrt(x)	0.0007523	Param Inter 1 of 2
Sulfate (mg/L)	PZ-16	6.172	n/a	8/25/2022	38.7	Yes 64	1.633	0.4252	0	None	sqrt(x)	0.0007523	Param Inter 1 of 2
Sulfate (mg/L)	PZ-17	6.172	n/a	8/25/2022		Yes 64	1.633	0.4252	0	None	sqrt(x)	0.0007523	Param Inter 1 of 2
Sulfate (mg/L)	PZ-18	6.172	n/a	8/25/2022		Yes 64	1.633	0.4252	0	None	sqrt(x)	0.0007523	Param Inter 1 of 2
Sulfate (mg/L)	PZ-19	6.172	n/a	8/25/2022		Yes 64	1.633	0.4252	0	None	sqrt(x)	0.0007523	Param Inter 1 of 2
Sulfate (mg/L)	PZ-23A	6.172	n/a	8/25/2022		Yes 64	1.633	0.4252	0	None	sqrt(x)	0.0007523	Param Inter 1 of 2
Sulfate (mg/L)	PZ-25	6.172	n/a	8/24/2022		Yes 64	1.633	0.4252	0	None	sqrt(x)	0.0007523	Param Inter 1 of 2
Sulfate (mg/L)	PZ-33	6.172	n/a	8/24/2022		Yes 64	1.633	0.4252	0	None	sqrt(x)	0.0007523	Param Inter 1 of 2
Sulfate (mg/L)	PZ-7D	6.172	n/a	8/25/2022		Yes 64	1.633	0.4252	0	None	sqrt(x)	0.0007523	Param Inter 1 of 2
TDS (mg/L)	PZ-15	309.4	n/a	8/25/2022		Yes 62	173.2	67.95	0	None	No	0.0007523	Param Inter 1 of 2
TDS (mg/L)	PZ-17	309.4	n/a	8/25/2022		Yes 62	173.2	67.95	0	None	No	0.0007523	Param Inter 1 of 2
TDS (mg/L)	PZ-18	309.4	n/a	8/25/2022		Yes 62	173.2	67.95	0	None	No	0.0007523	Param Inter 1 of 2
TDS (mg/L)	PZ-19	309.4	n/a	8/25/2022		Yes 62	173.2	67.95	0	None	No	0.0007523	Param Inter 1 of 2
TDS (mg/L)	PZ-23A	309.4	n/a	8/25/2022		Yes 62	173.2	67.95	0	None	No	0.0007523	Param Inter 1 of 2
TDS (mg/L)	PZ-7D	309.4	n/a	8/25/2022	325	Yes 62	173.2	67.95	0	None	No	0.0007523	Param Inter 1 of 2

Interwell Prediction Limits - All Results

Data: Mitchell Ash Pond CCR Client: Southern Company Constituent Well Upper Lim. Lower Lim. Date Sig. Bg N Bg Mean Std. Dev. %NDs ND Adj Transform Method Observ. Boron (mg/L) PZ-14 0.02661 8/25/2022 0.032J No 64 -4.313 0.3429 9.375 None 0.0007523 Param Inter 1 of 2 n/a ln(x) 0.0007523 Boron (mg/L) PZ-15 0.02661 n/a 8/25/2022 0.21 Yes 64 -4.313 0.3429 9.375 None In(x) Param Inter 1 of 2 PZ-16 0.02661 8/25/2022 0.24 -4.313 0.3429 9.375 None 0.0007523 Param Inter 1 of 2 Boron (ma/L) n/a Yes 64 In(x) n/a Boron (mg/L) P7-17 0.02661 8/25/2022 0.19.1 No 64 -4 313 0.3429 9.375 None In(x) 0.0007523 Param Inter 1 of 2 PZ-18 0.02661 8/25/2022 Yes 64 -4.313 0.3429 9.375 None 0.0007523 Param Inter 1 of 2 Boron (ma/L) n/a In(x) Yes 64 Param Inter 1 of 2 0.02661 8/25/2022 0.58 -4.313 0.3429 9.375 None 0.0007523 Boron (mg/L) PZ-19 n/a In(x) 8/25/2022 0.17J No 64 Boron (mg/L) PZ-23A 0.02661 n/a -4.313 0.3429 9.375 None 0.0007523 Param Inter 1 of 2 In(x) Param Inter 1 of 2 Boron (mg/L) PZ-25 0.02661 n/a 8/24/2022 0.19 Yes 64 -4.313 0.3429 9.375 None In(x) 0.0007523 8/24/2022 0.32 Yes 64 -4.313 Boron (mg/L) PZ-33 0.02661 n/a 0.3429 9.375 None In(x) 0.0007523 Param Inter 1 of 2 Boron (mg/L) PZ-7D 0.02661 n/a 8/25/2022 0.2 Yes 64 -4.313 0.3429 9.375 None In(x) 0.0007523 Param Inter 1 of 2 Calcium (mg/L) PZ-14 8/25/2022 108 No 63 56.47 26.52 1.587 None 0.0007523 Param Inter 1 of 2 109.6 n/a Nο PZ-15 109.6 8/25/2022 No 63 56.47 26.52 0.0007523 Param Inter 1 of 2 Calcium (mg/L) n/a 96.7 1.587 None No PZ-16 8/25/2022 No 63 56.47 0.0007523 Calcium (mg/L) 109.6 92 26.52 1.587 None Param Inter 1 of 2 n/a No Calcium (mg/L) PZ-17 109.6 8/25/2022 99.5 No 63 56.47 26.52 1.587 None No 0.0007523 Param Inter 1 of 2 Calcium (mg/L) P7-18 109.6 n/a 8/25/2022 141 Yes 63 56.47 26.52 1.587 None Nο 0.0007523 Param Inter 1 of 2 Calcium (mg/L) 109.6 n/a 8/25/2022 1.587 None No 0.0007523 Param Inter 1 of 2 8/25/2022 145 Calcium (mg/L) P7-23A 109.6 n/a Yes 63 56.47 26.52 1.587 None Nο 0.0007523 Param Inter 1 of 2 Calcium (mg/L) PZ-25 109.6 8/24/2022 No 63 56.47 26.52 1.587 None 0.0007523 Param Inter 1 of 2 n/a No Calcium (mg/L) P7-33 109.6 n/a 8/24/2022 96.5 No 63 56.47 26.52 1.587 None No 0.0007523 Param Inter 1 of 2 Calcium (mg/L) P7-7D 109.6 n/a 8/25/2022 Nο 63 56 47 26.52 1.587 None No 0.0007523 Param Inter 1 of 2 Chloride (mg/L) P7-14 4.526 n/a 8/25/2022 4.6 Yes 64 1.088 0.2104 0 0.0007523 Param Inter 1 of 2 None In(x) 8/25/2022 6.4 Chloride (ma/L) PZ-15 4.526 Yes 64 1.088 0.2104 0 0.0007523 Param Inter 1 of 2 n/a None In(x) 1.088 Chloride (mg/L) PZ-16 4.526 8/25/2022 6.3 Yes 64 0.2104 0 0.0007523 Param Inter 1 of 2 n/a None In(x) 0 Chloride (mg/L) PZ-17 8/25/2022 3.9 No 64 1.088 0.0007523 Param Inter 1 of 2 4.526 n/a 0.2104 None In(x) Chloride (mg/L) PZ-18 4.526 n/a 8/25/2022 4.6 Yes 64 1.088 0.2104 0 None In(x) 0.0007523 Param Inter 1 of 2 Chloride (ma/L) PZ-19 4.526 n/a 8/25/2022 4.6 Yes 64 1.088 0.2104 0 None In(x) 0.0007523 Param Inter 1 of 2 Chloride (mg/L) P7-23A 4.526 n/a 8/25/2022 3.2 No 64 1.088 0 2104 0 ln(x) 0.0007523 Param Inter 1 of 2 64 0 PZ-25 4.526 8/24/2022 No 1.088 0.2104 0.0007523 Param Inter 1 of 2 Chloride (ma/L) n/a In(x) None PZ-33 4.526 8/24/2022 1.8 64 1.088 0.2104 0 0.0007523 Param Inter 1 of 2 Chloride (mg/L) n/a No In(x) Chloride (ma/L) PZ-7D 8/25/2022 4.1 No 64 1.088 0.2104 0 0.0007523 4.526 n/a None In(x) Param Inter 1 of 2 Fluoride (ma/L) PZ-14 0.29 8/25/2022 0.051J No 68 47.06 n/a 0.0004111 NP Inter (normality) 1 of 2 P7-15 0.29 8/25/2022 0.074.1 Nο 68 47 06 n/a 0.0004111 NP Inter (normality) 1 of 2 Fluoride (ma/L) n/a n/a n/a n/a Fluoride (mg/L) PZ-16 0.29 n/a 8/25/2022 0.058J No 47.06 n/a 0.0004111 NP Inter (normality) 1 of 2 n/a n/a Fluoride (ma/L) PZ-17 0.29 8/25/2022 0.078J 68 47.06 n/a 0.0004111 NP Inter (normality) 1 of 2 n/a Nο n/a n/a n/a Fluoride (mg/L) PZ-18 0.29 n/a 8/25/2022 No 68 47.06 n/a 0.0004111 NP Inter (normality) 1 of 2 n/a n/a Fluoride (mg/L) PZ-19 0.29 n/a 8/25/2022 0.086JNo 68 n/a n/a 47.06 n/a n/a 0.0004111 NP Inter (normality) 1 of 2 Fluoride (mg/L) PZ-23A 0.29 n/a 8/25/2022 0.074J No 68 n/a 47.06 n/a n/a 0.0004111 NP Inter (normality) 1 of 2 Fluoride (mg/L) PZ-25 0.29 n/a 8/24/2022 0.15 No 68 n/a n/a 47.06 n/a n/a 0.0004111 NP Inter (normality) 1 of 2 0.29 47.06 n/a Fluoride (mg/L) PZ-33 8/24/2022 0.092J No 68 n/a n/a 0.0004111 NP Inter (normality) 1 of 2 n/a n/a Fluoride (mg/L) PZ-7D 0.29 n/a 8/25/2022 0.056J No 68 47.06 n/a 0.0004111 NP Inter (normality) 1 of 2 n/a n/a pH (SU) PZ-14 9.48 6.96 8/25/2022 6.93 Yes 64 n/a n/a 0 n/a n/a 0.0009281 NP Inter (normality) 1 of 2 pH (SU) PZ-15 9.48 6.96 8/25/2022 7 15 No 64 n/a n/a 0 n/a n/a 0.0009281 NP Inter (normality) 1 of 2 pH (SU) PZ-16 9.48 6.96 8/25/2022 No 64 0 n/a n/a 0.0009281 NP Inter (normality) 1 of 2 n/a pH (SU) P7-17 9 48 6.96 8/25/2022 7.05 No 64 0 n/a n/a 0.0009281 NP Inter (normality) 1 of 2 n/a 8/25/2022 6.76 PZ-18 9.48 6.96 Yes 64 0 0.0009281 NP Inter (normality) 1 of 2 pH (SU) n/a n/a n/a n/a Yes 64 PZ-19 9.48 8/25/2022 0 0.0009281 NP Inter (normality) 1 of 2 pH (SU) 6.96 6.67 PZ-23A 9.48 8/25/2022 6.76 Yes 64 n/a 0 0.0009281 NP Inter (normality) 1 of 2 pH (SU) 6.96 n/a n/a n/a PZ-25 9.48 6.96 8/24/2022 7.1 No 64 0 0.0009281 NP Inter (normality) 1 of 2 pH (SU) n/a n/a n/a pH (SU) PZ-33 9.48 6.96 8/24/2022 7.1 No 64 n/a 0 n/a n/a 0.0009281 NP Inter (normality) 1 of 2 n/a PZ-7D 64 0 pH (SU) 9.48 6.96 8/25/2022 6.98 No 0.0009281 NP Inter (normality) 1 of 2 PZ-14 8/25/2022 10.7 Yes 64 1.633 0 0.0007523 Sulfate (mg/L) 6.172 n/a 0.4252 None sqrt(x) Param Inter 1 of 2 Sulfate (mg/L) PZ-15 6.172 n/a 8/25/2022 75.5 Yes 64 1.633 0.4252 0 None sqrt(x) 0.0007523 Param Inter 1 of 2 Sulfate (mg/L) PZ-16 6.172 n/a 8/25/2022 38.7 Yes 64 1.633 0.4252 0 None sqrt(x) 0.0007523 Param Inter 1 of 2 Sulfate (mg/L) PZ-17 6.172 n/a 8/25/2022 Yes 64 1.633 0 None sqrt(x) 0.0007523 Param Inter 1 of 2 Sulfate (mg/L) PZ-18 6.172 n/a 8/25/2022 96.3 Yes 64 1.633 0.4252 n None sqrt(x) 0.0007523 Param Inter 1 of 2

Interwell Prediction Limits - All Results

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR Printed 11/21/2022, 10:41 AM Well %NDs ND Adj. Constituent Upper Lim. Lower Lim. Date Observ. Sig. Bg N Bg Mean Std. Dev. Transform Alpha <u>Method</u> PZ-19 6.172 8/25/2022 84.4 Yes 64 1.633 0.4252 Sulfate (mg/L) n/a None sqrt(x) 0.0007523 Param Inter 1 of 2 Yes 64 1.633 0.0007523 Param Inter 1 of 2 Sulfate (mg/L) PZ-23A 6.172 8/25/2022 45.6 0.4252 n/a 0 None sqrt(x) Sulfate (mg/L) PZ-25 6.172 n/a 8/24/2022 35.7 Yes 64 1.633 0.4252 0 None 0.0007523 Param Inter 1 of 2 sart(x) Sulfate (mg/L) PZ-33 6.172 n/a 8/24/2022 34.7 Yes 64 1.633 0.4252 0 None sqrt(x) 0.0007523 Param Inter 1 of 2 8/25/2022 47.3 Sulfate (mg/L) PZ-7D 6.172 n/a Yes 64 1.633 0.4252 0 0.0007523 Param Inter 1 of 2 None sqrt(x) 8/25/2022 259 No 62 173.2 TDS (mg/L) PZ-14 309.4 n/a 67.95 0 None No 0.0007523 Param Inter 1 of 2 TDS (mg/L) PZ-15 309.4 8/25/2022 319 Yes 62 173.2 67.95 0 0.0007523 Param Inter 1 of 2 n/a None No TDS (mg/L) PZ-16 309.4 8/25/2022 90 No 62 173.2 67.95 0 0.0007523 Param Inter 1 of 2 TDS (mg/L) 309.4 n/a 8/25/2022 321 Yes 62 173.2 67.95 0 None 0.0007523 Param Inter 1 of 2 PZ-17 No TDS (mg/L) PZ-18 309.4 8/25/2022 446 Yes 62 173.2 67.95 0.0007523 Param Inter 1 of 2 PZ-19 309.4 8/25/2022 528 Yes 62 173.2 67.95 0.0007523 Param Inter 1 of 2 TDS (mg/L) n/a 0 None No TDS (mg/L) 309.4 8/25/2022 437 Yes 62 173.2 67.95 0 0.0007523 Param Inter 1 of 2 TDS (mg/L) PZ-33 309.4 8/24/2022 265 No 62 173.2 67.95 0 0.0007523 Param Inter 1 of 2 n/a None No TDS (mg/L) PZ-7D 309.4 8/25/2022 325 Yes 62 173.2 67.95 0.0007523 Param Inter 1 of 2

Interwell Prediction Limits - Resample Results (No Significant)

	Plant I	Mitchell Client: So	outhern Company	/ Data: Mi	tchell Ash Pond CCR	Printed 11/21/2	2022, 1	0:43 AM			
Constituent	Well	Upper Lim. Lowe	er Lim. Date	Observ.	Sig. Bg N Bg Mean	Std. Dev.	<u>%N[</u>	Os ND Adj.	Transform	<u>Alpha</u>	<u>Method</u>
pH (SU)	PZ-25	9.48 6.96	10/11/2022	2 7.13	No 66 n/a	n/a	0	n/a	n/a	0.0008751	NP Inter (normality) 1 of 2
TDS (mg/L)	PZ-25	307.8 n/a	10/11/2022	2 267	No 64 171.6	67.98	0	None	No	0.0007523	Param Inter 1 of 2

Trend Tests - Prediction Limit Exceedances - Significant Results

	Plant Mitchell	Client: Southern Company	Data: Mitchell	CCR Pr	inted 1	1/21/20	22, 4:48					
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	Xform	<u>Alpha</u>	Method
Boron (mg/L)	PZ-33		-0.01244	-78	-68	Yes	18	0	n/a	n/a	0.01	NP
Boron (mg/L)	PZ-7D		-0.0341	-84	-58	Yes	16	0	n/a	n/a	0.01	NP
Calcium (mg/L)	PZ-18		4.478	83	58	Yes	16	0	n/a	n/a	0.01	NP
Calcium (mg/L)	PZ-31 (bg)		2.442	69	58	Yes	16	0	n/a	n/a	0.01	NP
Calcium (mg/L)	PZ-32 (bg)		1.939	70	58	Yes	16	0	n/a	n/a	0.01	NP
Chloride (mg/L)	PZ-16		-0.347	-76	-58	Yes	16	0	n/a	n/a	0.01	NP
Chloride (mg/L)	PZ-18		-0.3988	-82	-58	Yes	16	0	n/a	n/a	0.01	NP
Chloride (mg/L)	PZ-19		-0.5273	-93	-58	Yes	16	0	n/a	n/a	0.01	NP
Chloride (mg/L)	PZ-31 (bg)		-0.3431	-86	-58	Yes	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	PZ-14		1.677	83	58	Yes	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	PZ-16		-2.677	-81	-58	Yes	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	PZ-19		-1.705	-61	-58	Yes	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	PZ-23A		4.222	84	58	Yes	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	PZ-25		-2.516	-92	-58	Yes	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	PZ-2D (bg)		-0.6424	-70	-58	Yes	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	PZ-31 (bg)		-0.9633	-91	-58	Yes	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	PZ-33		-12.82	-108	-58	Yes	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	PZ-7D		-2.016	-59	-58	Yes	16	0	n/a	n/a	0.01	NP
TDS (mg/L)	PZ-17		-16.07	-64	-58	Yes	16	0	n/a	n/a	0.01	NP
TDS (mg/L)	PZ-7D		-12.16	-60	-58	Yes	16	0	n/a	n/a	0.01	NP

Trend Tests - Prediction Limit Exceedances - All Results

	Plant Mitchell	Client: Southern Company	Data: Mitchel	l Ash Pond	CCR P	Printed 11/21/2022, 4:48 PM							
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method	
Boron (mg/L)	PZ-15		-0.002875	-25	-58	No	16	0	n/a	n/a	0.01	NP	
Boron (mg/L)	PZ-16		0	10	58	No	16	0	n/a	n/a	0.01	NP	
Boron (mg/L)	PZ-18		0.003907	18	58	No	16	0	n/a	n/a	0.01	NP	
Boron (mg/L)	PZ-19		-0.02163	-42	-58	No	16	0	n/a	n/a	0.01	NP	
Boron (mg/L)	PZ-1D (bg)		0.0003842	12	58	No	16	6.25	n/a	n/a	0.01	NP	
Boron (mg/L)	PZ-25		-0.005259	-41	-58	No	16	0	n/a	n/a	0.01	NP	
Boron (mg/L)	PZ-2D (bg)		-0.001017	-43	-58	No	16	0	n/a	n/a	0.01	NP	
Boron (mg/L)	PZ-31 (bg)		0	-1	-58	No	16	25	n/a	n/a	0.01	NP	
Boron (mg/L)	PZ-32 (bg)		0	-1	-58	No	16	6.25	n/a	n/a	0.01	NP	
Boron (mg/L)	PZ-33		-0.01244	-78	-68	Yes	18	0	n/a	n/a	0.01	NP	
Boron (mg/L)	PZ-7D		-0.0341	-84	-58	Yes	16	0	n/a	n/a	0.01	NP	
Calcium (mg/L)	PZ-18		4.478	83	58	Yes	16	0	n/a	n/a	0.01	NP	
Calcium (mg/L)	PZ-19		0.9209	11	58	No	16	0	n/a	n/a	0.01	NP	
Calcium (mg/L)	PZ-1D (bg)		1.612	53	53	No	15	0	n/a	n/a	0.01	NP	
Calcium (mg/L)	PZ-23A		2.968	52	58	No	16	0	n/a	n/a	0.01	NP	
Calcium (mg/L)	PZ-2D (bg)		2.155	30	58	No	16	6.25	n/a	n/a	0.01	NP	
Calcium (mg/L)	PZ-31 (bg)		2.442	69	58	Yes	16	0	n/a	n/a	0.01	NP	
Calcium (mg/L)	PZ-32 (bg)		1.939	70	58	Yes	16	0	n/a	n/a	0.01	NP	
Chloride (mg/L)	PZ-14		-0.1076	-35	-58	No	16	0	n/a	n/a	0.01	NP	
Chloride (mg/L)	PZ-15		-0.2275	-52	-58	No	16	0	n/a	n/a	0.01	NP	
Chloride (mg/L)	PZ-16		-0.347	-76	-58	Yes	16	0	n/a	n/a	0.01	NP	
Chloride (mg/L)	PZ-18		-0.3988	-82	-58	Yes	16	0	n/a	n/a	0.01	NP	
Chloride (mg/L)	PZ-19		-0.5273	-93	-58	Yes	16	0	n/a	n/a	0.01	NP	
Chloride (mg/L)	PZ-1D (bg)		-0.08315	-47	-58	No	16	0	n/a	n/a	0.01	NP	
Chloride (mg/L)	PZ-2D (bg)		-0.05458	-36	-58	No	16	0	n/a	n/a	0.01	NP	
Chloride (mg/L)	PZ-31 (bg)		-0.3431	-86	-58	Yes	16	0	n/a	n/a	0.01	NP	
Chloride (mg/L)	PZ-32 (bg)		-0.1674	-58	-58	No	16	0	n/a	n/a	0.01	NP	
pH (SU)	PZ-14		0.009753	13	63	No	17	0	n/a	n/a	0.01	NP	
pH (SU)	PZ-18		-0.01313	-37	-63	No	17	0	n/a	n/a	0.01	NP	
pH (SU)	PZ-19		0.007961	14	68	No	18	0	n/a	n/a	0.01	NP	
pH (SU)	PZ-1D (bg)		-0.01661	-30	-63	No	17	0	n/a	n/a	0.01	NP	
pH (SU)	PZ-23A		0.014	24	63	No	17	0	n/a	n/a	0.01	NP	
pH (SU)	PZ-2D (bg)		-0.2384	-28	-43	No	13	0	n/a	n/a	0.01	NP	
pH (SU)	PZ-31 (bg)		-0.003316	-10	-63	No	17	0	n/a	n/a	0.01	NP	
pH (SU)	PZ-32 (bg)		0.004191	11	74	No	19	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	PZ-14		1.677	83	58	Yes	16	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	PZ-15		0.4002	12	58	No	16	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	PZ-16		-2.677	-81	-58	Yes	16	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	PZ-17		-5.533	-57	-58	No	16	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	PZ-18		-1.22	-27	-58	No	16	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	PZ-19 PZ-1D (bg)		-1.705 0	-61 6	-58 50	Yes	16 16	0 0	n/a	n/a	0.01 0.01	NP NP	
Sulfate (mg/L) Sulfate (mg/L)	PZ-1D (bg)		4.222	84	58 58	No Yes	16	0	n/a n/a	n/a n/a	0.01	NP	
Sulfate (mg/L)	PZ-25A PZ-25		-2.516	-92	-58	Yes	16	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	PZ-25 PZ-2D (bg)		-0.6424	- 52 -70	-58	Yes		0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	PZ-2D (bg) PZ-31 (bg)		-0.9633	-70 -91	-58	Yes	16	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	PZ-32 (bg)		-0.02024	-16	-58	No	16	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	PZ-33		-12.82	-108	-58	Yes	16	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	PZ-7D		-2.016	-59	-58	Yes	16	0	n/a	n/a	0.01	NP	
TDS (mg/L)	PZ-15		4.115	21	58	No	16	0	n/a	n/a	0.01	NP	
TDS (mg/L)	PZ-17		-16.07	-64	-58	Yes	16	0	n/a	n/a	0.01	NP	
TDS (mg/L)	PZ-18		2.236	13	58	No	16	0	n/a	n/a	0.01	NP	
TDS (mg/L)	PZ-19		-10.13	-32	-58	No	16	0	n/a	n/a	0.01	NP	
TDS (mg/L)	PZ-1D (bg)		2.035	21	58	No	16	0	n/a	n/a	0.01	NP	
TDS (mg/L)	PZ-23A		6.692	52	58	No	16	0	n/a	n/a	0.01	NP	
TDS (mg/L)	PZ-2D (bg)		1.433	4	58	No	16	0	n/a	n/a	0.01	NP	
TDS (mg/L)	PZ-31 (bg)		0	-1	-58	No	16	0	n/a	n/a	0.01	NP	
TDS (mg/L)	PZ-32 (bg)		2.04	23	58	No	16	0	n/a	n/a	0.01	NP	
TDS (mg/L)	PZ-7D		-12.16	-60	-58	Yes		0	n/a	n/a	0.01	NP	
,	. –		-						-	-			

Upper Tolerance Limit Summary Table

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR Printed 11/21/2022, 10:54 AM Well Constituent Upper Lim. Lower Lim. Date Observ. Sig.Bg N Bg Mean Std. Dev. <u>%NDs</u> <u>ND Adj.</u> Transform Alpha Method n/a 64 n/a n/a 54.69 n/a 0.03752 NP Inter(NDs) Antimony (mg/L) n/a 0.0035 n/a n/a n/a n/a n/a n/a 85.71 n/a 0.05656 NP Inter(NDs) Arsenic (mg/L) n/a 0.005 n/a n/a n/a n/a 56 n/a Barium (mg/L) n/a 0.04787 n/a n/a 64 -4.397 0.6775 1.563 None 0.05 Inter n/a n/a ln(x) Beryllium (mg/L) n/a 0.0005 n/a n/a 48 n/a 95.83 n/a n/a 0.08526 NP Inter(NDs) Cadmium (mg/L) 0.08526 NP Inter(NDs) n/a 0.0005 n/a n/a n/a n/a 48 n/a n/a 100 n/a n/a Chromium (mg/L) n/a 0.009976 n/a n/a n/a 64 0.05165 0.02407 25 Kaplan-Meier sqrt(x) 0.05 Inter Cobalt (mg/L) 0.03752 NP Inter(NDs) n/a 0.005 n/a n/a 64 n/a n/a 96.88 n/a n/a n/a n/a Combined Radium 226 + 228 (pCi/L) 1.662 n/a n/a 62 0.7165 0.2849 0 sqrt(x) 0.05 Fluoride (mg/L) n/a 0.29 n/a n/a 68 n/a 47.06 n/a 0.03056 NP Inter(normality) n/a n/a n/a n/a Lead (mg/L) n/a 64 79.69 n/a 0.03752 NP Inter(NDs) n/a 64 0.03752 NP Inter(NDs) Lithium (mg/L) n/a 0.03 n/a n/a 79.69 n/a n/a n/a n/a Mercury (mg/L) 0.0002 n/a n/a 56 89.29 n/a n/a 0.05656 NP Inter(NDs) 0.03752 NP Inter(NDs) Molybdenum (mg/L) 0.01 n/a 78.13 n/a n/a n/a n/a n/a 64 n/a n/a n/a Selenium (mg/L) n/a 64 100 n/a n/a 0.03752 NP Inter(NDs) Thallium (mg/L) 0.001 90.63 n/a 0.03752 NP Inter(NDs) n/a n/a n/a n/a n/a 64 n/a n/a n/a

PLANT MITCHELL ASH POND GWPS											
		CCR-Rule									
Constituent Name	MCL	Specified	Background Limit	GWPS							
Antimony, Total (mg/L)	0.006		0.0035	0.006							
Arsenic, Total (mg/L)	0.01		0.005	0.01							
Barium, Total (mg/L)	2		0.048	2							
Beryllium, Total (mg/L)	0.004		0.0005	0.004							
Cadmium, Total (mg/L)	0.005		0.0005	0.005							
Chromium, Total (mg/L)	0.1		0.01	0.1							
Cobalt, Total (mg/L)	n/a	0.006	0.005	0.006							
Combined Radium, Total (pCi/L)	5		1.66	5							
Fluoride, Total (mg/L)	4		0.29	4							
Lead, Total (mg/L)	n/a	0.015	0.001	0.015							
Lithium, Total (mg/L)	n/a	0.04	0.03	0.04							
Mercury, Total (mg/L)	0.002		0.0002	0.002							
Molybdenum, Total (mg/L)	n/a	0.1	0.01	0.1							
Selenium, Total (mg/L)	0.05		0.005	0.05							
Thallium, Total (mg/L)	0.002		0.001	0.002							

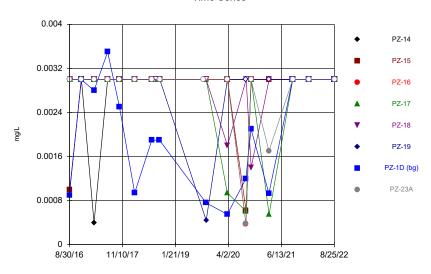
^{*}MCL = Maximum Contaminant Level

^{*}CCR = Coal Combustion Residuals

^{*}GWPS = Groundwater Protection Standard

Confidence Intervals - All Results (No Significant)

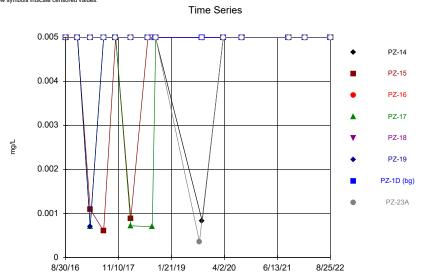
Client: Southern Company Data: Mitchell Ash Pond CCR Printed 11/21/2022, 11:01 AM Constituent Well Sig. <u>N</u> Std. Dev. %NDs ND Adj. Transform <u>Alpha</u> Method Upper Lim. Lower Lim Mean Antimony (mg/L) 0.003 0.0004 No 16 0.002838 0.00065 93.75 None No NP (NDs) NP (NDs) Antimony (mg/L) PZ-15 0.003 0.001 0.006 Nο 16 0.002726 0.0007512 87.5 None No 0.01 Antimony (mg/L) PZ-16 0.003 0.00037 0.006 No 0.002836 0.0006575 No NP (NDs) PZ-17 0.003 16 0.002569 NP (NDs) Antimony (mg/L) 0.00094 0.006 No 0.0009303 81.25 0.01 None Nο 0.0018 0.002825 NP (NDs) Antimony (mg/L) PZ-18 0.003 0.006 No 0.0004837 No Antimony (mg/L) PZ-19 0.003 0.00044 0.006 16 0.00284 0.00064 93.75 0.01 NP (NDs) No None No Antimony (mg/L) PZ-23A 0.003 0.0017 0.006 No 16 0.002755 0.0007115 87.5 No 0.01 NP (NDs) None Antimony (mg/L) PZ-33 0.003 0.00082 0.006 16 0.002699 0.0008256 87.5 NP (NDs) No None No 0.01 Antimony (mg/L) PZ-7D 0.003 0.00042 0.006 No 16 0.002501 0.001073 81.25 None No 0.01 NP (NDs) Arsenic (mg/L) PZ-14 0.005 0.00083 0.01 No 0.004702 0.001114 92.86 No 0.01 NP (NDs) P7-15 0.005 0.0011 14 0 004114 0.001764 NP (NDs) Arsenic (mg/L) 0.01 Nο 78 57 None Nο 0.01 PZ-17 Arsenic (mg/L) 0.005 0.00072 0.01 No 14 0.00408 0.001828 No NP (NDs) PZ-19 Arsenic (mg/L) 0.005 0.0007 0.01 No 14 0.004693 0.001149 92.86 None Nο 0.01 NP (NDs) 0.01 Arsenic (mg/L) PZ-23A 0.005 0.00036 No 14 0.004669 0.00124 None No 0.01 NP (NDs) PZ-25 14 0.00386 0.001885 NP (NDs) 0.005 0.001 0.01 No 71.43 0.01 Arsenic (mg/L) None No Arsenic (mg/L) PZ-33 0.005 0.00094 0.01 No 14 0.004403 0.001519 NP (NDs) None No 0.01 PZ-14 0.03145 0.01661 2 16 0.02474 0.01324 Barium (mg/L) No 0 None sqrt(x) 0.01 Param Barium (mg/L) P7-15 0.076 0.048 2 No 16 0.05913 0.01516 0 No 0.01 NP (normality) None PZ-16 0.0467 0.034 2 0.04293 0.0132 0 NP (normality) Barium (mg/L) No None No 0.01 P7-17 0.07887 16 0 07464 Barium (mg/L) 0.07041 2 Nο 0.006501 n None Nο 0.01 Param. Barium (mg/L) PZ-18 0.029 0.023 2 No 16 0.0295 0.01319 None No NP (normality) PZ-19 0.05859 16 0.05543 Barium (mg/L) 0.05228 2 No 0.004848 0 None Nο 0.01 Param PZ-23A 0.05067 0.03709 2 0.04388 0.01044 Barium (mg/L) No 0 0.01 PZ-25 2 16 0.1051 0.006471 0 NP (normality) Barium (mg/L) 0.11 0.1 No None No 0.01 Barium (mg/L) PZ-33 0.07063 0.04977 2 No 15 0.0602 0.01539 0 None No 0.01 Param Barium (mg/L) PZ-7D 0.009796 0.006842 2 No 16 0.008319 0.00227 n None No 0.01 Param. Cadmium (mg/L) PZ-23A 0.0005 0.0002 0.005 No 12 0.00045 0.0001168 83.33 None No 0.01 NP (NDs) PZ-33 0.0001155 Cadmium (mg/L) 0.0005 0.0001 0.005 No 12 0.0004667 91.67 None No 0.01 NP (NDs) Chromium (mg/L) PZ-14 0.005 0.0011 0.1 No 16 0.003334 0.001954 56 25 None No 0.01 NP (NDs) Chromium (mg/L) PZ-16 0.005 0.00087 0.1 No 16 0.002769 0.002042 43.75 None No 0.01 NP (normality) PZ-18 Chromium (mg/L) 0.005 0.00056 0.1 No 16 0.004722 0.00111 93.75 None No 0.01 NP (NDs) NP (NDs) Chromium (ma/L) PZ-19 0.005 0.00073 0.1 No 0.004733 0.001067 Chromium (ma/L) PZ-23A 0.002196 0.001274 0.1 No 16 0.002537 0.001455 18.75 Kaplan-Meier 0.01 Param In(x) 0.01 Chromium (mg/L) PZ-33 0.005 0.0017 0.1 No 16 0.004794 0.000825 Kaplan-Meier NP (NDs) PZ-7D 0.002159 0.0008284 Chromium (ma/L) 0.1 16 0.002762 0.001782 31.25 Kaplan-Meier Param No sart(x) 0.01 Cobalt (mg/L) PZ-14 0.005 0.002 0.006 No 16 0.004519 0.001351 87.5 None No 0.01 NP (NDs) Cobalt (mg/L) 0.005 0.0005 No 0.003625 0.002114 68.75 None No 0.01 NP (NDs) Cobalt (mg/L) PZ-16 0.005 0.0005 0.006 No 16 0.004719 0.001125 93.75 None No 0.01 NP (NDs) Cobalt (mg/L) PZ-17 0.005 0.0005 0.006 No 16 0.003351 0.002204 62.5 None No 0.01 NP (NDs) PZ-18 16 0.004756 Cobalt (mg/L) 0.005 0.0011 0.006 No 0.000975 93.75 None No 0.01 NP (NDs) Cobalt (mg/L) PZ-19 0.0012 No 0.004506 0.00135 No NP (NDs) 0.00058 16 0.003615 NP (NDs) Cobalt (mg/L) PZ-23A 0.005 0.006 0.002124 0.01 No 68.75 None Nο Cobalt (mg/L) PZ-25 0.0018 0.0008 0.006 16 0.001547 0.001003 NP (normality) No 6.25 None No 0.01 PZ-33 0.005 0.0007 0.006 0.002015 NP (NDs) Cobalt (mg/L) No 16 0.003614 62.5 None No 0.01 Combined Radium 226 + 228 (pCi/L) PZ-14 0.9475 0.3298 5 No 16 0.687 0.5554 0 Param None 0.01 Combined Radium 226 + 228 (pCi/L) 0.6938 16 0.8973 0.3291 0 Param. 1.066 5 No x^(1/3) 0.01 None Combined Radium 226 + 228 (pCi/L) PZ-16 0.8728 0.4454 5 No 16 0.6591 0.3284 0 None No 0.01 Param Combined Radium 226 + 228 (pCi/L) 1.183 0.6143 5 No 15 0.8987 0.4198 0 No 0.01 Param Combined Radium 226 + 228 (pCi/L) P7-18 14 0 7987 0.5292 n 1 173 0.4239 5 Nο None Nο 0.01 Param Combined Radium 226 + 228 (pCi/L) PZ-19 1.34 0.7215 5 No 1.031 0.4756 0 Combined Radium 226 + 228 (pCi/L) PZ-23A 1.197 0.7349 5 Nο 16 0.9661 0.3554 0 None No 0.01 Param Combined Radium 226 + 228 (pCi/L) PZ-25 1.183 0.7453 5 No 16 0.9644 0.3368 0 None No 0.01 Param Combined Radium 226 + 228 (pCi/L) PZ-33 1.009 0.5396 5 16 0.7743 0.3608 0 Param No None No 0.01 Combined Radium 226 + 228 (pCi/L) PZ-7D 0.6104 0.2246 5 No 16 0.4462 0.3344 0 None 0.01 Param Fluoride (mg/L) PZ-14 0.11 0.056 4 No 17 0.08865 0.02518 58.82 No 0.01 NP (NDs) Fluoride (mg/L) PZ-15 0.1172 0.07172 17 0.1075 0.04446 Kaplan-Meier 0.01 Param


Confidence Intervals - All Results (No Significant)

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR Printed 11/21/2022, 11:01 AM

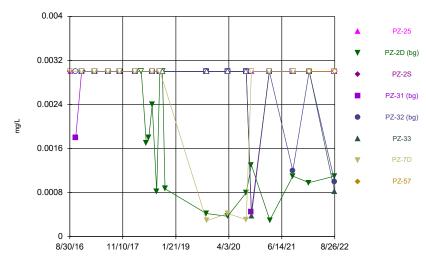
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliance	Sig	<u>N</u>	<u>Mean</u>	Std. Dev.	%NDs	ND Adj.	Transform	Alnha	Method
Fluoride (mg/L)	PZ-16	0.1	0.053	4	No.		0.08359	0.0241		Kaplan-Meier	No	0.01	NP (NDs)
Fluoride (mg/L)	PZ-17	0.1252	0.05759	4	No		0.118	0.06353		Kaplan-Meier	sqrt(x)	0.01	Param.
Fluoride (mg/L)	PZ-18	0.1202	0.08	4	No		0.09947	0.03486	52.94	•	No No	0.01	NP (NDs)
Fluoride (mg/L)	PZ-19	0.12	0.064	4	No		0.1087	0.07546	11.76	•	No	0.01	NP (normality)
Fluoride (mg/L)	PZ-23A	0.13	0.057	4			0.09918	0.05772				0.01	, ,,
		0.13			No		0.1947			None	No		NP (normality)
Fluoride (mg/L)	PZ-25		0.1492	4	No			0.07264	0	None	No No	0.01	Param.
Fluoride (mg/L)	PZ-33	0.15	0.092	4	No		0.1054	0.04146	58.82		No	0.01	NP (NDs)
Fluoride (mg/L)	PZ-7D	0.15	0.056	4	No		0.08835	0.03076		None	No	0.01	NP (NDs)
Lead (mg/L)	PZ-15	0.001	0.00005	0.015	No		0.0009406	0.0002375		None	No	0.01	NP (NDs)
Lead (mg/L)	PZ-16	0.001	0.000081	0.015	No		0.0009426	0.0002298		None	No	0.01	NP (NDs)
Lead (mg/L)	PZ-18	0.001	0.00043	0.015	No		0.0009045	0.0002704	87.5	None	No	0.01	NP (NDs)
Lead (mg/L)	PZ-19	0.001	0.000042	0.015	No		0.0009401	0.0002395		None	No	0.01	NP (NDs)
Lead (mg/L)	PZ-23A	0.001	0.00015	0.015	No		0.0008284	0.0003694		None	No	0.01	NP (NDs)
Lead (mg/L)	PZ-33	0.001	0.00009	0.015	No	16	0.0008836	0.0003183	87.5	None	No	0.01	NP (NDs)
Lead (mg/L)	PZ-7D	0.001	0.000041	0.015	No	16	0.0009401	0.0002398	93.75	None	No	0.01	NP (NDs)
Lithium (mg/L)	PZ-14	0.03	0.003	0.04	No	16	0.02831	0.00675	93.75	None	No	0.01	NP (NDs)
Lithium (mg/L)	PZ-15	0.03	0.0012	0.04	No	16	0.01026	0.01375	31.25	None	No	0.01	NP (normality)
Lithium (mg/L)	PZ-17	0.003	0.002	0.04	No	16	0.005794	0.009456	12.5	None	No	0.01	NP (normality)
Lithium (mg/L)	PZ-18	0.0033	0.0024	0.04	No	16	0.006131	0.009322	12.5	None	No	0.01	NP (normality)
Lithium (mg/L)	PZ-19	0.01455	0.01057	0.04	No	16	0.01256	0.00306	0	None	No	0.01	Param.
Lithium (mg/L)	PZ-23A	0.03	0.001	0.04	No	16	0.02094	0.01388	68.75	None	No	0.01	NP (NDs)
Lithium (mg/L)	PZ-25	0.006908	0.005581	0.04	No	16	0.006188	0.001108	0	None	x^2	0.01	Param.
Lithium (mg/L)	PZ-7D	0.0038	0.0023	0.04	No	16	0.004594	0.006797	6.25	None	No	0.01	NP (normality)
Mercury (mg/L)	PZ-14	0.0002	0.00015	0.002	No	14	0.0001871	0.00003625	85.71	None	No	0.01	NP (NDs)
Mercury (mg/L)	PZ-15	0.0002	0.000097	0.002	No	14	0.0001926	0.00002753	92.86	None	No	0.01	NP (NDs)
Mercury (mg/L)	PZ-16	0.0002	0.000068	0.002	No	14	0.0001906	0.00003528	92.86	None	No	0.01	NP (NDs)
Mercury (mg/L)	PZ-17	0.0002	0.000086	0.002	No	14	0.0001919	0.00003047	92.86	None	No	0.01	NP (NDs)
Mercury (mg/L)	PZ-18	0.0002	0.000057	0.002	No	14	0.0001898	0.00003822	92.86	None	No	0.01	NP (NDs)
Mercury (mg/L)	PZ-19	0.0002	0.0001	0.002	No	14	0.0001818	0.00004754	85.71	None	No	0.01	NP (NDs)
Mercury (mg/L)	PZ-23A	0.0002	0.00017	0.002	No	14	0.00019	0.00002987	85.71	None	No	0.01	NP (NDs)
Mercury (mg/L)	PZ-25	0.0002	0.000053	0.002	No	14	0.0001895	0.00003929	92.86	None	No	0.01	NP (NDs)
Mercury (mg/L)	PZ-33	0.0002	0.00011	0.002	No	14	0.000171	0.00005965	78.57	None	No	0.01	NP (NDs)
Mercury (mg/L)	PZ-7D	0.0002	0.00006	0.002	No		0.0001795	0.00005213		None	No	0.01	NP (NDs)
Molybdenum (mg/L)	PZ-14	0.01	0.0005	0.1	No		0.009406	0.002375		None	No	0.01	NP (NDs)
Molybdenum (mg/L)	PZ-15	0.01	0.0004	0.1	No		0.0094	0.0024		None	No	0.01	NP (NDs)
Molybdenum (mg/L)	PZ-16	0.01	0.0004	0.1	No		0.0094	0.0024		None	No	0.01	NP (NDs)
Molybdenum (mg/L)	PZ-17	0.01	0.0004	0.1	No		0.0094	0.0024		None	No	0.01	NP (NDs)
Molybdenum (mg/L)	PZ-19	0.0025	0.002	0.1	No		0.002669	0.001969	6.25	None	No	0.01	NP (normality)
Molybdenum (mg/L)	PZ-23A	0.01	0.002	0.1	No		0.008856	0.003127	87.5	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	PZ-25	0.01	0.001	0.1	No		0.009437	0.00225		None	No	0.01	NP (NDs)
Selenium (mg/L)	PZ-14	0.005	0.0015	0.05	No		0.004544	0.001248	87.5	None	No	0.01	NP (NDs)
Selenium (mg/L)	PZ-14 PZ-15	0.005	0.0013	0.05	No		0.004344	0.001248		None	No	0.01	NP (NDs)
, - ,		0.005											
Selenium (mg/L)	PZ-19		0.0019	0.05	No		0.00385	0.001328		None	No No	0.01	NP (normality)
Selenium (mg/L)	PZ-23A	0.005	0.0023	0.05	No		0.0035	0.00141		None	No	0.01	NP (normality)
Selenium (mg/L)	PZ-7D	0.005	0.0018	0.05	No		0.003987	0.001551		None	No	0.01	NP (NDs)
Thallium (mg/L)	PZ-14	0.001	0.00006	0.002	No		0.0009413	0.000235		None	No	0.01	NP (NDs)
Thallium (mg/L)	PZ-15	0.001	0.0002	0.002	No		0.0007006	0.0004001	62.5	None	No	0.01	NP (NDs)
Thallium (mg/L)	PZ-16	0.001	0.00018	0.002	No		0.0006877	0.0004177	62.5	None	No	0.01	NP (NDs)
Thallium (mg/L)	PZ-17	0.001	0.00022	0.002	No		0.0006444	0.0003726	50	None	No	0.01	NP (normality)
Thallium (mg/L)	PZ-18	0.001	0.000071	0.002	No		0.0008226	0.0003815	81.25		No	0.01	NP (NDs)
Thallium (mg/L)	PZ-19	0.0007268	0.0004869	0.002	No		0.0006069	0.0001843	6.25	None	No	0.01	Param.
Thallium (mg/L)	PZ-23A	0.001	0.00016	0.002	No		0.000545	0.0004167	43.75		No	0.01	NP (normality)
Thallium (mg/L)	PZ-25	0.001	0.00036	0.002	No		0.0006963	0.0003262	50	None	No	0.01	NP (normality)
Thallium (mg/L)	PZ-33	0.001	0.00015	0.002	No	16	0.0007269	0.0004188	68.75	None	No	0.01	NP (NDs)
Thallium (mg/L)	PZ-7D	0.001	0.0001	0.002	No	16	0.0007227	0.0004256	68.75	None	No	0.01	NP (NDs)

FIGURE A.



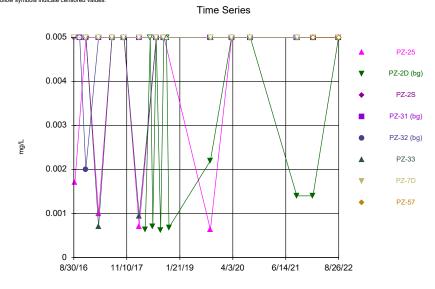
Constituent: Antimony Analysis Run 11/21/2022 9:20 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

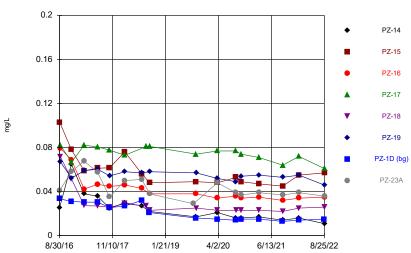
Constituent: Arsenic Analysis Run 11/21/2022 9:20 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Time Series

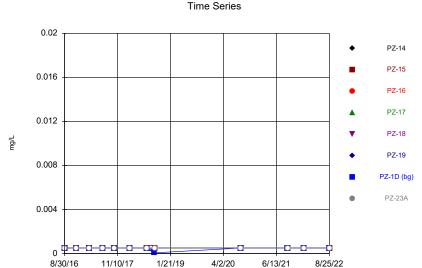
Constituent: Antimony Analysis Run 11/21/2022 9:20 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

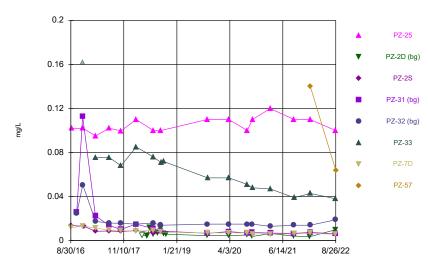
Constituent: Arsenic Analysis Run 11/21/2022 9:20 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR



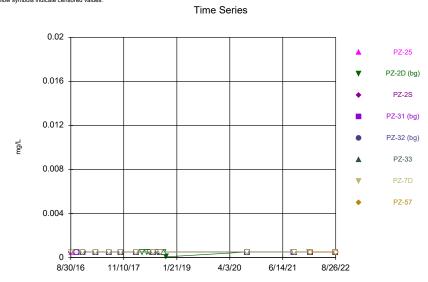
Constituent: Barium Analysis Run 11/21/2022 9:20 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

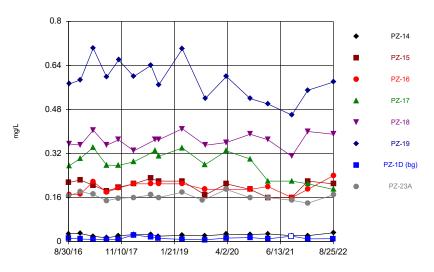
Constituent: Beryllium Analysis Run 11/21/2022 9:20 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Time Series

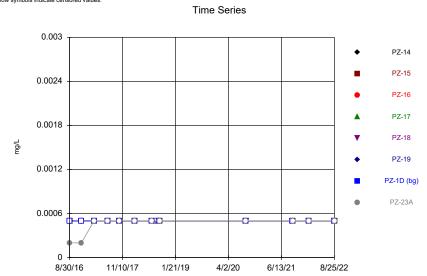
Constituent: Barium Analysis Run 11/21/2022 9:20 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

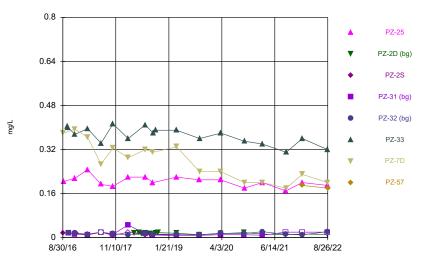
Constituent: Beryllium Analysis Run 11/21/2022 9:20 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR



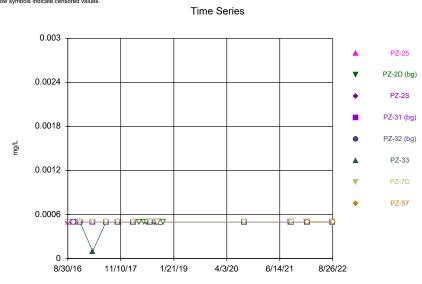
Constituent: Boron Analysis Run 11/21/2022 9:20 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

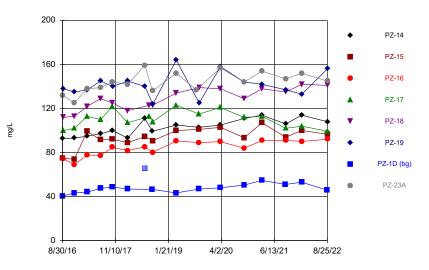
Constituent: Cadmium Analysis Run 11/21/2022 9:20 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Time Series

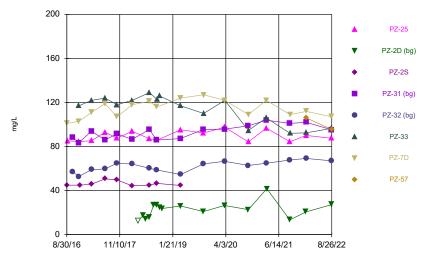
Constituent: Boron Analysis Run 11/21/2022 9:20 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Cadmium Analysis Run 11/21/2022 9:20 AM

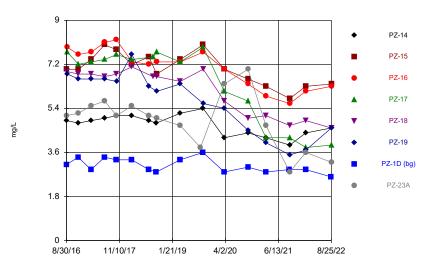
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR



Constituent: Calcium Analysis Run 11/21/2022 9:20 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

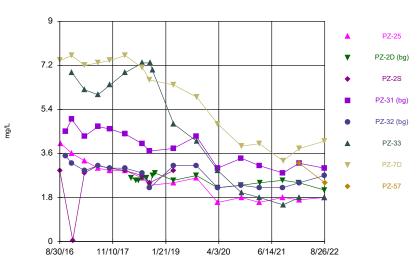
Time Series



Constituent: Calcium Analysis Run 11/21/2022 9:20 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

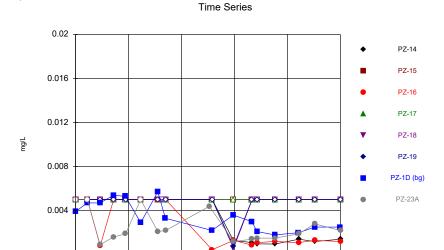


Constituent: Chloride Analysis Run 11/21/2022 9:20 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Time Series



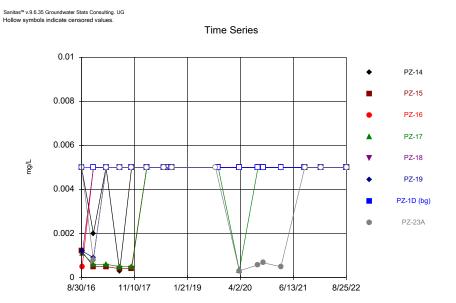
Constituent: Chloride Analysis Run 11/21/2022 9:20 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

8/30/16

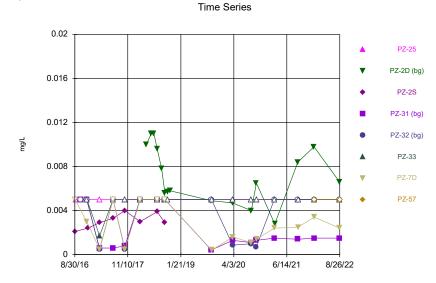
11/10/17

Constituent: Chromium Analysis Run 11/21/2022 9:20 AM

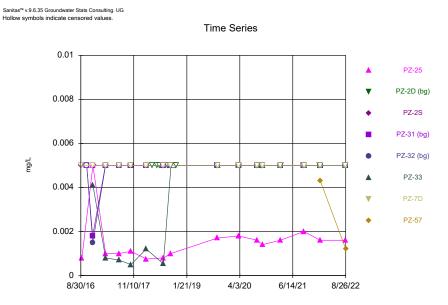

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

4/2/20

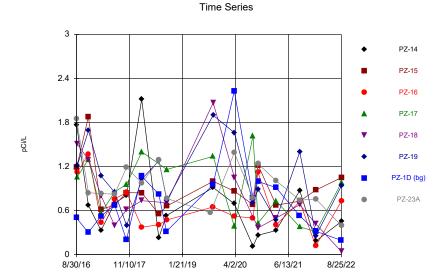
6/13/21


8/25/22

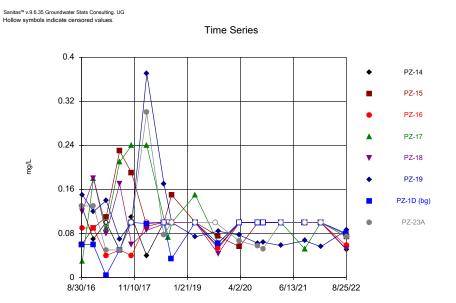
1/21/19


Constituent: Cobalt Analysis Run 11/21/2022 9:20 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

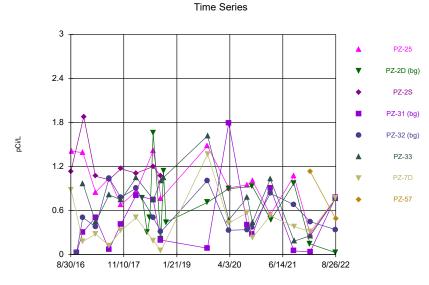

Constituent: Chromium Analysis Run 11/21/2022 9:20 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

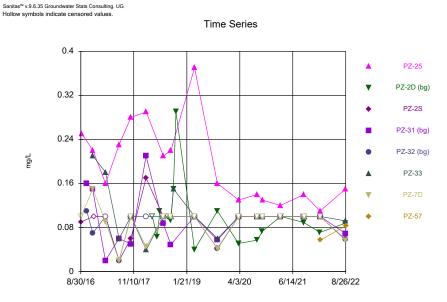


Constituent: Cobalt Analysis Run 11/21/2022 9:20 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

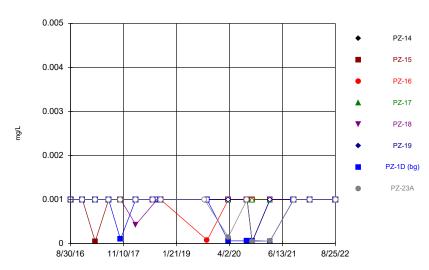


Constituent: Combined Radium 226 + 228 Analysis Run 11/21/2022 9:20 AM
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR



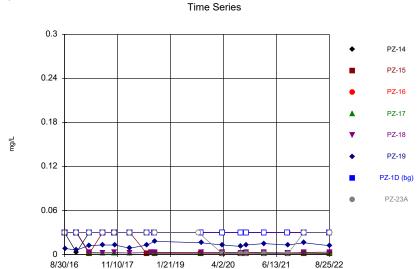
Constituent: Fluoride Analysis Run 11/21/2022 9:20 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Constituent: Combined Radium 226 + 228 Analysis Run 11/21/2022 9:20 AM
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

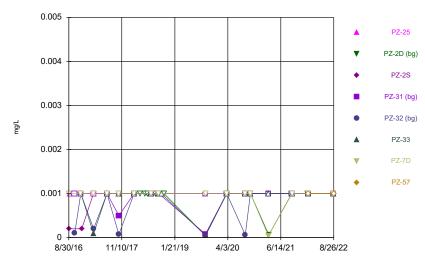
Constituent: Fluoride Analysis Run 11/21/2022 9:20 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR



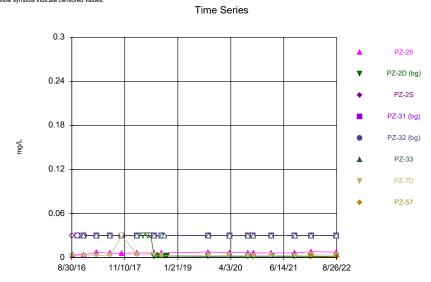
Constituent: Lead Analysis Run 11/21/2022 9:20 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

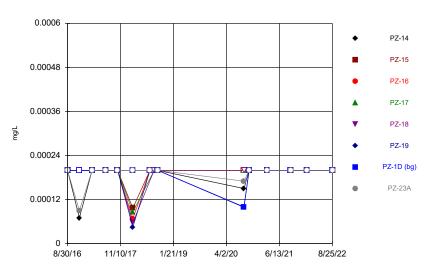
Constituent: Lithium Analysis Run 11/21/2022 9:20 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

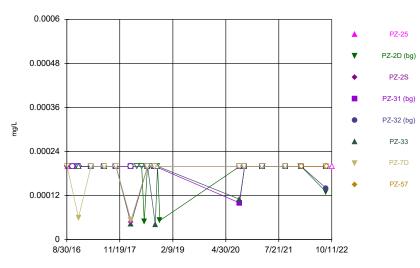

Time Series

Constituent: Lead Analysis Run 11/21/2022 9:20 AM

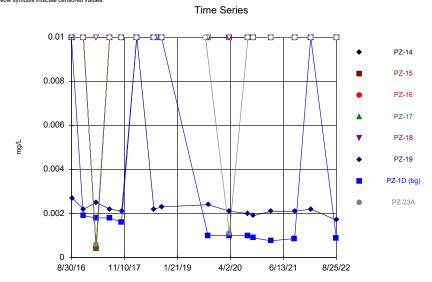
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Lithium Analysis Run 11/21/2022 9:20 AM

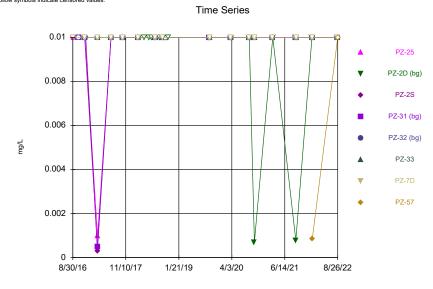

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Constituent: Mercury Analysis Run 11/21/2022 9:20 AM

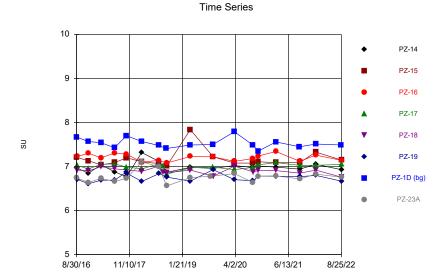

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Constituent: Mercury Analysis Run 11/21/2022 9:20 AM

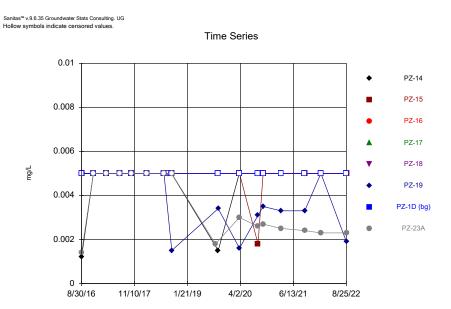
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Molybdenum Analysis Run 11/21/2022 9:20 AM

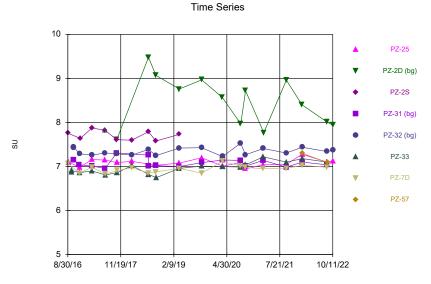

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

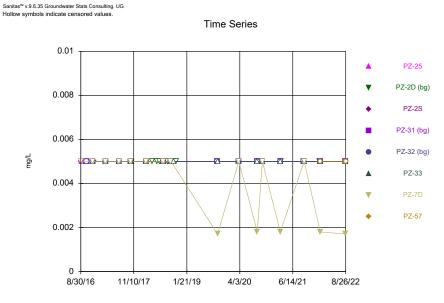


Constituent: Molybdenum Analysis Run 11/21/2022 9:20 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

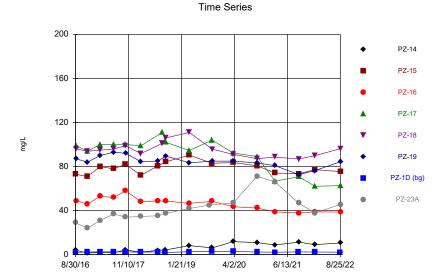


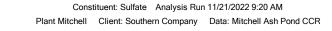
Constituent: pH Analysis Run 11/21/2022 9:20 AM
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR



Constituent: Selenium Analysis Run 11/21/2022 9:20 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Constituent: pH Analysis Run 11/21/2022 9:20 AM
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR



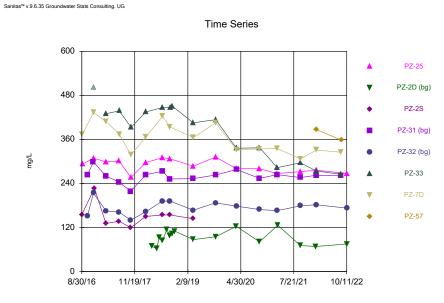
Constituent: Selenium Analysis Run 11/21/2022 9:20 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

200



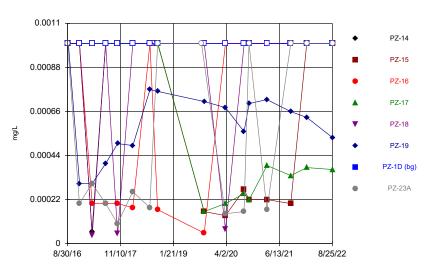
PZ-2D (bg) 160 PZ-2S PZ-31 (bg) 120 PZ-32 (bg) mg/L PZ-33 80 PZ-7D PZ-57 8/30/16 4/3/20 6/14/21 8/26/22 11/10/17 1/21/19 Constituent: Sulfate Analysis Run 11/21/2022 9:20 AM Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Time Series

PZ-25

Constituent: TDS Analysis Run 11/21/2022 9:20 AM

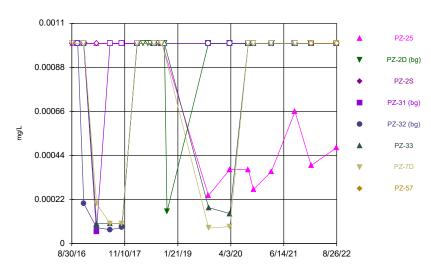
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR



Constituent: TDS Analysis Run 11/21/2022 9:21 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG



Constituent: Thallium Analysis Run 11/21/2022 9:21 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Time Series

Constituent: Thallium Analysis Run 11/21/2022 9:21 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Constituent: Antimony (mg/L) Analysis Run 11/21/2022 9:21 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-14	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19	PZ-1D (bg)	PZ-23A
8/30/2016							0.0009 (J)	
8/31/2016	<0.003							<0.003
9/1/2016		0.001 (J)						
9/6/2016			<0.003					
9/7/2016				<0.003	<0.003	<0.003		
12/6/2016							<0.003	
12/7/2016	<0.003	<0.003	<0.003					<0.003
12/8/2016				<0.003	<0.003	<0.003		
3/21/2017	0.0004 (J)						0.0028 (J)	<0.003
3/22/2017		<0.003	<0.003	<0.003	<0.003			
3/23/2017						<0.003		
7/11/2017	<0.003		<0.003				0.0035	<0.003
7/12/2017		<0.003		<0.003	<0.003	<0.003		
10/17/2017							0.0025 (J)	
10/18/2017	<0.003	<0.003	<0.003	<0.003	<0.003			<0.003
10/19/2017						<0.003		
2/20/2018	<0.003						0.00094 (J)	<0.003
2/21/2018		<0.003	<0.003	<0.003	<0.003	<0.003		
7/11/2018	<0.003						0.0019 (J)	<0.003
7/12/2018		<0.003	<0.003			<0.003		
8/15/2018					<0.003			
8/16/2018				<0.003				
9/12/2018	<0.003						0.0019 (J)	
9/13/2018		<0.003	<0.003		<0.003			<0.003
9/14/2018				<0.003		<0.003		
9/10/2019								<0.003
10/1/2019							0.00076 (X)	
10/2/2019	<0.003	<0.003	<0.003	<0.003				
10/3/2019					<0.003	0.00044 (X)		
3/24/2020							0.00055 (J)	
3/25/2020	<0.003			0.00094 (J)				<0.003
3/26/2020		<0.003	<0.003		0.0018 (J)	<0.003		
8/25/2020							0.0012 (J)	
8/26/2020	<0.003	0.00062 (J)	0.00037 (J)	0.00061 (J)		<0.003		0.00038 (J)
8/27/2020					<0.003			
10/6/2020	<0.003		<0.003				0.0021 (J)	<0.003
10/7/2020		<0.003		<0.003	0.0014 (J)	<0.003		
3/3/2021	<0.003		0.000	0.00055 (1)		<0.003	0.00093 (J)	0.0017 (J)
3/4/2021		<0.003	<0.003	0.00055 (J)	<0.003			
9/14/2021							<0.003	
9/15/2021	<0.003	<0.003	<0.003	-0.003	<0.002	-0.003		<0.003
9/16/2021				<0.003	<0.003	<0.003	-0.000	
1/25/2022	-0.000	-0.000	-0.000				<0.003	-0.000
1/26/2022	<0.003	<0.003	<0.003	-0.003	<0.002	-0.003		<0.003
1/27/2022				<0.003	<0.003	<0.003	-0.002	
8/24/2022	<0.002	~0.002	~0.00 2	-0.003	<0.002	-0.003	<0.003	<0.000
8/25/2022	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003

Constituent: Antimony (mg/L) Analysis Run 11/21/2022 9:21 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-25	PZ-2D (bg)	PZ-2S	PZ-31 (bg)	PZ-32 (bg)	PZ-33	PZ-7D	PZ-57
8/30/2016			<0.003					
9/1/2016							<0.003	
9/8/2016	<0.003							
10/18/2016				0.0018 (J)	<0.003			
12/6/2016				<0.003				
12/7/2016					<0.003		<0.003	
12/8/2016	<0.003					<0.003		
12/15/2016			<0.003					
3/21/2017			<0.003	<0.003				
3/22/2017	<0.003						<0.003	
3/23/2017					<0.003	<0.003		
7/11/2017	<0.003		<0.003	<0.003	<0.003			
7/12/2017						<0.003	<0.003	
10/17/2017			<0.003	<0.003	<0.003			
10/18/2017	<0.003							
10/19/2017						<0.003	<0.003	
2/20/2018			<0.003	<0.003	<0.003			
2/21/2018	<0.003					<0.003	<0.003	
4/12/2018		<0.003						
5/23/2018		0.0017 (J)						
6/13/2018		0.0018 (J)						
7/11/2018		0.0024 (J)	<0.003	<0.003	<0.003			
7/12/2018	<0.003					<0.003	<0.003	
8/17/2018		0.00082 (J)						
9/12/2018		<0.003	<0.003	<0.003				
9/13/2018	<0.003				<0.003		<0.003	
9/14/2018						<0.003		
10/4/2018		<0.003				<0.003		
10/24/2018		0.00087 (J)						
10/1/2019					<0.003			
10/2/2019	<0.003	0.00042 (X)		<0.003				
10/3/2019						<0.003	0.00029 (X)	
3/24/2020		0.00037 (J)						
3/25/2020	<0.003			<0.003	<0.003			
3/26/2020						<0.003	0.00042 (J)	
8/25/2020				<0.003	<0.003			
8/26/2020	<0.003	0.0008 (J)				<0.003	0.00031 (J)	
10/6/2020		0.0013 (J)		0.00045 (J)	<0.003			
10/7/2020	<0.003					0.00037 (J)	<0.003	
3/3/2021	<0.003			<0.003	<0.003			
3/4/2021						<0.003	<0.003	
3/8/2021		0.0003 (J)						
9/14/2021		0.0011 (J)			0.0012 (J)			
9/15/2021	<0.003			<0.003		0.005	0.005	
9/16/2021		0.00000 (11				<0.003	<0.003	
1/25/2022		0.00098 (J)						
1/26/2022	<0.003			<0.003	<0.003			
1/27/2022	-0.000	0.0011 ("		10.000	0.001 (1)	<0.003	<0.003	<0.003
8/24/2022	<0.003	0.0011 (J)		<0.003	0.001 (J)	0.00082 (J)	-0.000	
8/25/2022							<0.003	10.000
8/26/2022								<0.003

Constituent: Arsenic (mg/L) Analysis Run 11/21/2022 9:21 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-14	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19	PZ-1D (bg)	PZ-23A
8/30/2016							<0.005	
8/31/2016	<0.005							<0.005
9/1/2016		<0.005						
9/6/2016			<0.005					
9/7/2016				<0.005	<0.005	<0.005		
12/6/2016							<0.005	
12/7/2016	<0.005	<0.005	<0.005					<0.005
12/8/2016				<0.005	<0.005	<0.005		
3/21/2017	<0.005						<0.005	<0.005
3/22/2017		0.0011 (J)	<0.005	0.0007 (J)	<0.005			
3/23/2017						0.0007 (J)		
7/11/2017	<0.005		<0.005				<0.005	<0.005
7/12/2017		0.0006 (J)		<0.005	<0.005	<0.005		
10/17/2017							<0.005	
10/18/2017	<0.005	<0.005	<0.005	<0.005	<0.005			<0.005
10/19/2017						<0.005		
2/20/2018	<0.005						<0.005	<0.005
2/21/2018		0.00089 (J)	<0.005	0.00072 (J)	<0.005	<0.005		
7/11/2018	<0.005						<0.005	<0.005
7/12/2018		<0.005	<0.005			<0.005		
8/15/2018					<0.005			
8/16/2018				0.0007 (J)				
9/12/2018	<0.005						<0.005	
9/13/2018		<0.005	<0.005		<0.005			<0.005
9/14/2018				<0.005		<0.005		
9/10/2019								0.00036 (X)
10/1/2019							<0.005	
10/2/2019	0.00083 (X)	<0.005	<0.005	<0.005				
10/3/2019					<0.005	<0.005		
3/24/2020							<0.005	
3/25/2020	<0.005			<0.005				<0.005
3/26/2020		<0.005	<0.005		<0.005	<0.005		
8/25/2020							<0.005	
8/26/2020	<0.005	<0.005	<0.005	<0.005		<0.005		<0.005
8/27/2020					<0.005			
9/14/2021							<0.005	
9/15/2021	<0.005	<0.005	<0.005					<0.005
9/16/2021				<0.005	<0.005	<0.005		
1/25/2022							<0.005	
1/26/2022	<0.005	<0.005	<0.005					<0.005
1/27/2022				<0.005	<0.005	<0.005		
8/24/2022							<0.005	
8/25/2022	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005

Constituent: Arsenic (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

					. ,			
0/00/0010	PZ-25	PZ-2D (bg)	PZ-2S	PZ-31 (bg)	PZ-32 (bg)	PZ-33	PZ-7D	PZ-57
8/30/2016			<0.005					
9/1/2016							<0.005	
9/8/2016	0.0017 (J)							
10/18/2016				<0.005	<0.005			
12/6/2016				<0.005				
12/7/2016					0.002 (J)		<0.005	
12/8/2016	<0.005					<0.005		
12/15/2016			<0.005					
3/21/2017			<0.005	<0.005				
3/22/2017	0.001 (J)						<0.005	
3/23/2017					<0.005	0.0007 (J)		
7/11/2017	<0.005		<0.005	<0.005	<0.005			
7/12/2017						<0.005	<0.005	
10/17/2017			<0.005	<0.005	<0.005			
10/18/2017	<0.005							
10/19/2017						<0.005	<0.005	
2/20/2018			<0.005	<0.005	<0.005			
2/21/2018	0.00071 (J)					0.00094 (J)	<0.005	
4/12/2018		0.00064 (J)						
5/23/2018		<0.005						
6/13/2018		0.0007 (J)						
7/11/2018		<0.005	<0.005	<0.005	<0.005			
7/12/2018	<0.005					<0.005	<0.005	
8/17/2018	0.000	0.00062 (J)				0.000	0.000	
9/12/2018		<0.005	<0.005	<0.005				
9/13/2018	<0.005	-0.000	-0.000	-0.000	<0.005		<0.005	
9/14/2018	10.003				10.000	<0.005	10.003	
10/4/2018		<0.005				<0.005		
10/24/2018		0.00068 (J)				~0.003		
		0.00008 (3)			<0.00E			
10/1/2019	0.00063 (V)	0.0022 (V)		<0.00E	<0.005			
10/2/2019	0.00063 (X)	0.0022 (X)		<0.005		-0.005	-0.005	
10/3/2019		.0.005				<0.005	<0.005	
3/24/2020		<0.005						
3/25/2020	<0.005			<0.005	<0.005			
3/26/2020						<0.005	<0.005	
8/25/2020				<0.005	<0.005			
8/26/2020	<0.005	<0.005				<0.005	<0.005	
9/14/2021		0.0014 (J)			<0.005			
9/15/2021	<0.005			<0.005				
9/16/2021						<0.005	<0.005	
1/25/2022		0.0014 (J)						
1/26/2022	<0.005			<0.005	<0.005			
1/27/2022						<0.005	<0.005	<0.005
8/24/2022	<0.005	<0.005		<0.005	<0.005	<0.005		
8/25/2022							<0.005	
8/26/2022								<0.005

Constituent: Barium (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

0/00/0010	PZ-14	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19	PZ-1D (bg)	PZ-23A
8/30/2016	0.0353						0.0335	0.0407
8/31/2016	0.0253	0.102						0.0407
9/1/2016		0.103	0.0704					
9/6/2016			0.0794	0.0000	0.0717	0.007		
9/7/2016				0.0823	0.0717	0.067	0.0011	
12/6/2016	0.005	0.0701	0.0000				0.0311	0.0504
12/7/2016	0.065	0.0781	0.0689	0.0000	0.0510	0.0500		0.0581
12/8/2016	0.0070			0.0668	0.0513	0.0522	0.0005	0.0070
3/21/2017	0.0379	0.0500	0.0400	0.0001	0.0070		0.0305	0.0678
3/22/2017		0.0589	0.0423	0.0821	0.0273	0.0504		
3/23/2017	0.000		0.0467			0.0591	0.0005	0.0574
7/11/2017	0.036	0.0612	0.0467	0.0805	0.0360	0.0004	0.0305	0.0574
7/12/2017		0.0613		0.0805	0.0269	0.0604	0.0255	
10/17/2017	0.0247	0.0617	0.0446	0.0776	0.0059		0.0255	0.0251
10/18/2017	0.0247	0.0617	0.0446	0.0776	0.0258	0.0542		0.0351
10/19/2017 2/20/2018	0.03					0.0542	0.027	0.05
2/21/2018	0.03	0.076	0.046	0.073	0.029	0.058	0.027	0.05
	0.027	0.076	0.040	0.073	0.029	0.056	0.022	0.051
7/11/2018 7/12/2018	0.027	0.056	0.043			0.057	0.032	0.051
8/15/2018		0.000	0.043		0.027	0.007		
8/16/2018				0.081	0.027			
9/12/2018	0.022			0.001			0.021	
9/13/2018	0.022	0.048	0.038		0.023		0.021	0.038
9/14/2018		0.040	0.000	0.081	0.020	0.058		0.000
9/10/2019				0.001		0.000		0.029
10/1/2019							0.016	0.020
10/2/2019	0.017	0.049	0.038	0.074				
10/3/2019					0.025	0.057		
3/24/2020							0.015	
3/25/2020	0.021			0.077				0.048
3/26/2020		0.048	0.034		0.023	0.052		
8/25/2020							0.014	
8/26/2020	0.016	0.053	0.036	0.077		0.049		0.039
8/27/2020					0.023			
10/6/2020	0.016		0.034				0.015	0.037
10/7/2020		0.049		0.074	0.023	0.054		
3/3/2021	0.017					0.055	0.015	0.039
3/4/2021		0.047	0.035	0.071	0.023			
9/14/2021							0.013	
9/15/2021	0.014	0.045	0.032					0.037
9/16/2021				0.064	0.022	0.053		
1/25/2022							0.014	
1/26/2022	0.016	0.055	0.034					0.039
1/27/2022				0.072	0.025	0.055		
8/24/2022							0.015	
8/25/2022	0.011	0.057	0.035	0.061	0.026	0.046		0.036

Constituent: Barium (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-25	PZ-2D (bg)	PZ-2S	PZ-31 (bg)	PZ-32 (bg)	PZ-33	PZ-7D	PZ-57
8/30/2016	FZ-23	FZ-2D (bg)	0.0137	FZ-31 (bg)	F2-32 (bg)	FZ-33	FZ-7D	F2-07
			0.0137				0.0117	
9/1/2016	0.100						0.0117	
9/8/2016	0.102			0.0257	0.0249			
10/18/2016				0.0257	0.0248			
12/6/2016				0.113	0.0500		0.0100	
12/7/2016	0.400				0.0506	0.400 ()	0.0133	
12/8/2016	0.102		0.0404			0.162 (o)		
12/15/2016			0.0131					
3/21/2017	0.0054		0.0085	0.0226			0.0444	
3/22/2017	0.0951						0.0114	
3/23/2017					0.0175	0.0753		
7/11/2017	0.102		0.0088	0.0139	0.0161			
7/12/2017						0.0756	0.0097 (J)	
10/17/2017			0.0084	0.0103	0.0158			
10/18/2017	0.0997							
10/19/2017						0.0681	0.0091 (J)	
2/20/2018			0.009	0.015	0.015			
2/21/2018	0.11					0.085	0.0086 (J)	
4/12/2018		<0.01						
5/23/2018		0.0042 (J)						
6/13/2018		0.012						
7/11/2018		0.0056 (J)	0.0069	0.011	0.016			
7/12/2018	0.1					0.076	0.0093 (J)	
8/17/2018		0.0069 (J)						
9/12/2018		0.011	0.0079	0.0087 (J)				
9/13/2018	0.1				0.014		0.0078 (J)	
9/14/2018						0.071		
10/4/2018		0.0066 (J)				0.072		
10/24/2018		0.0059 (J)						
10/1/2019					0.015			
10/2/2019	0.11	0.0046 (X)		0.0067 (X)				
10/3/2019						0.057	0.007 (X)	
3/24/2020		0.0046 (J)						
3/25/2020	0.11			0.0082 (J)	0.015			
3/26/2020						0.057	0.0072 (J)	
8/25/2020				0.0071 (J)	0.015			
8/26/2020	0.1	0.0051 (J)				0.051	0.007 (J)	
10/6/2020		0.0039 (J)		0.0075 (J)	0.015			
10/7/2020	0.11					0.048	0.0061 (J)	
3/3/2021	0.12			0.0069	0.013			
3/4/2021						0.047	0.0061	
3/8/2021		0.0065						
9/14/2021		0.0041 (J)			0.014			
9/15/2021	0.11			0.0066				
9/16/2021						0.039	0.0062	
1/25/2022		0.0037 (J)						
1/26/2022	0.11			0.0075	0.014			
1/27/2022						0.043	0.0068	0.14
8/24/2022	0.1	0.01		0.0063	0.019	0.038		
8/25/2022							0.0058	
8/26/2022								0.064

Constituent: Beryllium (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-14	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19	PZ-1D (bg)	PZ-23A
8/30/2016							<0.0005	
8/31/2016	<0.0005							<0.0005
9/1/2016		<0.0005						
9/6/2016			<0.0005					
9/7/2016				<0.0005	<0.0005	<0.0005		
12/6/2016							<0.0005	
12/7/2016	<0.0005	<0.0005	<0.0005					<0.0005
12/8/2016				<0.0005	<0.0005	<0.0005		
3/21/2017	<0.0005						<0.0005	<0.0005
3/22/2017		<0.0005	<0.0005	<0.0005	<0.0005			
3/23/2017						<0.0005		
7/11/2017	<0.0005		<0.0005				<0.0005	<0.0005
7/12/2017		<0.0005		<0.0005	<0.0005	<0.0005		
10/17/2017							<0.0005	
10/18/2017	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			<0.0005
10/19/2017						<0.0005		
2/20/2018	<0.0005						<0.0005	<0.0005
2/21/2018		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		
7/11/2018	<0.0005						<0.0005	<0.0005
7/12/2018		<0.0005	<0.0005			<0.0005		
8/15/2018					<0.0005			
8/16/2018				<0.0005				
9/12/2018	<0.0005						6.1E-05 (J)	
9/13/2018		<0.0005	<0.0005		<0.0005			<0.0005
9/14/2018				<0.0005		<0.0005		
8/25/2020							<0.0005	
8/26/2020	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005		<0.0005
8/27/2020					<0.0005			
9/14/2021							<0.0005	
9/15/2021	<0.0005	<0.0005	<0.0005					<0.0005
9/16/2021				<0.0005	<0.0005	<0.0005		
1/25/2022							<0.0005	
1/26/2022	<0.0005	<0.0005	<0.0005					<0.0005
1/27/2022				<0.0005	<0.0005	<0.0005		
8/24/2022							<0.0005	
8/25/2022	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005

Constituent: Beryllium (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-25	PZ-2D (bg)	PZ-2S	PZ-31 (bg)	PZ-32 (bg)	PZ-33	PZ-7D	PZ-57
8/30/2016			<0.0005					
9/1/2016							<0.0005	
9/8/2016	<0.0005							
10/18/2016				<0.0005	<0.0005			
12/6/2016				<0.0005				
12/7/2016					<0.0005		<0.0005	
12/8/2016	<0.0005					<0.0005		
12/15/2016			<0.0005					
3/21/2017			<0.0005	<0.0005				
3/22/2017	<0.0005						<0.0005	
3/23/2017					<0.0005	<0.0005		
7/11/2017	<0.0005		<0.0005	<0.0005	<0.0005			
7/12/2017						<0.0005	<0.0005	
10/17/2017			<0.0005	<0.0005	<0.0005			
10/18/2017	<0.0005							
10/19/2017						<0.0005	<0.0005	
2/20/2018			<0.0005	<0.0005	<0.0005			
2/21/2018	<0.0005					<0.0005	<0.0005	
4/12/2018		<0.0005						
5/23/2018		<0.0005						
6/13/2018		<0.0005						
7/11/2018		<0.0005	<0.0005	<0.0005	<0.0005			
7/12/2018	<0.0005					<0.0005	<0.0005	
8/17/2018		<0.0005						
9/12/2018		<0.0005	<0.0005	<0.0005				
9/13/2018	<0.0005				<0.0005		<0.0005	
9/14/2018						<0.0005		
10/4/2018		<0.0005				<0.0005		
10/24/2018		6E-05 (J)						
8/25/2020				<0.0005	<0.0005			
8/26/2020	<0.0005	<0.0005				<0.0005	<0.0005	
9/14/2021		<0.0005			<0.0005			
9/15/2021	<0.0005			<0.0005				
9/16/2021						<0.0005	<0.0005	
1/25/2022		<0.0005						
1/26/2022	<0.0005			<0.0005	<0.0005			
1/27/2022						<0.0005	<0.0005	<0.0005
8/24/2022	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005		
8/25/2022							<0.0005	
8/26/2022								<0.0005

Constituent: Boron (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

					. ,			
	PZ-14	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19	PZ-1D (bg)	PZ-23A
8/30/2016							0.0132 (J)	
8/31/2016	0.0285 (J)							0.166
9/1/2016		0.215						
9/6/2016			0.17					
9/7/2016				0.276	0.355	0.573		
12/6/2016							0.0096 (J)	
12/7/2016	0.0292 (J)	0.224	0.173					0.182
12/8/2016				0.303	0.351	0.588		
3/21/2017	0.0198 (J)						0.0082 (J)	0.172
3/22/2017		0.205	0.218	0.342	0.405			
3/23/2017						0.703		
7/11/2017	0.0137 (J)		0.18				0.0067 (J)	0.149
7/12/2017		0.184		0.278	0.35	0.598		
10/17/2017							0.0083 (J)	
10/18/2017	0.0212 (J)	0.197	0.195	0.277	0.37			0.158
10/19/2017						0.66		
2/20/2018	0.026 (J)						0.024 (J)	0.16
2/21/2018		0.21	0.21	0.29	0.33	0.6		
7/11/2018	0.026 (J)						0.017 (J)	0.17
7/12/2018		0.23	0.21			0.64		
8/15/2018					0.37			
8/16/2018				0.33				
9/12/2018	0.02 (J)						0.012 (J)	
9/13/2018		0.22	0.21		0.37			0.16
9/14/2018				0.31		0.57		
3/26/2019							0.0082	
3/27/2019	0.023		0.21		0.41			0.18
3/28/2019		0.22		0.34		0.7		
9/10/2019								0.15
10/1/2019							0.0064 (X)	
10/2/2019	0.021 (X)	0.17	0.19	0.28				
10/3/2019					0.35	0.52		
3/24/2020							0.013 (J)	
3/25/2020	0.027 (J)			0.33				0.19
3/26/2020		0.21	0.19		0.36	0.6		
10/6/2020	0.026 (J)		0.19				0.015 (J)	0.16
10/7/2020		0.19		0.3	0.39	0.52		
3/3/2021	0.028 (J)					0.5	0.01 (J)	0.16
3/4/2021		0.16	0.2	0.22	0.37			
9/14/2021	0.000 (1)	0.40	0.40				<0.04	0.45
9/15/2021	0.022 (J)	0.16	0.16	0.00	0.04	0.40		0.15
9/16/2021				0.22	0.31	0.46	0.04 (1)	
1/25/2022	0.000 (1)	0.00	0.40				0.01 (J)	0.14
1/26/2022	0.022 (J)	0.22	0.19	0.01	0.4	0.55		0.14
1/27/2022				0.21	0.4	0.55	0.011 / 1)	
8/24/2022	0.032 (1)	0.21	0.24	0.10 (1)	0.20		0.011 (J)	0.17 (1)
8/25/2022	0.032 (J)	0.21	0.24	0.19 (J)	0.39	0.58		0.17 (J)

Constituent: Boron (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

					, , .				
	PZ-25	PZ-2D (bg)	PZ-2S	PZ-31 (bg)	PZ-32 (bg)	PZ-33	PZ-7D	PZ-57	
8/30/2016			0.0168						
9/1/2016							0.379		
9/8/2016	0.204								
10/5/2016						0.404			
10/10/2016						0.401			
10/18/2016				0.0174 (J)	0.0156 (J)				
12/6/2016				0.0133 (J)					
12/7/2016					0.0157 (J)		0.394		
12/8/2016	0.216					0.375			
12/15/2016			0.0163						
3/21/2017			0.0126	0.0103 (J)					
3/22/2017	0.247						0.365		
3/23/2017					0.0103 (J)	0.396			
7/11/2017	0.194		<0.04	<0.04	<0.04				
7/12/2017						0.343	0.267		
10/17/2017			0.0086	0.0116 (J)	0.0142 (J)				
10/18/2017	0.186			.,	. ,				
10/19/2017						0.413	0.326		
2/20/2018			<0.04	0.046 (J)	0.011 (J)				
2/21/2018	0.22			(4)	(-)	0.36	0.29		
4/12/2018		0.016 (J)							
5/23/2018		0.018 (J)							
6/13/2018		0.014 (J)							
7/11/2018		0.017 (J)	0.0099	0.014 (J)	0.014 (J)				
7/12/2018	0.22	(-,		(-)	(-)	0.41	0.32		
8/17/2018		0.015 (J)							
9/12/2018		0.013 (J)	0.012	0.0098 (J)					
9/13/2018	0.2	(4)		(-,	0.013 (J)		0.31		
9/14/2018					(-)	0.38			
10/4/2018		0.016 (J)				0.39			
10/24/2018		0.018 (J)							
3/26/2019		(0)	0.0092	0.0076					
3/27/2019	0.22	0.016			0.012				
3/28/2019	0.22	0.010			0.012	0.39	0.33		
10/1/2019					0.011 (X)				
10/2/2019	0.21	0.011 (X)		0.0084 (X)	,				
10/3/2019		,		()		0.36	0.24		
3/24/2020		0.015 (J)							
3/25/2020	0.21			0.011 (J)	0.016 (J)				
3/26/2020				(-)	(5)	0.38	0.24		
10/6/2020		0.018 (J)		0.011 (J)	0.015 (J)	0.00	5.2 .		
10/7/2020	0.18	0.0.0		0.011(0)	0.0.0	0.35	0.2		
3/3/2021	0.2			0.0087 (J)	0.022 (J)				
3/4/2021	0.2			0.0007 (0)	0.022 (0)	0.34	0.2		
3/8/2021		0.013 (J)				0.04	0.2		
9/14/2021		0.011 (J)			0.012 (J)				
9/15/2021	0.17	0.011(0)		<0.04	0.0.12 (0)				
9/16/2021	· · · ·			5.57		0.31	0.18		
1/25/2022		0.013 (J)				5.51	5.10		
1/26/2022	0.2	3.310 (3)		<0.04	0.01 (J)				
1/27/2022	U. <u>L</u>			-0.0-f	0.01 (0)	0.36	0.23	0.19	
8/24/2022	0.19	0.012 (J)		<0.04	0.022 (J)	0.32	0.20	5.10	
0/2-1/2022	0.10	0.012 (0)		-0.0-f	0.022 (0)	0.02			

Page 2

Time Series

Constituent: Boron (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-25	PZ-2D (bg)	PZ-2S	PZ-31 (bg)	PZ-32 (bg)	PZ-33	PZ-7D	PZ-57	
8/25/2022							0.2		
8/26/2022								0.18	

Constituent: Cadmium (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-14	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19	PZ-1D (bg)	PZ-23A
8/30/2016							<0.0005	
8/31/2016	<0.0005							0.0002 (J)
9/1/2016		<0.0005						
9/6/2016			<0.0005					
9/7/2016				<0.0005	<0.0005	<0.0005		
12/6/2016							<0.0005	
12/7/2016	<0.0005	<0.0005	<0.0005					0.0002 (J)
12/8/2016				<0.0005	<0.0005	<0.0005		
3/21/2017	<0.0005						<0.0005	<0.0005
3/22/2017		<0.0005	<0.0005	<0.0005	<0.0005			
3/23/2017						<0.0005		
7/11/2017	<0.0005		<0.0005				<0.0005	<0.0005
7/12/2017		<0.0005		<0.0005	<0.0005	<0.0005		
10/17/2017							<0.0005	
10/18/2017	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			<0.0005
10/19/2017						<0.0005		
2/20/2018	<0.0005						<0.0005	<0.0005
2/21/2018		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		
7/11/2018	<0.0005						<0.0005	<0.0005
7/12/2018		<0.0005	<0.0005			<0.0005		
8/15/2018					<0.0005			
8/16/2018				<0.0005				
9/12/2018	<0.0005						<0.0005	
9/13/2018		<0.0005	<0.0005		<0.0005			<0.0005
9/14/2018				<0.0005		<0.0005		
8/25/2020							<0.0005	
8/26/2020	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005		<0.0005
8/27/2020					<0.0005			
9/14/2021							<0.0005	
9/15/2021	<0.0005	<0.0005	<0.0005					<0.0005
9/16/2021				<0.0005	<0.0005	<0.0005		
1/25/2022							<0.0005	
1/26/2022	<0.0005	<0.0005	<0.0005					<0.0005
1/27/2022				<0.0005	<0.0005	<0.0005		
8/24/2022							<0.0005	
8/25/2022	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005

Constituent: Cadmium (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-25	PZ-2D (bg)	PZ-2S	PZ-31 (bg)	PZ-32 (bg)	PZ-33	PZ-7D	PZ-57
8/30/2016			<0.0005					
9/1/2016							<0.0005	
9/8/2016	<0.0005							
10/18/2016				<0.0005	<0.0005			
12/6/2016				<0.0005				
12/7/2016					<0.0005		<0.0005	
12/8/2016	<0.0005					<0.0005		
12/15/2016			<0.0005					
3/21/2017			<0.0005	<0.0005				
3/22/2017	<0.0005						<0.0005	
3/23/2017					<0.0005	0.0001 (J)		
7/11/2017	<0.0005		<0.0005	<0.0005	<0.0005			
7/12/2017						<0.0005	<0.0005	
10/17/2017			<0.0005	<0.0005	<0.0005			
10/18/2017	<0.0005							
10/19/2017						<0.0005	<0.0005	
2/20/2018			<0.0005	<0.0005	<0.0005			
2/21/2018	<0.0005					<0.0005	<0.0005	
4/12/2018		<0.0005						
5/23/2018		<0.0005						
6/13/2018		<0.0005						
7/11/2018		<0.0005	<0.0005	<0.0005	<0.0005			
7/12/2018	<0.0005					<0.0005	<0.0005	
8/17/2018		<0.0005						
9/12/2018		<0.0005	<0.0005	<0.0005				
9/13/2018	<0.0005				<0.0005		<0.0005	
9/14/2018						<0.0005		
10/4/2018		<0.0005				<0.0005		
10/24/2018		<0.0005						
8/25/2020				<0.0005	<0.0005			
8/26/2020	<0.0005	<0.0005				<0.0005	<0.0005	
9/14/2021		<0.0005			<0.0005			
9/15/2021	<0.0005			<0.0005				
9/16/2021						<0.0005	<0.0005	
1/25/2022		<0.0005						
1/26/2022	<0.0005			<0.0005	<0.0005			
1/27/2022						<0.0005	<0.0005	<0.0005
8/24/2022	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005		
8/25/2022							<0.0005	
8/26/2022								<0.0005

Constituent: Calcium (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-14	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19	PZ-1D (bg)	PZ-23A
8/30/2016							40.4	
8/31/2016	92.9							132
9/1/2016		74.8						
9/6/2016			74.6					
9/7/2016				100	112	138		
12/6/2016							43.3	
12/7/2016	93.1	74	68.9					125
12/8/2016				102	113	135		
3/21/2017	95						44.1	138
3/22/2017		99.3	77.8	113	122			
3/23/2017						137		
7/11/2017	97.1		77.3				47.4	139
7/12/2017		91.4		110	129	145		
10/17/2017							48.7	
10/18/2017	100	92	84.7	122	125			144
10/19/2017						140		
2/20/2018	93.1						46.8	142
2/21/2018		89	81.8	107	118	145		
7/11/2018	111						65.3 (o)	159
7/12/2018		94.5	85.2			140		
8/15/2018					123			
8/16/2018				113				
9/12/2018	99.3						46.6	
9/13/2018		90.8	80.2		123			136
9/14/2018				108		124		
3/26/2019							43.3	
3/27/2019	105		90.5		134			152
3/28/2019		100		123		164		
9/10/2019								137
10/1/2019							46.8	
10/2/2019	103	101	89.1	115				
10/3/2019					139	125		
3/24/2020							48	
3/25/2020	105			121				157
3/26/2020		103	89.8		138	158		
10/6/2020	111		84				50.5	144
10/7/2020		93.5		112	129	144		
3/3/2021	114	107	00.0	110	100	142	54.7	154
3/4/2021		107	90.9	113	138			
9/14/2021	100	0.4	0.1				51	4.47
9/15/2021	106	94	91	100	105	107		147
9/16/2021				102	135	137	50.4	
1/25/2022		100	00.4				53.1	150
1/26/2022	114	100	90.1	104	140	100		152
1/27/2022				104	142	133	45.0	
8/24/2022	100	00.7		00.5		450	45.8	445
8/25/2022	108	96.7	92	99.5	141	156		145

Constituent: Calcium (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-25	PZ-2D (bg)	PZ-2S	PZ-31 (bg)	PZ-32 (bg)	PZ-33	PZ-7D	PZ-57	
8/30/2016			45						
9/1/2016							101		
9/8/2016	85.2								
10/18/2016				88.3	57.2				
12/6/2016				83.4					
12/7/2016					52.8		103		
12/8/2016	84.5					117			
12/15/2016			45						
3/21/2017			45.9	94					
3/22/2017	85.3						111		
3/23/2017					59.1	122			
7/11/2017	93		50.7	86	59.7				
7/12/2017						124	119		
10/17/2017			49.8	91.6	64.9				
10/18/2017	87.6								
10/19/2017						118	107		
2/20/2018			44.4	86.5	64.1				
2/21/2018	93.9					122	118		
4/12/2018		<25							
5/23/2018		17.6 (J)							
6/13/2018		14.3							
7/11/2018		15.6	44.9	95.4	60.4				
7/12/2018	87.1					129	121		
8/17/2018		27							
9/12/2018		26.9	46.6	86					
9/13/2018	85.8	20.0		00	58.7		116		
9/14/2018	00.0				00.7	123	110		
10/4/2018		25				126			
10/24/2018		23.8				120			
3/26/2019		20.0	44.6	87.3					
3/27/2019	95.2	26.1	44.0	07.0	54.6				
3/28/2019	00.2	20			00	117	124		
10/1/2019					64.3		.2.		
10/2/2019	92.3	21		95.5	04.0				
10/3/2019	32.3	21		55.5		110	127		
3/24/2020		26.5				110	127		
3/25/2020	97.5	20.0		95.8	66.6				
3/26/2020	37.3			33.0	00.0	122	122		
10/6/2020		22.7		98.8	62.8	122	122		
10/7/2020	84.2	22.7		30.0	02.0	94.7	109		
3/3/2021	96.8			104	64.8 (M1)	54.7	103		
3/4/2021	30.0			104	04.8 (WT)	106	122		
3/8/2021		41.7				100	122		
9/14/2021		13.4			67.8				
9/14/2021	84.4	13.4		101	07.8				
	04.4			101		02	100		
9/16/2021 1/25/2022		20.7				92	109		
	00.0	20.7		100	CO O				
1/26/2022	90.2			102	69.2	02.5	110	106	
1/27/2022	97.6	27.2		05.2	67.1	92.5	112	100	
8/24/2022	87.6	27.3		95.2	67.1	96.5	107		
8/25/2022							107	05.5	
8/26/2022								95.5	

Constituent: Chloride (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell	Client: Southern Company	Data: Mitchell Ash Pond CCR

	PZ-14	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19	PZ-1D (bg)	PZ-23A
8/30/2016							3.1	
8/31/2016	4.9							5.1
9/1/2016		7						
9/6/2016			7.9					
9/7/2016				7.7	6.9	6.8		
12/6/2016							3.4	
12/7/2016	4.8	7	7.6					5.2
12/8/2016				7.2	6.8	6.6		
3/21/2017	4.9						2.9	5.5
3/22/2017		7.4	7.7	7.3	6.8			
3/23/2017						6.6		
7/11/2017	5		8.1				3.4	5.7
7/12/2017		8		7.4	6.7	6.6		
10/17/2017							3.3	
10/18/2017	5.1	7.8	8.2	7.6	6.8			5.1
10/19/2017						6.5		
2/20/2018	5.1						3.3	5.5
2/21/2018		7.2	7.3	7.4	7.1	7.6		
7/11/2018	4.9						2.9	5.1
7/12/2018		7.5	7.2			6.3		
8/15/2018					6.7			
8/16/2018				7.5				
9/12/2018	4.8						2.8	
9/13/2018		6.8	7.3		6.7			5
9/14/2018				7.7		6.1		
3/26/2019							3.3	
3/27/2019	5.2		7.3		6.5			4.7
3/28/2019		7.4		7.3		6.4		
9/10/2019								3.8
10/1/2019							3.6	
10/2/2019	5.4	8	7.7	7.9				
10/3/2019					7	5.6		
3/24/2020							2.8	
3/25/2020	4.2			6.1				6.4
3/26/2020		7	7		5.7	5.4		
10/6/2020	4.4		6.4				3	7
10/7/2020		6.6		5.7	5	4.5		
3/3/2021	4.2					4	2.8	4.7
3/4/2021		6.3	5.9	4.2	5.1			
9/14/2021							2.9	
9/15/2021	3.9	5.8	5.6					2.8
9/16/2021				4.2	4.7	3.5		
1/25/2022							2.9	
1/26/2022	4.4	6.3	6.1					3.6
1/27/2022				3.8	4.9	3.7		
8/24/2022							2.6	
8/25/2022	4.6	6.4	6.3	3.9	4.6	4.6		3.2

Constituent: Chloride (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

		PZ-25	PZ-2D (bg)	PZ-2S	PZ-31 (bg)	PZ-32 (bg)	PZ-33	PZ-7D	PZ-57
8/30	/2016			2.9					
9/1/2	2016							7.4	
9/8/2	2016	4							
10/1	8/2016				4.5	3.5			
12/6	/2016				5				
12/7	/2016					3.2		7.6	
12/8	/2016	3.6					6.9		
12/1	5/2016			0.05					
	/2017			2.8	4.3				
	/2017	3.3						7.2	
	/2017					2.9	6.2		
	/2017	3		3.1	4.7	3.1			
	/2017						6	7.3	
	7/2017			3	4.6	3			
	8/2017	2.9							
	9/2017						6.4	7.4	
	/2018			2.9	4.4	3			
	/2018	2.9					6.9	7.6	
	/2018	2.0	2.6				0.0	7.0	
	/2018		2.5						
	/2018		2.5						
	/2018		2.6	2.7	4	2.8			
	/2018	2.6	2.0	2.7	7	2.0	7.3	7.1	
	/2018	2.0	2.6				7.5	7.1	
	/2018		2.3	2.4	3.7				
	/2018	2.3	2.3	2.4	3.7	2.2		6.6	
	/2018	2.3				2.2	7.3	0.0	
	/2018		2.7				7.3		
	4/2018		2.8				/		
			2.0	2.9	3.8				
	/2019 /2019	2.4	2.5	2.9	3.6	3.1			
	/2019	2.4	2.5			3.1	4.8	6.4	
						2.1	4.0	0.4	
	/2019	2.6	2.7		4.2	3.1			
	/2019	2.6	2.7		4.3		4.1	F.0.	
	/2019		2.2				4.1	5.9	
	/2020	1.0	2.2		2	2.2			
	/2020	1.6			3	2.2	2.0	4.0	
	/2020		2.2		2.4	2.2	2.9	4.8	
	/2020	1.0	2.3		3.4	2.3	0	2.0	
	/2020	1.8			2.1	2.2	2	3.9	
3/3/2		1.6			3.1	2.2	1.0	4	
3/4/2			2.4				1.8	4	
3/8/2			2.4						
	/2021		2.5			2.2			
	/2021	1.8			2.8				
	/2021		2.4				1.5	3.3	
	/2022	4.7	2.4			0.4			
	/2022	1.7			3.2	2.4	1.0	2.0	2.2
	/2022	1.0	0.1			0.7	1.8	3.8	3.2
	/2022	1.8	2.1		3	2.7	1.8		
	/2022							4.1	0.4
8/26	/2022								2.4

Constituent: Chromium (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

					. ,			
	PZ-14	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19	PZ-1D (bg)	PZ-23A
8/30/2016							0.0039 (J)	
8/31/2016	<0.005							<0.005
9/1/2016		<0.005						
9/6/2016			<0.005					
9/7/2016				<0.005	<0.005	<0.005		
12/6/2016							0.0047 (J)	
12/7/2016	<0.005	<0.005	<0.005					<0.005
12/8/2016				<0.005	<0.005	<0.005		
3/21/2017	<0.005						0.0047 (J)	0.0009 (J)
3/22/2017		<0.005	0.0008 (J)	<0.005	<0.005			
3/23/2017						<0.005		
7/11/2017	<0.005		<0.005				0.0054 (J)	0.0016 (J)
7/12/2017		<0.005		<0.005	<0.005	<0.005		
10/17/2017							0.0053 (J)	
10/18/2017	<0.005	<0.005	<0.005	<0.005	<0.005			0.0019 (J)
10/19/2017						<0.005		
2/20/2018	<0.005						0.0029 (J)	<0.005
2/21/2018		<0.005	<0.005	<0.005	<0.005	<0.005		
7/11/2018	<0.005						0.0057 (J)	0.0021 (J)
7/12/2018		<0.005	<0.005			<0.005		
8/15/2018					<0.005			
8/16/2018				<0.005				
9/12/2018	<0.005						0.0033 (J)	
9/13/2018		<0.005	<0.005		<0.005			0.0022 (J)
9/14/2018				<0.005		<0.005		
9/10/2019								0.0044 (X)
10/1/2019							0.0022 (X)	
10/2/2019	<0.005	<0.005	0.00044 (X)	<0.005				
10/3/2019					<0.005	<0.005		
3/24/2020							0.0036 (J)	
3/25/2020	0.0013 (J)			<0.005				0.0012 (J)
3/26/2020		<0.005	0.0013 (J)		0.00056 (J)	0.00073 (J)		
8/25/2020							0.003 (J)	
8/26/2020	0.0011 (J)	<0.005	0.00087 (J)	<0.005		<0.005		0.0014 (J)
8/27/2020					<0.005			
10/6/2020	0.00098 (J)		0.0011 (J)				0.0021 (J)	0.0015 (J)
10/7/2020		<0.005		<0.005	<0.005	<0.005		
3/3/2021	0.00097 (J)					<0.005	0.0018 (J)	0.0015 (J)
3/4/2021		<0.005	0.0012 (J)	<0.005	<0.005			
9/14/2021							0.002 (J)	
9/15/2021	0.0014 (J)	<0.005	0.0011 (J)					0.0019 (J)
9/16/2021				<0.005	<0.005	<0.005		
1/25/2022							0.0025 (J)	
1/26/2022	0.0012 (J)	<0.005	0.0013 (J)					0.0028 (J)
1/27/2022				<0.005	<0.005	<0.005		
8/24/2022							0.0025 (J)	
8/25/2022	0.0014 (J)	<0.005	0.0012 (J)	<0.005	<0.005	<0.005		0.0022 (J)

Constituent: Chromium (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-25	PZ-2D (bg)	PZ-2S	PZ-31 (bg)	PZ-32 (bg)	PZ-33	PZ-7D	PZ-57
8/30/2016			0.0021					
9/1/2016							<0.005	
9/8/2016	<0.005							
10/18/2016				<0.005	<0.005			
12/6/2016				<0.005				
12/7/2016					<0.005		0.003 (J)	
12/8/2016	<0.005					<0.005		
12/15/2016			0.0024					
3/21/2017			0.0029	0.0006 (J)				
3/22/2017	<0.005						0.0005 (J)	
3/23/2017					0.0005 (J)	0.0017 (J)		
7/11/2017	<0.005		0.0033	0.0006 (J)	<0.005			
7/12/2017						<0.005	<0.005	
10/17/2017			0.004	0.0008 (J)	0.0005 (J)			
10/18/2017	<0.005							
10/19/2017						<0.005	0.0005 (J)	
2/20/2018			0.003	<0.005	<0.005			
2/21/2018	<0.005					<0.005	<0.005	
4/12/2018		0.01						
5/23/2018		0.011						
6/13/2018		0.011						
7/11/2018		0.0096 (J)	0.0039	<0.005	<0.005			
7/12/2018	<0.005					<0.005	<0.005	
8/17/2018		0.0078 (J)						
9/12/2018		0.0056 (J)	0.0029	<0.005				
9/13/2018	<0.005				<0.005		<0.005	
9/14/2018						<0.005		
10/4/2018		0.0057 (J)				<0.005		
10/24/2018		0.0058 (J)						
10/1/2019					<0.005			
10/2/2019	<0.005	0.0049 (X)		0.00043 (X)				
10/3/2019						<0.005	0.0004 (X)	
3/24/2020		0.0047 (J)						
3/25/2020	<0.005			0.0013 (J)	0.00086 (J)			
3/26/2020						<0.005	0.0016 (J)	
8/25/2020				0.0011 (J)	0.001 (J)			
8/26/2020	<0.005	0.004 (J)				<0.005	0.0011 (J)	
10/6/2020		0.0065 (J)		0.0013 (J)	0.00072 (J)			
10/7/2020	<0.005					<0.005	0.0014 (J)	
3/3/2021	<0.005			0.0015 (J)	<0.005			
3/4/2021						<0.005	0.0024 (J)	
3/8/2021		0.0028 (J)						
9/14/2021		0.0084			<0.005			
9/15/2021	<0.005			0.0014 (J)				
9/16/2021				. ,		<0.005	0.0025 (J)	
1/25/2022		0.0098					. ,	
1/26/2022	<0.005			0.0015 (J)	<0.005			
1/27/2022				\-'\		<0.005	0.0034 (J)	<0.005
8/24/2022	<0.005	0.0066		0.0015 (J)	<0.005	<0.005	ν-,	
8/25/2022				. ,			0.0024 (J)	
8/26/2022							ν-,	<0.005

Constituent: Cobalt (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

8/30/2016	PZ-14	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19	PZ-1D (bg) <0.005	PZ-23A
8/31/2016	<0.005							<0.005
9/1/2016		0.0012 (J)						
9/6/2016		(-,	0.0005 (J)					
9/7/2016			(-,	0.0011 (J)	0.0011 (J)	0.0012 (J)		
12/6/2016				(3)	(3)	(,,	<0.005	
12/7/2016	0.002 (J)	0.0005 (J)	<0.005					0.0008 (J)
12/8/2016	()	.,		0.0006 (J)	<0.005	0.0009 (J)		, ,
3/21/2017	<0.005			.,		.,	<0.005	<0.005
3/22/2017		0.0005 (J)	<0.005	0.0006 (J)	<0.005			
3/23/2017						<0.005		
7/11/2017	0.0003 (J)		<0.005				<0.005	<0.005
7/12/2017		0.0004 (J)		0.0005 (J)	<0.005	<0.005		
10/17/2017							<0.005	
10/18/2017	<0.005	0.0004 (J)	<0.005	0.0005 (J)	<0.005			<0.005
10/19/2017						<0.005		
2/20/2018	<0.005						<0.005	<0.005
2/21/2018		<0.005	<0.005	<0.005	<0.005	<0.005		
7/11/2018	<0.005						<0.005	<0.005
7/12/2018		<0.005	<0.005			<0.005		
8/15/2018					<0.005			
8/16/2018				<0.005				
9/12/2018	<0.005						<0.005	
9/13/2018		<0.005	<0.005		<0.005			<0.005
9/14/2018				<0.005		<0.005		
9/10/2019								<0.005
10/1/2019							<0.005	
10/2/2019	<0.005	<0.005	<0.005	<0.005				
10/3/2019					<0.005	<0.005		
3/24/2020							<0.005	
3/25/2020	<0.005			0.00032 (J)				0.0003 (J)
3/26/2020		<0.005	<0.005		<0.005	<0.005		
8/25/2020							<0.005	
8/26/2020	<0.005	<0.005	<0.005	<0.005		<0.005		0.00058 (J)
8/27/2020					<0.005			
10/6/2020	<0.005		<0.005				<0.005	0.00067 (J)
10/7/2020		<0.005		<0.005	<0.005	<0.005		
3/3/2021	<0.005					<0.005	<0.005	0.00049 (J)
3/4/2021		<0.005	<0.005	<0.005	<0.005			
9/14/2021							<0.005	
9/15/2021	<0.005	<0.005	<0.005					<0.005
9/16/2021				<0.005	<0.005	<0.005		
1/25/2022							<0.005	
1/26/2022	<0.005	<0.005	<0.005					<0.005
1/27/2022				<0.005	<0.005	<0.005		
8/24/2022							<0.005	
8/25/2022	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005

Constituent: Cobalt (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-25	PZ-2D (bg)	PZ-2S	PZ-31 (bg)	PZ-32 (bg)	PZ-33	PZ-7D	PZ-57
8/30/2016		(0)	<0.005	(0)	(0)			
9/1/2016							<0.005	
9/8/2016	0.0008 (J)							
10/18/2016				<0.005	<0.005			
12/6/2016				0.0018 (J)				
12/7/2016				. ,	0.0015 (J)		<0.005	
12/8/2016	<0.005				, ,	0.0041 (J)		
12/15/2016			<0.005			.,		
3/21/2017			<0.005	<0.005				
3/22/2017	0.001 (J)						<0.005	
3/23/2017					<0.005	0.0008 (J)		
7/11/2017	0.001 (J)		<0.005	<0.005	<0.005			
7/12/2017						0.0007 (J)	<0.005	
10/17/2017			<0.005	<0.005	<0.005			
10/18/2017	0.0011 (J)							
10/19/2017						0.0005 (J)	<0.005	
2/20/2018			<0.005	<0.005	<0.005			
2/21/2018	0.00075 (J)					0.0012 (J)	<0.005	
4/12/2018		<0.005						
5/23/2018		<0.005						
6/13/2018		<0.005						
7/11/2018		<0.005	<0.005	<0.005	<0.005			
7/12/2018	0.0008 (J)					0.00053 (J)	<0.005	
8/17/2018		<0.005						
9/12/2018		<0.005	<0.005	<0.005				
9/13/2018	0.001 (J)				<0.005		<0.005	
9/14/2018						<0.005		
10/4/2018		<0.005				<0.005		
10/24/2018		<0.005						
10/1/2019					<0.005			
10/2/2019	0.0017 (X)	<0.005		<0.005				
10/3/2019						<0.005	<0.005	
3/24/2020		<0.005						
3/25/2020	0.0018 (J)			<0.005	<0.005			
3/26/2020						<0.005	<0.005	
8/25/2020				<0.005	<0.005			
8/26/2020	0.0016 (J)	<0.005				<0.005	<0.005	
10/6/2020		<0.005		<0.005	<0.005			
10/7/2020	0.0014 (J)					<0.005	<0.005	
3/3/2021	0.0016 (J)			<0.005	<0.005			
3/4/2021						<0.005	<0.005	
3/8/2021		<0.005						
9/14/2021		<0.005			<0.005			
9/15/2021	0.002 (J)			<0.005				
9/16/2021						<0.005	<0.005	
1/25/2022		<0.005						
1/26/2022	0.0016 (J)			<0.005	<0.005			
1/27/2022						<0.005	<0.005	0.0043 (J)
8/24/2022	0.0016 (J)	<0.005		<0.005	<0.005	<0.005		
8/25/2022							<0.005	
8/26/2022								0.0012 (J)

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 11/21/2022 9:22 AM
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-14	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19	PZ-1D (bg)	PZ-23A
8/30/2016							0.503 (U)	
8/31/2016	1.77							1.85
9/1/2016		1.19						
9/6/2016			1.12					
9/7/2016				1.06 (U)	1.51	1.22		
12/6/2016							0.302 (U)	
12/7/2016	0.672 (U)	1.88	1.37					0.844 (U)
12/8/2016				1.3	1.29	1.69		
3/21/2017	0.33 (U)						0.526 (U)	0.832 (U)
3/22/2017		0.617 (U)	0.435 (U)	0.566 (U)	0.799 (U)			
3/23/2017						1.07		
7/11/2017	0.701 (U)		0.76 (U)				0.676 (U)	0.824 (U)
7/12/2017		0.674 (U)		0.856 (U)	0.4 (U)	0.849 (U)		
10/17/2017							0.201 (U)	
10/18/2017	0.808 (U)	0.844 (U)	0.847 (U)	0.957	0.613 (U)			1.19
10/19/2017						0.398 (U)		
2/20/2018	2.12						1.07 (U)	0.975 (U)
2/21/2018		0.842 (U)	0.373 (U)	1.4	0.736 (U)	1.03 (U)		
7/11/2018	0.232 (U)						0.825 (U)	1.29
7/12/2018		0.552 (U)	0.408 (U)			1.28 (U)		
9/12/2018	0.532 (U)						0.317 (U)	
9/13/2018		0.662 (U)	0.472 (U)		0.708 (U)			0.765 (U)
9/14/2018				1.16		0.74 (U)		
9/10/2019								0.575 (U)
10/1/2019							0.953 (U)	
10/2/2019	0.915 (U)	1 (U)	0.65 (U)	1.34 (U)				
10/3/2019					2.07	1.9		
3/24/2020							2.23	
3/25/2020	0.694 (U)			0.385 (U)				1.39
3/26/2020		0.863 (U)	0.522 (U)		1.05	1.66		
8/25/2020							0.777 (U)	
8/26/2020	0.115 (U)	0.681 (U)	0.499 (U)	1.62		0.703 (U)		0.774 (U)
10/6/2020	0.265 (U)		1.12 (U)				0.996 (U)	1.24 (U)
10/7/2020		1.22 (U)		0.432 (U)	0.365 (U)	0.893		
3/3/2021	0.328 (U)					0.469 (U)	0.915 (U)	1.01 (U)
3/4/2021		0.674 (U)	0.404 (U)	0.734 (U)	0.498 (U)			
9/14/2021							0.532 (U)	
9/15/2021	0.872 (U)	0.729 (U)	0.721 (U)					0.742 (U)
9/16/2021				0.377 (U)	0.681 (U)	1.4		
1/25/2022							0.32 (U)	
1/26/2022	0.185 (U)	0.879 (U)	0.117 (U)					0.76 (U)
1/27/2022				0.314 (U)	0.418 (U)	0.255 (U)		
8/24/2022							0.196 (U)	
8/25/2022	0.453 (U)	1.05	0.728 (U)	0.98 (U)	0.0434 (U)	0.937		0.396 (U)

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 11/21/2022 9:22 AM
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-25	PZ-2D (bg)	PZ-2S	PZ-31 (bg)	PZ-32 (bg)	PZ-33	PZ-7D	PZ-57
8/30/2016			1.13					
9/1/2016							0.88 (U)	
9/8/2016	1.41						,	
10/18/2016				0.0311 (U)	0.0333 (U)			
12/6/2016				0.301 (U)	(-)			
12/7/2016				0.00 . (0)	0.507 (U)		0.179 (U)	
12/8/2016	1.39					0.968 (U)	(-)	
12/15/2016			1.88			(2)		
3/21/2017			1.07	0.506 (U)				
3/22/2017	0.852 (U)			0.000 (0)			0.279 (U)	
3/23/2017	0.002 (0)				0.378 (U)	0.444 (U)	0.270 (0)	
7/11/2017	1.04		1.02	0.0701 (U)	1.04	0.111 (0)		
7/12/2017	1.04		1.02	0.0701 (0)	1.04	0.814 (U)	0.125 (U)	
10/17/2017			1.17	0.412 (U)	0.779 (U)	0.011(0)	0.120 (0)	
10/18/2017			,	0.1.12 (0)	0.770 (0)			
10/19/2017						0.748 (U)	0.329 (U)	
2/20/2018			1.11	0.81 (U)	0.906 (U)	0.740 (0)	0.020 (0)	
2/21/2018	0.863 (U)			0.01 (0)	0.500 (5)	1.05 (U)	0.504 (U)	
4/12/2018	0.003 (0)	0.774 (U)				1.03 (0)	0.304 (0)	
5/23/2018		0.774 (U) 0.301 (U)						
6/13/2018		0.501 (U)						
7/11/2018		1.66	1.2	0.749 (U)	0.505 (11)			
7/11/2018	1.40	1.00	1.2	0.749 (0)	0.505 (U)	0.751 (11)	0.100 (11)	
9/12/2018	1.42	0.217 (11)	1.07	0.2 (U)		0.751 (U)	0.188 (U)	
9/13/2018	0.766 (U)	0.217 (U)	1.07	0.2 (0)	0.212 (11)		0.0542 (U)	
	0.766 (U)				0.313 (U)	1.01.(1)	0.0542 (0)	
9/14/2018 10/4/2018		1.14				1.01 (U) 1.05		
10/4/2018		0.441 (U)				1.05		
10/24/2018		0.441 (0)			1.01 (U)			
10/1/2019	1.48	0.712 (11)		0.0883 (U)	1.01 (0)			
10/2/2019	1.40	0.712 (U)		0.0863 (U)		1.62 (U)	1.37	
3/24/2020		0.898 (U)				1.02 (0)	1.37	
	0.01 (11)	0.898 (0)		1.70	0.222 (11)			
3/25/2020	0.91 (U)			1.79	0.333 (U)	0.472 (11)	0.42 (11)	
3/26/2020 8/25/2020				0.405 (U)	0.24 (11)	0.473 (U)	0.43 (U)	
8/26/2020	0.95 (U)			0.405 (0)	0.34 (U)	0.782 (11)	0.572 (11)	
	0.95 (0)	0.020 (11)		0.276 (11)	0.271 (11)	0.782 (U)	0.572 (U)	
10/6/2020 10/7/2020	1.01.(11)	0.929 (U)		0.276 (U)	0.371 (U)	0.442 (11)	0.222 (11)	
3/3/2021	1.01 (U)			0.007 (11)	0.836 (11)	0.442 (U)	0.232 (U)	
3/4/2021	0.545 (U)			0.907 (U)	0.836 (U)	1.02 (11)	0.520 (11)	
3/8/2021		0.475 (11)				1.03 (U)	0.529 (U)	
9/14/2021		0.475 (U)			0.68 (11)			
9/15/2021	1.07 (11)	0.972 (U)		0.0517 (11)	0.68 (U)			
	1.07 (U)			0.0517 (U)		0.404.(1)	0.202 (11)	
9/16/2021		0.146 (11)				0.184 (U)	0.382 (U)	
1/25/2022	0.000.410	0.146 (U)		0.0006 (1.1)	0.440.415			
1/26/2022	0.282 (U)			0.0386 (U)	0.449 (U)	0.250 (11)	0.215 (1)	1.12
1/27/2022	0.764 (11)	0.0000 (11)		0.704 (11)	0.242.415	0.259 (U)	0.315 (U)	1.13
8/24/2022 8/25/2022	0.764 (U)	0.0268 (U)		0.781 (U)	0.342 (U)	0.764 (U)	0.771 (11)	
8/25/2022							0.771 (U)	0.499 (1)
0/20/2022								0.488 (U)

Constituent: Fluoride (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-14	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19	PZ-1D (bg)	PZ-23A
8/30/2016							0.06 (J)	
8/31/2016	0.13 (J)							0.13 (J)
9/1/2016		0.06 (J)						
9/6/2016			0.09 (J)					
9/7/2016				0.03 (J)	0.12 (J)	0.15 (J)		
12/6/2016							0.06 (J)	
12/7/2016	0.07 (J)	0.09 (J)	0.09 (J)					0.13 (J)
12/8/2016				0.18 (J)	0.18 (J)	0.12 (J)		
3/21/2017	<0.1						0.004 (J)	0.05 (J)
3/22/2017		0.11 (J)	0.04 (J)	0.09 (J)	0.08 (J)			
3/23/2017						0.14 (J)		
7/11/2017	0.05 (J)		0.05 (J)				0.05 (J)	0.05 (J)
7/12/2017		0.23 (J)		0.21 (J)	0.17 (J)	0.07 (J)		
10/17/2017							<0.1	
10/18/2017	0.11 (J)	0.19 (J)	0.04 (J)	0.24 (J)	0.06 (J)			<0.1
10/19/2017						<0.1		
2/20/2018	0.04 (J)						0.098 (J)	0.3 (J)
2/21/2018		0.093 (J)	<0.1	0.24 (J)	0.086 (J)	0.37		
7/11/2018	<0.1						<0.1	0.077 (J)
7/12/2018		<0.1	<0.1			0.17 (J)		
8/15/2018					<0.1			
8/16/2018				0.073 (J)				
9/12/2018	<0.1						0.034 (J)	
9/13/2018		0.15 (J)	<0.1		<0.1			<0.1
9/14/2018				<0.1		<0.1		
3/26/2019							<0.1	
3/27/2019	<0.1		<0.1		<0.1			<0.1
3/28/2019		0.1		0.15		0.074		
9/10/2019								<0.1
10/1/2019							0.062 (X)	
10/2/2019	0.056 (X)	0.075 (X)	0.053 (X)	0.063 (X)				
10/3/2019					0.043 (X)	0.084 (X)		
3/24/2020							<0.1	
3/25/2020	<0.1			<0.1				0.066 (J)
3/26/2020		0.056 (J)	<0.1		<0.1	0.077 (J)		
8/25/2020							<0.1	
8/26/2020	<0.1	<0.1	<0.1	<0.1		0.062 (J)		0.057 (J)
8/27/2020					<0.1			
10/6/2020	<0.1		<0.1				<0.1	0.052 (J)
10/7/2020		<0.1		<0.1	<0.1	0.064 (J)		
3/3/2021	<0.1					0.058 (J)	<0.1	<0.1
3/4/2021		<0.1	<0.1	<0.1	<0.1			
9/14/2021							<0.1	
9/15/2021	<0.1	<0.1	<0.1					<0.1
9/16/2021				0.052 (J)	<0.1	0.067 (J)		
1/25/2022							<0.1	
1/26/2022	<0.1	<0.1	<0.1					<0.1
1/27/2022				<0.1	<0.1	0.056 (J)		
8/24/2022							0.08 (J)	
8/25/2022	0.051 (J)	0.074 (J)	0.058 (J)	0.078 (J)	0.052 (J)	0.086 (J)		0.074 (J)

Constituent: Fluoride (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-25	PZ-2D (bg)	PZ-2S	PZ-31 (bg)	PZ-32 (bg)	PZ-33	PZ-7D	PZ-57
8/30/2016			0.09					
9/1/2016							<0.1	
9/8/2016	0.25 (J)							
10/18/2016				0.16 (J)	0.11 (J)			
12/6/2016				0.15 (J)				
12/7/2016					0.07 (J)		0.15 (J)	
12/8/2016	0.22 (J)					0.21 (J)		
12/15/2016			<0.1					
3/21/2017			<0.1	0.02 (J)				
3/22/2017	0.16 (J)			, ,			0.09 (J)	
3/23/2017					<0.1	0.18 (J)		
7/11/2017	0.23 (J)		0.02	0.06 (J)	0.02 (J)			
7/12/2017	. ,			, ,	, ,	0.06 (J)	0.02 (J)	
10/17/2017			0.06	0.05 (J)	<0.1			
10/18/2017	0.28 (J)							
10/19/2017	. ,					<0.1	<0.1	
2/20/2018			0.17	0.21 (J)	<0.1			
2/21/2018	0.29 (J)			,		0.039 (J)	0.045 (J)	
4/12/2018	,	<0.1				. ,	()	
5/23/2018		0.063 (J)						
6/13/2018		0.11 (J)						
7/11/2018		<0.1	<0.1	0.087 (J)	<0.1			
7/12/2018	0.21 (J)			,		<0.1	<0.1	
8/17/2018	()	<0.1						
9/12/2018		0.093 (J)	<0.1	0.049 (J)				
9/13/2018	0.22 (J)	.,			<0.1		<0.1	
9/14/2018	()					<0.1		
10/4/2018		0.15 (J)				0.15 (J)		
10/24/2018		0.29 (J)						
3/26/2019			<0.1	<0.1				
3/27/2019	0.37	0.04			<0.1			
3/28/2019						<0.1	<0.1	
10/1/2019					0.042 (X)			
10/2/2019	0.16 (X)	0.11 (X)		0.057 (X)				
10/3/2019						0.06 (X)	0.041 (X)	
3/24/2020		0.051 (J)						
3/25/2020	0.13 (J)			<0.1	<0.1			
3/26/2020						<0.1	<0.1	
8/25/2020				<0.1	<0.1			
8/26/2020	0.14	0.057 (J)				<0.1	<0.1	
10/6/2020		0.073 (J)		<0.1	<0.1			
10/7/2020	0.13					<0.1	<0.1	
3/3/2021	0.12			<0.1	<0.1			
3/4/2021						<0.1	<0.1	
3/8/2021		<0.1						
9/14/2021		0.089 (J)			<0.1			
9/15/2021	0.14			<0.1				
9/16/2021						<0.1	<0.1	
1/25/2022		0.071 (J)						
1/26/2022	0.11			<0.1	<0.1			
1/27/2022						<0.1	<0.1	0.057 (J)
8/24/2022	0.15	0.088 (J)		0.069 (J)	0.058 (J)	0.092 (J)		

Constituent: Fluoride (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-25	PZ-2D (bg)	PZ-2S	PZ-31 (bg)	PZ-32 (bg)	PZ-33	PZ-7D	PZ-57
8/25/2022							0.056 (J)	
8/26/2022								0.083 (J)

Constituent: Lead (mg/L) Analysis Run 11/21/2022 9:22 AM

					3 / - /			
			Plant Mitche	ell Client: So	uthern Company	Data: Mitchell Ash Po	ond CCF	
	PZ-14	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19	F	
8/30/2016							<	
8/31/2016	<0.001							

8/30/2016	PZ-14	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19	PZ-1D (bg) <0.001	PZ-23A
8/31/2016	<0.001						<0.001	<0.001
	<0.001	<0.001						<0.001
9/1/2016		<0.001	-0.001					
9/6/2016			<0.001	0.004	.0.004	0.004		
9/7/2016				<0.001	<0.001	<0.001	0.004	
12/6/2016							<0.001	
12/7/2016	<0.001	<0.001	<0.001					<0.001
12/8/2016				<0.001	<0.001	<0.001		
3/21/2017	<0.001	55 05 (D	.0.004	.0.004	.0.004		<0.001	<0.001
3/22/2017		5E-05 (J)	<0.001	<0.001	<0.001			
3/23/2017						<0.001		
7/11/2017	<0.001		<0.001				<0.001	<0.001
7/12/2017		<0.001		<0.001	<0.001	<0.001		
10/17/2017							0.0001 (J)	
10/18/2017	<0.001	<0.001	<0.001	<0.001	<0.001			<0.001
10/19/2017						<0.001		
2/20/2018	<0.001						<0.001	<0.001
2/21/2018		<0.001	<0.001	<0.001	0.00043 (J)	<0.001		
7/11/2018	<0.001						<0.001	<0.001
7/12/2018		<0.001	<0.001			<0.001		
8/15/2018					<0.001			
8/16/2018				<0.001				
9/12/2018	<0.001						<0.001	
9/13/2018		<0.001	<0.001		<0.001			<0.001
9/14/2018				<0.001		<0.001		
9/10/2019								<0.001
10/1/2019							<0.001	
10/2/2019	<0.001	<0.001	8.1E-05 (X)	<0.001				
10/3/2019					<0.001	<0.001		
3/24/2020							6.2E-05 (J)	
3/25/2020	<0.001			<0.001				0.00015 (J)
3/26/2020		<0.001	<0.001		<0.001	<0.001		
8/25/2020							6.5E-05 (J)	
8/26/2020	<0.001	<0.001	<0.001	<0.001		<0.001		<0.001
8/27/2020					<0.001			
10/6/2020	<0.001		<0.001				6.6E-05 (J)	4.7E-05 (J)
10/7/2020		<0.001		<0.001	4.2E-05 (J)	4.2E-05 (J)		
3/3/2021	<0.001					<0.001	5.5E-05 (J)	5.8E-05 (J)
3/4/2021		<0.001	<0.001	<0.001	<0.001			
9/14/2021							<0.001	
9/15/2021	<0.001	<0.001	<0.001					<0.001
9/16/2021				<0.001	<0.001	<0.001		
1/25/2022							<0.001	
1/26/2022	<0.001	<0.001	<0.001					<0.001
1/27/2022				<0.001	<0.001	<0.001		
8/24/2022							<0.001	
8/25/2022	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001

Constituent: Lead (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-25	PZ-2D (bg)	PZ-2S	PZ-31 (bg)	PZ-32 (bg)	PZ-33	PZ-7D	PZ-57
8/30/2016			0.0002					
9/1/2016							<0.001	
9/8/2016	<0.001							
10/18/2016				<0.001	0.0001 (J)			
12/6/2016				<0.001				
12/7/2016					<0.001		<0.001	
12/8/2016	<0.001					<0.001		
12/15/2016			0.0002					
3/21/2017			<0.001	<0.001				
3/22/2017	<0.001						<0.001	
3/23/2017					0.0002 (J)	9E-05 (J)		
7/11/2017	<0.001		<0.001	<0.001	<0.001			
7/12/2017						<0.001	<0.001	
10/17/2017			<0.001	0.0005 (J)	7E-05 (J)			
10/18/2017	<0.001							
10/19/2017						<0.001	<0.001	
2/20/2018			<0.001	<0.001	<0.001			
2/21/2018	<0.001					<0.001	<0.001	
4/12/2018		<0.001						
5/23/2018		<0.001						
6/13/2018		<0.001						
7/11/2018		<0.001	<0.001	<0.001	<0.001			
7/12/2018	<0.001					<0.001	<0.001	
8/17/2018		<0.001						
9/12/2018		<0.001	<0.001	<0.001				
9/13/2018	<0.001				<0.001		<0.001	
9/14/2018						<0.001		
10/4/2018		<0.001				<0.001		
10/24/2018		<0.001						
10/1/2019					<0.001			
10/2/2019	<0.001	4.7E-05 (X)		8.1E-05 (X)				
10/3/2019						4.7E-05 (X)	<0.001	
3/24/2020		<0.001						
3/25/2020	<0.001			<0.001	<0.001			
3/26/2020						<0.001	<0.001	
8/25/2020				<0.001	6.3E-05 (J)			
8/26/2020	<0.001	<0.001				<0.001	<0.001	
10/6/2020		<0.001		<0.001	<0.001			
10/7/2020	<0.001					<0.001	<0.001	
3/3/2021	<0.001			<0.001	<0.001			
3/4/2021						<0.001	4.1E-05 (J)	
3/8/2021		6.2E-05 (J)						
9/14/2021		<0.001			<0.001			
9/15/2021	<0.001			<0.001				
9/16/2021						<0.001	<0.001	
1/25/2022		<0.001			_			
1/26/2022	<0.001			<0.001	<0.001			
1/27/2022						<0.001	<0.001	<0.001
8/24/2022	<0.001	<0.001		<0.001	<0.001	<0.001		
8/25/2022							<0.001	
8/26/2022								<0.001

Constituent: Lithium (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

8/30/2016	PZ-14	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19	PZ-1D (bg) <0.03	PZ-23A
8/31/2016	<0.03						10.00	<0.03
9/1/2016	-0.00	<0.03						-0.00
9/6/2016		10.03	<0.03					
9/7/2016			10.00	<0.03	<0.03	0.0082 (J)		
12/6/2016				~0.03	~0.03	0.0002 (3)	<0.03	
12/7/2016	0.003 (1)	<0.03	<0.03				~0.03	<0.03
12/8/2016	0.003 (J)	~0.03	~0.03	<0.03	<0.03	0.0061 (J)		~0.03
3/21/2017	<0.03			~0.03	~0.03	0.0001 (3)	<0.03	<0.03
3/22/2017	~0.03	0.0011 (J)	<0.03	0.0021 (J)	0.0029 (J)		~0.03	~0.03
3/23/2017		0.0011 (0)	10.03	0.0021 (3)	0.0023 (0)	0.0122 (J)		
7/11/2017	<0.03		<0.03			0.0122 (3)	<0.03	<0.03
7/11/2017	~0.03	<0.03	~0.03	0.002 (J)	0.0024 (J)	0.013 (J)	~0.03	~0.03
10/17/2017		~0.03		0.002 (3)	0.0024 (3)	0.013 (3)	<0.03	
10/17/2017	<0.03	<0.03	<0.03	0.002 (1)	0.0027 (1)		~0.03	<0.03
10/19/2017	<0.03	<0.03	<0.03	0.002 (J)	0.0027 (J)	0.013 (J)		\0.03
2/20/2018	<0.03					0.013 (3)	<0.03	<0.03
2/21/2018	~0.03	<0.03	<0.03	0.0022 (1)	0.0021 (1)	0.0095 (1)	~0.03	~0.03
7/11/2018	<0.03	<0.03	<0.03	0.0022 (J)	0.0021 (J)	0.0085 (J)	<0.03	<0.03
7/11/2018	~0.03	0.0012 (J)	<0.03			0.013 (J)	~0.03	~0.03
8/15/2018		0.0012 (0)	10.03		0.0027 (J)	0.013 (3)		
8/16/2018				0.0027 (J)	0.0027 (0)			
9/12/2018	<0.03			0.0027 (3)			<0.03	
9/13/2018	~0.03	0.0013 (J)	<0.03		0.0029 (J)		~0.03	<0.03
9/14/2018		0.0013 (0)	10.03	0.0025 (J)	0.0023 (0)	0.018 (J)		10.00
9/10/2019				0.0020 (0)		0.010 (0)		<0.03
10/1/2019							<0.03	10.00
10/2/2019	<0.03	0.0013 (X)	<0.03	0.0024 (X)			10.00	
10/3/2019	10.03	0.0013 (X)	10.03		0.0027 (X)	0.016 (X)		
3/24/2020					0.0027 (X)	0.010 (X)	<0.03	
3/25/2020	<0.03			0.003 (J)			10.00	0.0011 (J)
3/26/2020	10.03	0.0014 (J)	<0.03	0.003 (3)	0.0027 (J)	0.013 (J)		0.0011(0)
8/25/2020		0.0014 (0)	10.03		0.0027 (0)	0.013 (3)	<0.03	
8/26/2020	<0.03	0.0013 (J)	<0.03	0.0028 (J)		0.011 (J)	10.00	0.0011 (J)
8/27/2020	10.03	0.0013 (0)	10.03	0.0020 (0)	0.0025 (J)	0.011 (3)		0.0011(0)
10/6/2020	<0.03		<0.03		0.0020 (0)		<0.03	0.00097 (J)
10/7/2020	-0.00	0.0013 (J)	-0.00	0.0029 (J)	0.003 (J)	0.013 (J)	-0.00	0.00007 (0)
3/3/2021	<0.03	0.0013 (0)		0.0025 (0)	0.003 (3)	0.015 (J)	<0.03	0.001 (J)
3/4/2021	10.03	0.0014 (J)	<0.03	0.002 (J)	0.0029 (J)	0.013 (3)	10.00	0.001 (0)
9/14/2021		0.0014 (0)	10.03	0.002 (3)	0.0023 (0)		<0.03	
9/15/2021	<0.03	0.0013 (J)	<0.03				10.00	0.00085 (J)
9/16/2021	10.00	0.0013 (0)	10.03	0.0021 (J)	0.0023 (J)	0.013 (J)		0.00005 (0)
1/25/2022				0.0021 (0)	0.0023 (0)	0.013 (3)	<0.03	
1/26/2022	<0.03	0.0013 (J)	<0.03				-0.00	<0.03
1/27/2022	3.00	3.3010 (0)	3.00	0.0022 (J)	0.003 (J)	0.016 (J)		5.00
8/24/2022				3.3022 (0)	3.300 (0)	3.310 (0)	<0.03	
8/25/2022	<0.03	0.0012 (J)	<0.03	0.0018 (J)	0.0033 (J)	0.012 (J)	0.00	<0.03
S. LOI LULL	3.00	3.3012 (0)	3.00	3.3010 (0)	3.3000 (0)	3.312 (0)		0.00

Constituent: Lithium (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

		PZ-25	PZ-2D (bg)	PZ-2S	PZ-31 (bg)	PZ-32 (bg)	PZ-33	PZ-7D	PZ-57
8	3/30/2016			<0.03					
9	9/1/2016							0.0022 (J)	
9	9/8/2016	0.0038 (J)							
1	10/18/2016				<0.03	<0.03			
1	12/6/2016				<0.03				
1	12/7/2016					<0.03		0.0023 (J)	
1	12/8/2016	0.0038 (J)					<0.03		
1	12/15/2016			<0.03					
3	3/21/2017			<0.03	<0.03				
3	3/22/2017	0.0068 (J)						0.0025 (J)	
3	3/23/2017					<0.03	<0.03		
7	7/11/2017	0.0059 (J)		<0.03	<0.03	<0.03			
	7/12/2017	. ,					<0.03	0.0033 (J)	
	10/17/2017			<0.03	<0.03	<0.03			
	10/18/2017	0.0057 (J)							
	10/19/2017	(-,					<0.03	<0.03	
	2/20/2018			<0.03	<0.03	<0.03			
	2/21/2018	0.0063 (J)					<0.03	0.0034 (J)	
	1/12/2018	(-,	<0.03					(,,	
	5/23/2018		<0.03						
	6/13/2018		<0.03						
	7/11/2018		0.0011 (J)	<0.03	<0.03	<0.03			
	7/12/2018	0.0063 (J)	(-)				<0.03	0.0038 (J)	
	3/17/2018	(-)	0.0024 (J)					(,,	
	9/12/2018		0.0025 (J)	<0.03	<0.03				
	9/13/2018	0.0061 (J)	(-,			<0.03		0.0026 (J)	
	9/14/2018	(-,					<0.03	(,,	
	10/4/2018		0.0021 (J)				<0.03		
	10/24/2018		0.0021 (J)						
	10/1/2019		. ,			<0.03			
	10/2/2019	0.0074 (X)	0.0016 (X)		<0.03				
	10/3/2019						<0.03	0.0032 (X)	
	3/24/2020		0.0019 (J)						
3	3/25/2020	0.0066 (J)			<0.03	<0.03			
	3/26/2020	. ,					<0.03	0.0031 (J)	
	3/25/2020				<0.03	<0.03			
	3/26/2020	0.0065 (J)	0.0015 (J)				<0.03	0.0023 (J)	
	10/6/2020	. ,	0.00099 (J)		<0.03	<0.03		.,	
1	10/7/2020	0.0063 (J)					<0.03	0.0023 (J)	
	3/3/2021	0.0061 (J)			<0.03	<0.03		• •	
	3/4/2021						<0.03	0.0031 (J)	
	3/8/2021		0.0019 (J)						
	9/14/2021		0.0013 (J)			<0.03			
	9/15/2021	0.0061 (J)	. ,		<0.03				
	9/16/2021	. ,					<0.03	0.0025 (J)	
	1/25/2022		0.0012 (J)						
	1/26/2022	0.008 (J)	. ,		<0.03	<0.03			
	/27/2022	.,					<0.03	0.0039 (J)	0.002 (J)
	3/24/2022	0.0073 (J)	0.0012 (J)		<0.03	<0.03	<0.03	. ,	.,
	3/25/2022	. ,	. ,					0.003 (J)	
	3/26/2022								0.0013 (J)
									•

Constituent: Mercury (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-14	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19	PZ-1D (bg)	PZ-23A
8/30/2016	0.0000						<0.0002	
8/31/2016	<0.0002							<0.0002
9/1/2016		<0.0002	0.000					
9/6/2016			<0.0002					
9/7/2016				<0.0002	<0.0002	<0.0002	0.0000	
12/6/2016	75.05 (1)		0.000				<0.0002	05.05.41)
12/7/2016	7E-05 (J)	<0.0002	<0.0002					9E-05 (J)
12/8/2016				<0.0002	<0.0002	<0.0002		
3/21/2017	<0.0002		0.000				<0.0002	<0.0002
3/22/2017		<0.0002	<0.0002	<0.0002	<0.0002			
3/23/2017						<0.0002		
7/11/2017	<0.0002		<0.0002				<0.0002	<0.0002
7/12/2017		<0.0002		<0.0002	<0.0002	<0.0002		
10/17/2017							<0.0002	
10/18/2017	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002			<0.0002
10/19/2017	0.0000					<0.0002	0.0000	
2/20/2018	<0.0002					/ "	<0.0002	<0.0002
2/21/2018		9.7E-05 (J)	6.8E-05 (J)	8.6E-05 (J)	5.7E-05 (J)	4.5E-05 (J)		
7/11/2018	<0.0002		0.000				<0.0002	<0.0002
7/12/2018		<0.0002	<0.0002			<0.0002		
8/15/2018					<0.0002			
8/16/2018				<0.0002				
9/12/2018	<0.0002						<0.0002	
9/13/2018		<0.0002	<0.0002	-0.0000	<0.0002	-0.0000		<0.0002
9/14/2018				<0.0002		<0.0002	0.05.05.41)	
8/25/2020 8/26/2020	0.00015 (1)	<0.0002	<0.0002	<0.0002		0.0001 (1)	9.9E-05 (J)	0.00017 (1)
8/27/2020	0.00015 (J)	<0.0002	<0.0002	<0.0002	<0.0002	0.0001 (J)		0.00017 (J)
	<0.0000		~0.000 2		<0.0002		~ 0.0000	<0.0000
10/6/2020	<0.0002	-0.0000	<0.0002	-0.0000	-0.0000	-0.0000	<0.0002	<0.0002
10/7/2020	-0.0000	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	-0.0000
3/3/2021 3/4/2021	<0.0002	~0.000 2	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
		<0.0002	<0.0002	<0.0002	<0.0002		-0.0000	
9/14/2021	-0.0000	-0.0000	-0.0000				<0.0002	-0.0000
9/15/2021	<0.0002	<0.0002	<0.0002	-0.0000	-0.0000	-0.0000		<0.0002
9/16/2021				<0.0002	<0.0002	<0.0002	-0.0000	
1/25/2022	<0.0002	-0.0000	~0.000 2				<0.0002	<0.0002
1/26/2022	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002
1/27/2022				<0.0002	<0.0002	<0.0002	~ 0.0000	
8/24/2022	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	<0.0002	-0.0000
8/25/2022	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002

Constituent: Mercury (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-25	PZ-2D (bg)	PZ-2S	PZ-31 (bg)	PZ-32 (bg)	PZ-33	PZ-7D	PZ-57
8/30/2016			<0.0002					
9/1/2016							<0.0002	
9/8/2016	<0.0002							
10/18/2016				<0.0002	<0.0002			
12/6/2016				<0.0002				
12/7/2016					<0.0002		6E-05 (J)	
12/8/2016	<0.0002					<0.0002		
12/15/2016			<0.0002					
3/21/2017			<0.0002	<0.0002				
3/22/2017	<0.0002						<0.0002	
3/23/2017					<0.0002	<0.0002		
7/11/2017	<0.0002		<0.0002	<0.0002	<0.0002			
7/12/2017	0.0002		0.0002	0.0002	0.0002	<0.0002	<0.0002	
10/17/2017			<0.0002	<0.0002	<0.0002	0.0002	0.0002	
10/18/2017	<0.0002		10.0002	-0.0002	-0.0002			
10/19/2017	~ 0.0002					<0.0002	<0.0002	
			<0.0000	<0.0000	<0.0000	<0.0002	<0.0002	
2/20/2018	F 2F 0F (I)		<0.0002	<0.0002	<0.0002	4.25.05.41)	E 2E 0E (I)	
2/21/2018	5.3E-05 (J)	.0.000				4.3E-05 (J)	5.3E-05 (J)	
4/12/2018		<0.0002						
5/23/2018		<0.0002						
6/13/2018		4.9E-05 (J)						
7/11/2018		<0.0002	<0.0002	<0.0002	<0.0002			
7/12/2018	<0.0002					<0.0002	<0.0002	
8/17/2018		<0.0002						
9/12/2018		<0.0002	<0.0002	<0.0002				
9/13/2018	<0.0002				<0.0002		<0.0002	
9/14/2018						4.1E-05 (J)		
10/4/2018		<0.0002				<0.0002		
10/24/2018		5.2E-05 (J)						
8/25/2020				0.0001 (J)	<0.0002			
8/26/2020	<0.0002	<0.0002				0.00011 (J)	<0.0002	
10/6/2020		<0.0002		<0.0002	<0.0002			
10/7/2020	<0.0002					<0.0002	<0.0002	
3/3/2021	<0.0002			<0.0002	<0.0002			
3/4/2021						<0.0002	<0.0002	
3/8/2021		<0.0002						
9/14/2021		<0.0002			<0.0002			
9/15/2021	<0.0002			<0.0002				
9/16/2021						<0.0002	<0.0002	
1/25/2022		<0.0002						
1/26/2022	<0.0002			<0.0002	<0.0002			
1/27/2022						<0.0002	<0.0002	<0.0002
8/24/2022		0.00013 (J)		<0.0002	0.00014 (J)	<0.0002		
8/25/2022		.,			. ,		<0.0002	
8/26/2022								<0.0002
10/11/2022	<0.0002							
-==								

Constituent: Molybdenum (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-14	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19	PZ-1D (bg)	PZ-23A
8/30/2016							<0.01	
8/31/2016	<0.01							<0.01
9/1/2016		<0.01						
9/6/2016			<0.01					
9/7/2016				<0.01	<0.01	0.0027 (J)		
12/6/2016							0.0019 (J)	
12/7/2016	<0.01	<0.01	<0.01					<0.01
12/8/2016				<0.01	<0.01	0.0022 (J)		
3/21/2017	0.0005 (J)						0.0018 (J)	0.0006 (J)
3/22/2017		0.0004 (J)	0.0004 (J)	0.0004 (J)	<0.01			
3/23/2017						0.0025 (J)		
7/11/2017	<0.01		<0.01				0.0018 (J)	<0.01
7/12/2017		<0.01		<0.01	<0.01	0.0022 (J)		
10/17/2017							0.0016 (J)	
10/18/2017	<0.01	<0.01	<0.01	<0.01	<0.01			<0.01
10/19/2017						0.0021 (J)		
2/20/2018	<0.01						<0.01	<0.01
2/21/2018		<0.01	<0.01	<0.01	<0.01	<0.01		
7/11/2018	<0.01						<0.01	<0.01
7/12/2018		<0.01	<0.01			0.0022 (J)		
8/15/2018					<0.01			
8/16/2018				<0.01				
9/12/2018	<0.01						<0.01	
9/13/2018		<0.01	<0.01		<0.01			<0.01
9/14/2018				<0.01		0.0023 (J)		
9/10/2019								<0.01
10/1/2019							0.001 (X)	
10/2/2019	<0.01	<0.01	<0.01	<0.01				
10/3/2019					<0.01	0.0024 (X)		
3/24/2020							0.001 (J)	
3/25/2020	<0.01			<0.01				0.0011 (J)
3/26/2020		<0.01	<0.01		<0.01	0.0021 (J)		
8/25/2020							0.001 (J)	
8/26/2020	<0.01	<0.01	<0.01	<0.01		0.002 (J)		<0.01
8/27/2020	.0.04		.0.04		<0.01		0.0000 (1)	.0.04
10/6/2020	<0.01	.0.04	<0.01	.0.04		0.0040 (1)	0.0009 (J)	<0.01
10/7/2020	-0.01	<0.01		<0.01	<0.01	0.0019 (J)	0.00070 (1)	-0.01
3/3/2021	<0.01	-0.01	-0.01	-0.01	-0.01	0.0021 (J)	0.00076 (J)	<0.01
3/4/2021		<0.01	<0.01	<0.01	<0.01		0.00000 (1)	
9/14/2021	10.01	-0.01	-0.01				0.00086 (J)	-0.01
9/15/2021	<0.01	<0.01	<0.01	<0.01	<0.01	0.0021 (1)		<0.01
9/16/2021				<0.01	<0.01	0.0021 (J)	<0.01	
1/25/2022	z0.01	-0.01	-0.01				<0.01	-0.01
1/26/2022	<0.01	<0.01	<0.01	<0.01	<0.01	0.0022 (1)		<0.01
1/27/2022				<0.01	<0.01	0.0022 (J)	0.00088 (1)	
8/24/2022 8/25/2022	<0.01	<0.01	<0.01	<0.01	<0.01	0.0017 (J)	0.00088 (J)	<0.01
UIZJIZUZZ	-U.U1	~U.U1	~U.U1	-U.U I	-U.U I	0.0017 (3)		~U.U I

Constituent: Molybdenum (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

		PZ-25	PZ-2D (bg)	PZ-2S	PZ-31 (bg)	PZ-32 (bg)	PZ-33	PZ-7D	PZ-57
8/30/20)16			<0.01					
9/1/201	16							<0.01	
9/8/201	16	<0.01							
10/18/2	2016				<0.01	<0.01			
12/6/20	016				<0.01				
12/7/20						<0.01		<0.01	
12/8/20		<0.01					<0.01		
12/15/2				<0.01					
3/21/20				0.0003	0.0005 (J)				
3/22/20		0.001 (J)			. ,			<0.01	
3/23/20		. ,				<0.01	<0.01		
7/11/20		<0.01		<0.01	<0.01	<0.01			
7/12/20							<0.01	<0.01	
10/17/2				<0.01	<0.01	<0.01			
10/18/2		<0.01							
10/19/2							<0.01	<0.01	
2/20/20				<0.01	<0.01	<0.01	0.01	0.01	
2/21/20		<0.01		0.01	0.01	0.01	<0.01	<0.01	
4/12/20		0.01	<0.01				0.01	0.01	
5/23/20			<0.01						
6/13/20			<0.01						
7/11/20			<0.01	<0.01	<0.01	<0.01			
7/12/20		<0.01					<0.01	<0.01	
8/17/20			<0.01						
9/12/20			<0.01	<0.01	<0.01				
9/13/20)18	<0.01				<0.01		<0.01	
9/14/20)18						<0.01		
10/4/20)18		<0.01				<0.01		
10/24/2	2018		<0.01						
10/1/20)19					<0.01			
10/2/20)19	<0.01	<0.01		<0.01				
10/3/20)19						<0.01	<0.01	
3/24/20	020		<0.01						
3/25/20	020	<0.01			<0.01	<0.01			
3/26/20	020						<0.01	<0.01	
8/25/20	020				<0.01	<0.01			
8/26/20	020	<0.01	<0.01				<0.01	<0.01	
10/6/20	020		0.00069 (J)		<0.01	<0.01			
10/7/20	020	<0.01					<0.01	<0.01	
3/3/202	21	<0.01			<0.01	<0.01			
3/4/202							<0.01	<0.01	
3/8/202			<0.01						
9/14/20)21		0.00077 (J)			<0.01			
9/15/20		<0.01			<0.01				
9/16/20							<0.01	<0.01	
1/25/20			<0.01						
1/26/20		<0.01			<0.01	<0.01			
1/27/20							<0.01	<0.01	0.00085 (J)
8/24/20		<0.01	<0.01		<0.01	<0.01	<0.01		
8/25/20								<0.01	0.04
8/26/20)22								<0.01

Constituent: pH (SU) Analysis Run 11/21/2022 9:22 AM

0/00/0040	PZ-14	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19	PZ-1D (bg)	PZ-23A
8/30/2016	6.07						7.67	6.75
8/31/2016	6.97	7.01						6.75
9/1/2016		7.21	7.00					
9/6/2016			7.23	7.00	6.00	6.71		
9/7/2016 12/6/2016				7.02	6.92	6.71	7.57	
12/7/2016	6.85	7.13	7.3				7.57	6.64
12/8/2016	0.63	7.13	7.3	6.95	6.9	6.61		0.04
	7.04			0.95	0.9	0.01	7.54	6.73
3/21/2017 3/22/2017	7.04	7.04	7.2	7.05	7		7.54	6.73
3/23/2017		7.04	7.2	7.05	,	6.69		
7/11/2017	6.88		7.31			0.03	7.43	6.66
7/11/2017	0.00	7.09	7.51	7.06	6.95	6.69	7.43	0.00
10/17/2017		7.00		7.00	0.55	0.03	7.7	
10/18/2017	6.77	7.2	7.28	6.99		6.88	7.7	6.73
10/19/2017	0.77	7.2	7.20	0.00		6.85		0.70
2/20/2018	7.32 (D)					0.00	7.57	7.11
2/21/2018	7.02 (5)	7.11	7.1	6.95	6.89	6.66		
7/11/2018	7.12			0.00	0.00	0.00	7.48	7
7/12/2018	72	7.07	7.14	7.06	7.01	6.84		•
8/15/2018					6.87			
8/16/2018				7.01				
9/12/2018	6.87						7.41	
9/13/2018		7.01	7.08		6.86			6.56
9/14/2018				6.83		6.76		
3/26/2019							7.49	
3/27/2019	6.98		7.23		6.92			6.75
3/28/2019		7.84		6.97		6.67		
9/10/2019								6.78
10/1/2019							7.5	
10/2/2019	6.96	7.22	7.22	6.99				
10/3/2019					6.78	6.93		
3/24/2020							7.79	
3/25/2020	7.02			6.93				6.84
3/26/2020		7.08	7.12		7.01	6.7		
8/25/2020							7.49	
8/26/2020	6.98	7.08	7.18	6.98		6.68		6.64
8/27/2020					6.88			
10/6/2020	7.01		7.24				7.35	6.78
10/7/2020		7.11		7.04	6.91	6.78		
3/3/2021	6.99					6.78	7.56	6.79
3/4/2021		7.09	7.34	7.09	6.91			
9/14/2021							7.45	
9/15/2021	6.94	7.09	7.12					6.72
9/16/2021				7.03	6.85	6.77		
1/25/2022							7.51	
1/26/2022	7.05	7.33	7.26					6.83
1/27/2022				7.03	6.92	6.8		
8/24/2022	0.00	7.45	7.44	7.05	0.70	0.07	7.49	0.70
8/25/2022	6.93	7.15	7.14	7.05	6.76	6.67		6.76

Constituent: pH (SU) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

		PZ-25	PZ-2D (bg)	PZ-2S	PZ-31 (bg)	PZ-32 (bg)	PZ-33	PZ-7D	PZ-57
8	3/30/2016			7.76					
9	9/1/2016							7.07	
9	9/8/2016	7.1							
1	10/4/2016						6.88		
1	10/5/2016						6.91		
	10/17/2016					7.43			
1	10/18/2016				7.15	7.45			
1	12/6/2016				7.04				
	12/7/2016					7.29		6.85	
	12/8/2016	6.98					6.86		
1	12/15/2016			7.64					
	3/21/2017			7.88	7.01				
	3/22/2017	7.16						6.99	
	3/23/2017					7.26	6.9		
	7/11/2017	7.15		7.82	6.96	7.31	7.82 (o)		
	7/12/2017						6.81	6.83	
	10/17/2017		7.61	7.61	7.31	7.29			
	10/18/2017	7.09							
	10/19/2017						6.86	6.91	
	2/20/2018			7.6		7.26	0.00	0.0 .	
	2/21/2018	7.12				7.20	7.02	6.97	
	7/11/2018	72	9.48	7.79	7.26	7.39	7.02	0.07	
	7/12/2018		0.40	7.70	7.01	7.00	6.82	6.85	
	9/12/2018		9.07	7.58	7.02		0.02	0.00	
	9/13/2018	7.03	5.07	7.50	7.02	7.25		6.88	
	9/14/2018	7.03				7.25	6.75	0.00	
	3/26/2019			7.73	7		0.75		
	3/27/2019	7.08	8.76	7.73	,	7.42			
	3/28/2019	7.00	6.70			7.42	6.96	6.96	
	10/1/2019					7.43	0.90	0.90	
	10/1/2019	7.2	8.97		7.09	7.43			
	10/3/2019	7.2	0.97		7.03		7.01	6.85	
	3/24/2020		8.57				7.01	0.65	
	3/25/2020	7.01	0.57		7.15	7.23			
	3/26/2020	7.01			7.15	7.23	7	7.12	
	3/25/2020				7.14	7.53	,	7.12	
	8/26/2020	7.09	7.97		7.14	7.55	6.99	7.01	
	10/6/2020	7.09			7.01	7.27	0.99	7.01	
	10/7/2020	6.95	8.72		7.01	7.27	7.04	6.98	
					7.14	7.41	7.04	0.96	
	3/3/2021	7.04			7.14	7.41	7.00	6.05	
	8/4/2021		7 77				7.22	6.95	
	3/8/2021		7.77			7.04			
	9/14/2021	7.05	8.96		C 00	7.31			
	9/15/2021	7.05			6.99		7.4	0.00	
	9/16/2021		0.4				7.1	6.96	
	1/25/2022	7.00	8.4		7.1	7.44			
	1/26/2022	7.28			7.1	7.44	7.10	7.00	7.0
	1/27/2022	7.4	0.01		7.04	7.04	7.18	7.03	7.3
	8/24/2022	7.1	8.01		7.04	7.34	7.1	6.00	
	8/25/2022							6.98	7.00
	8/26/2022	7.10	7.04			7.27			7.09
1	10/11/2022	7.13	7.94			7.37			

Constituent: Selenium (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-14	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19	PZ-1D (bg)	PZ-23A
8/30/2016							<0.005	
8/31/2016	0.0012 (J)							0.0014 (J)
9/1/2016		<0.005						
9/6/2016			<0.005					
9/7/2016				<0.005	<0.005	<0.005		
12/6/2016							<0.005	
12/7/2016	<0.005	<0.005	<0.005					<0.005
12/8/2016				<0.005	<0.005	<0.005		
3/21/2017	<0.005						<0.005	<0.005
3/22/2017		<0.005	<0.005	<0.005	<0.005			
3/23/2017						<0.005		
7/11/2017	<0.005		<0.005				<0.005	<0.005
7/12/2017		<0.005		<0.005	<0.005	<0.005		
10/17/2017							<0.005	
10/18/2017	<0.005	<0.005	<0.005	<0.005	<0.005			<0.005
10/19/2017						<0.005		
2/20/2018	<0.005						<0.005	<0.005
2/21/2018		<0.005	<0.005	<0.005	<0.005	<0.005		
7/11/2018	<0.005						<0.005	<0.005
7/12/2018		<0.005	<0.005			<0.005		
8/15/2018					<0.005			
8/16/2018				<0.005				
9/12/2018	<0.005						<0.005	
9/13/2018		<0.005	<0.005		<0.005			<0.005
9/14/2018				<0.005		0.0015 (J)		
9/10/2019								0.0018 (X)
10/1/2019							<0.005	
10/2/2019	0.0015 (X)	<0.005	<0.005	<0.005				
10/3/2019					<0.005	0.0034 (X)		
3/24/2020	0.005			.0.005			<0.005	0.000 (1)
3/25/2020	<0.005	0.005	0.005	<0.005	.0.005	0.0010 (1)		0.003 (J)
3/26/2020		<0.005	<0.005		<0.005	0.0016 (J)	.0.005	
8/25/2020							<0.005	
8/26/2020	<0.005	0.0018 (J)	<0.005	<0.005	.0.005	0.0031 (J)		0.0026 (J)
8/27/2020	0.005		0.005		<0.005		.0.005	0.0007.(1)
10/6/2020	<0.005	.0.005	<0.005	.0.005	.0.005	0.0005 (1)	<0.005	0.0027 (J)
10/7/2020	-0.005	<0.005		<0.005	<0.005	0.0035 (J)	-0.005	0.0005 (1)
3/3/2021	<0.005	.0.005		.0.005	.0.005	0.0033 (J)	<0.005	0.0025 (J)
3/4/2021		<0.005	<0.005	<0.005	<0.005		.0.005	
9/14/2021	<0.00E	<0.00E	<0.00E				<0.005	0.002471
9/15/2021	<0.005	<0.005	<0.005	<0.00E	<0.00E	0.003371		0.0024 (J)
9/16/2021				<0.005	<0.005	0.0033 (J)	<0.005	
1/25/2022	<0.00E	<0.00E	<0.00E				~U.UUO	0.0022 (1)
1/26/2022	<0.005	<0.005	<0.005	<0.00E	<0.00E	0.005		0.0023 (J)
1/27/2022 8/24/2022				<0.005	<0.005	0.005	<0.005	
8/25/2022	<0.005	<0.005	<0.005	<0.005	<0.005	0.0019 (J)	-0.003	0.0023 (J)
UIZUIZUZZ	-0.000	-0.000	-0.003	-0.000	-0.000	0.0013 (3)		0.0023 (J)

Constituent: Selenium (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-25	PZ-2D (bg)	PZ-2S	PZ-31 (bg)	PZ-32 (bg)	PZ-33	PZ-7D	PZ-57
8/30/2016			<0.005					
9/1/2016							<0.005	
9/8/2016	<0.005							
10/18/2016				<0.005	<0.005			
12/6/2016				<0.005				
12/7/2016					<0.005		<0.005	
12/8/2016	<0.005					<0.005		
12/15/2016			<0.005					
3/21/2017			<0.005	<0.005				
3/22/2017	<0.005						<0.005	
3/23/2017					<0.005	<0.005		
7/11/2017	<0.005		<0.005	<0.005	<0.005			
7/12/2017						<0.005	<0.005	
10/17/2017			<0.005	<0.005	<0.005			
10/18/2017	<0.005							
10/19/2017						<0.005	<0.005	
2/20/2018			<0.005	<0.005	<0.005			
2/21/2018	<0.005					<0.005	<0.005	
4/12/2018		<0.005						
5/23/2018		<0.005						
6/13/2018		<0.005						
7/11/2018		<0.005	<0.005	<0.005	<0.005			
7/12/2018	<0.005	0.000	0.000	0.000	0.000	<0.005	<0.005	
8/17/2018	0.000	<0.005				0.000	0.000	
9/12/2018		<0.005	<0.005	<0.005				
9/13/2018	<0.005	0.000	0.000	0.000	<0.005		<0.005	
9/14/2018	-0.000				-0.000	<0.005	-0.000	
10/4/2018		<0.005				<0.005		
10/24/2018		<0.005				-0.000		
10/1/2019		-0.000			<0.005			
10/2/2019	<0.005	<0.005		<0.005	-0.000			
10/3/2019	0.000	0.000		0.000		<0.005	0.0017 (X)	
3/24/2020		<0.005				-0.000	0.0017 (70)	
3/25/2020	<0.005	-0.000		<0.005	<0.005			
3/26/2020	10.000			10.000	10.003	<0.005	<0.005	
8/25/2020				<0.005	<0.005	-0.000	-0.000	
8/26/2020	<0.005	<0.005		-0.000	-0.000	<0.005	0.0018 (J)	
10/6/2020	10.000	<0.005		<0.005	<0.005	10.003	0.0010 (3)	
10/7/2020	<0.005	-0.000		-0.000	-0.000	<0.005	<0.005	
3/3/2021	<0.005			<0.005	<0.005	10.003	-0.003	
3/4/2021	10.000			10.000	10.003	<0.005	0.0018 (J)	
3/8/2021		<0.005				~0.003	0.0018 (3)	
9/14/2021		<0.005			<0.005			
9/14/2021	<0.005	~0.003		<0.005	~0.003			
9/15/2021 9/16/2021	-U.UUJ			-0.000		<0.005	<0.005	
1/25/2022		<0.005				-0.000	-0.003	
1/26/2022	<0.005	-0.000		<0.005	<0.005			
1/25/2022	~0.003			-0.003	-0.003	<0.005	0.0018 (J)	<0.005
1/2//2022 8/24/2022	<0.005	<0.005		<0.005	<0.005	<0.005	0.0010 (J)	~ 0.000
8/25/2022	-U.UUJ	-0.000		-0.000	-0.000	-0.003	0.0017 (1)	
							0.0017 (J)	<0.005
8/26/2022								<0.005

Constituent: Sulfate (mg/L) Analysis Run 11/21/2022 9:22 AM

		PZ-14	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19	PZ-1D (bg)	PZ-23A
	/30/2016							2.1	
	/31/2016	4.1							29
	/1/2016		73						
	/6/2016			49					
	/7/2016				99	96	87		
	2/6/2016							2.4	
	2/7/2016	1.5	71	46					24
	2/8/2016				94	94	84		
	/21/2017	2						2.5	31
	/22/2017		80	53	100	95			
	/23/2017						90		
	/11/2017	2		52				2.6	37
	/12/2017		78		100	96	93		
	0/17/2017							2.5	
	0/18/2017	4.2	82	58	100	99			34
	0/19/2017						92		
	/20/2018	2.4						2.3	34.7
	/21/2018		72.2	48.2	98.8	91.8	84.5		
	/11/2018	3.8						2.5	35.4
	/12/2018		80.5	48.8		101	84.9		
	/15/2018					101			
	/16/2018				111			_	
	/12/2018	4.3	0.4.4	10.7		100		2	07.4
	/13/2018		84.4	48.7	100	106	00.5		37.4
	/14/2018				102		89.5	0.7	
	/26/2019	0.0		40.5		444		2.7	44.0
	/27/2019	8.2	00.0	46.5		111	00.5		41.9
	/28/2019		90.3		94.7		83.5		45.4
	/10/2019							2.0	45.1
	0/1/2019	6.2	92	40 E	104			2.8	
	0/2/2019	6.2	83	48.5	104	05.8	94.0		
	0/3/2019 /24/2020					95.8	84.9	2	
		11.0			92.4			3	47
	/25/2020 /26/2020	11.9	83.6	43.5	92.4	91	84.9		47
	0/6/2020	11		42.4		31	04.9	2.4	71.2
	0/7/2020		80.7	42.4	89.1	87.3	83.3	2.4	71.2
	/3/2021	8.8	60.7		09.1	67.5	80.8	2.2	66
	/4/2021	0.0	74.1	38.9	66.8	88.6	00.0	2.2	
	/14/2021		74.1	30.3	00.0	00.0		2.6	
	/15/2021	11.4	73.4	37.8				2.0	46.8
	/16/2021	11.4	75.4		70.9	86.9	72.7		40.0
	/25/2022				70.5	00.0	, 2.,	2.4	
	/26/2022	9.1	77.2	38.9					37.8
	/27/2022	J. 1			62.1	89.9 (M1)	76.3		····
	/24/2022					-5.5 ()	. 5.0	2.2	
	/25/2022	10.7	75.5	38.7	62.7	96.3	84.4	-	45.6
0,						23.0			

Constituent: Sulfate (mg/L) Analysis Run 11/21/2022 9:22 AM

	PZ-25	PZ-2D (bg)	PZ-2S	PZ-31 (bg)	PZ-32 (bg)	PZ-33	PZ-7D	PZ-57
8/30/2016			1.2					
9/1/2016							62	
9/8/2016	48							
10/18/2016				2.2	2.3			
12/6/2016				6.1				
12/7/2016					1.9		57	
12/8/2016	46					100		
12/15/2016			0.07					
3/21/2017			1.2	5.7				
3/22/2017	53						61	
3/23/2017					1.7	100		
7/11/2017	51		1.2	4.8	1.8			
7/12/2017						97	53	
10/17/2017			1.2	6.4	1.9			
10/18/2017	50							
10/19/2017						97	55	
2/20/2018			1.9	5.2	2.1			
2/21/2018	46.8					93.6	52.1	
4/12/2018		4.8 (J)						
5/23/2018		4.5						
6/13/2018		5.3						
7/11/2018			1.5	3.6	2			
7/12/2018	48.3					89.4	53.9	
8/17/2018		4.5						
9/12/2018			1.9	2.7				
9/13/2018	42				2.1		67.5	
9/14/2018	72					88.9	07.0	
10/4/2018		5.8				97.8		
10/24/2018		6.2				07.0		
3/26/2019			1.4	1.6				
3/27/2019	43.7	3.7	1.4	1.0	2.4			
3/28/2019		···				76.7	59.6	
10/1/2019					2.2	70.7	00.0	
10/2/2019	43	4.1		1.6	2.2			
10/3/2019	43	7.1		1.0		72.1	59.6	
3/24/2020		3.1				72.1	39.0	
3/25/2020	39.1	3.1		1.5	1.9			
3/26/2020	39.1			1.5		66.6	57.1	
10/6/2020		3.1		0.98 (J)	1.9	00.0	37.1	
10/7/2020	38.1	3.1		0.98 (3)		54.6	48.9	
3/3/2021	39.2			0.6 (J)		34.0	40.9	
3/4/2021	39.2			0.6 (3)	2	49.3	49.7	
		2.7				49.3	49.7	
3/8/2021		2.7			1.0			
9/14/2021	27.0	3.8		0.64 (1)	1.8			
9/15/2021	37.8			0.64 (J)		40.4	41.0	
9/16/2021		2.0				40.4	41.8	
1/25/2022	27.5	2.9		0.00 (1)	10			
1/26/2022	37.5			0.69 (J)	1.9	40	46.7	04.5
1/27/2022	25.7	2		0.56 (!)		40	46.7	94.5
8/24/2022	35.7	2		0.56 (J)	1.7	34.7	47.0	
8/25/2022							47.3	07.0
8/26/2022								87.2

Constituent: TDS (mg/L) Analysis Run 11/21/2022 9:22 AM

	PZ-14	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19	PZ-1D (bg)	PZ-23A
8/30/2016							136	
8/31/2016	344							400
9/1/2016		284						
9/6/2016			257					
9/7/2016				392	415	508		
12/6/2016							207	
12/7/2016	393	242	248					406
12/8/2016				431	441	556		
3/21/2017	276						128	409
3/22/2017		332	304	456	469			
3/23/2017						482		
7/11/2017	263		265				138	414
7/12/2017		308		445	432	497		
10/17/2017							101	
10/18/2017	261	275	240	349	368			366
10/19/2017						448		
2/20/2018	295						138	429
2/21/2018		312	285	411	409	500		
7/11/2018	294						153	440
7/12/2018		337	285			523		
8/15/2018					422			
8/16/2018				415				
9/12/2018	286						146	
9/13/2018		336	291		438			448
9/14/2018				403		486		
3/26/2019							334	
3/27/2019	281		277		408			410
3/28/2019		337		420		378		
9/10/2019								420
10/1/2019							146	
10/2/2019	312	355	284	415				
10/3/2019					464	485		
3/24/2020							228	
3/25/2020	330			408				454
3/26/2020		330	286		415	440		
10/6/2020	241		261				153	462
10/7/2020		336		392	425	492		
3/3/2021	258					452	134	444
3/4/2021		300	264	325	427			
9/14/2021							150	
9/15/2021	292	326	270					422
9/16/2021				330	419	450		
1/25/2022							148	
1/26/2022	288	308	267					413
1/27/2022				329	433	442		
8/24/2022							139	
8/25/2022	259	319	90	321	446	528		437

Constituent: TDS (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-25	PZ-2D (bg)	PZ-2S	PZ-31 (bg)	PZ-32 (bg)	PZ-33	PZ-7D	PZ-57
8/30/2016			155					
9/1/2016							373	
9/8/2016	293							
10/18/2016				264	152			
12/6/2016				299				
12/7/2016					214		433	
12/8/2016	309					503 (o)		
12/15/2016			227					
3/21/2017			131	260				
3/22/2017	299						409	
3/23/2017					165	430		
7/11/2017	301		137	244	162			
7/12/2017						438	374	
10/17/2017			119	218	140			
10/18/2017	256							
10/19/2017						393	318	
2/20/2018			150	264	163			
2/21/2018	297					435	367	
4/12/2018		69						
5/23/2018		62						
6/13/2018		93						
7/11/2018		84	154	273	192			
7/12/2018	310	0.1	104	270	102	447	423	
8/17/2018	0.10	115				447	420	
9/12/2018		97	154	252				
9/13/2018	307	37	154	232	192		394	
9/13/2018	307				192	447	394	
10/4/2018		103				450		
10/4/2018		110				450		
3/26/2019		110	144	253				
3/27/2019	287	87	144	255	167			
3/28/2019	207	67			107	405	365	
10/1/2019					187	405	303	
	212	0E		262	107			
10/2/2019 10/3/2019	312	95		263		414	405	
		100				414	405	
3/24/2020 3/25/2020	200	123		270	170			
	280			278	178	226	222	
3/26/2020		01		254	160	336	332	
10/6/2020 10/7/2020	200	81		254	169	227	224	
	280			004	100	337	334	
3/3/2021	267			264	166	202	225	
3/4/2021		106				283	335	
3/8/2021		126			170			
9/14/2021	070	71		050	179			
9/15/2021	272			256		200	207	
9/16/2021						296	307	
1/25/2022		68						
1/26/2022	276			262	182	074	224	207
1/27/2022				201		274	331	387
8/24/2022				261		265	205	
8/25/2022							325	250
8/26/2022								358

Page 2

Time Series

Constituent: TDS (mg/L) Analysis Run 11/21/2022 9:22 AM

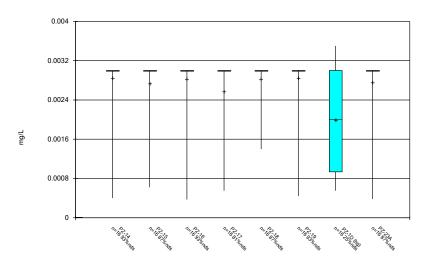
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

PZ-25 PZ-2D (bg) PZ-2S PZ-31 (bg) PZ-32 (bg) PZ-33 PZ-7D PZ-57 10/11/2022 267 75 173

Constituent: Thallium (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

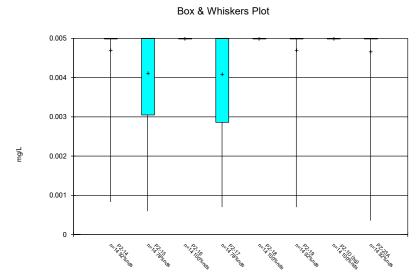
					. ,			
8/30/2016	PZ-14	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19	PZ-1D (bg) <0.001	PZ-23A
8/31/2016	<0.001						<0.001	<0.001
9/1/2016	\0.001	<0.001						~0.001
9/6/2016		\0.001	<0.001					
			<0.001	<0.001	<0.001	<0.001		
9/7/2016				<0.001	<0.001	<0.001	-0.001	
12/6/2016	-0.004	-0.004	-0.004				<0.001	0.0000 (1)
12/7/2016	<0.001	<0.001	<0.001	0.004	0.004	0.0000 (1)		0.0002 (J)
12/8/2016				<0.001	<0.001	0.0003 (J)		
3/21/2017	6E-05 (J)	0.004	0.0000 (1)	0.004	45.05 (1)		<0.001	0.0003 (J)
3/22/2017		<0.001	0.0002 (J)	<0.001	4E-05 (J)			
3/23/2017						0.0003 (J)		
7/11/2017	<0.001		0.0002 (J)				<0.001	0.0002 (J)
7/12/2017		<0.001		<0.001	<0.001	0.0004 (J)		
10/17/2017							<0.001	
10/18/2017	<0.001	<0.001	0.0002 (J)	<0.001	5E-05 (J)			0.0001 (J)
10/19/2017						0.0005 (J)		
2/20/2018	<0.001						<0.001	0.00026 (J)
2/21/2018		<0.001	0.00018 (J)	<0.001	<0.001	0.00049 (J)		
7/11/2018	<0.001						<0.001	0.00018 (J)
7/12/2018		<0.001	<0.001			0.00077 (J)		
8/15/2018					<0.001			
8/16/2018				<0.001				
9/12/2018	<0.001						<0.001	
9/13/2018		<0.001	0.00017 (J)		<0.001			<0.001
9/14/2018				<0.001		0.00076 (J)		
9/10/2019								<0.001
10/1/2019							<0.001	
10/2/2019	<0.001	0.00016 (X)	5.3E-05 (X)	0.00016 (X)				
10/3/2019					<0.001	0.00071 (X)		
3/24/2020							<0.001	
3/25/2020	<0.001			0.0002 (J)				0.00015 (J)
3/26/2020		0.00014 (J)	<0.001		7.1E-05 (J)	0.00068 (J)		
8/25/2020							<0.001	
8/26/2020	<0.001	0.00027 (J)	<0.001	0.00025 (J)		0.00056 (J)		0.00016 (J)
8/27/2020					<0.001			
10/6/2020	<0.001		<0.001				<0.001	<0.001
10/7/2020		0.00022 (J)		0.00022 (J)	<0.001	0.0007 (J)		
3/3/2021	<0.001					0.00072 (J)	<0.001	0.00017 (J)
3/4/2021		0.00022 (J)	<0.001	0.00039 (J)	<0.001			
9/14/2021		. ,		. ,			<0.001	
9/15/2021	<0.001	0.0002 (J)	<0.001					<0.001
9/16/2021		` '		0.00034 (J)	<0.001	0.00066 (J)		
1/25/2022				ν-,		ν-/	<0.001	
1/26/2022	<0.001	<0.001	<0.001					<0.001
1/27/2022	21 2 - 1	21 2 - 1	91 4 4 1	0.00038 (J)	<0.001	0.00063 (J)		
8/24/2022				(0)		(0)	<0.001	
8/25/2022	<0.001	<0.001	<0.001	0.00037 (J)	<0.001	0.00053 (J)		<0.001
SIZUIZUZZ	-0.001	-0.001	-0.001	0.00007 (0)	-0.001	0.00000 (0)		-5.001


Constituent: Thallium (mg/L) Analysis Run 11/21/2022 9:22 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

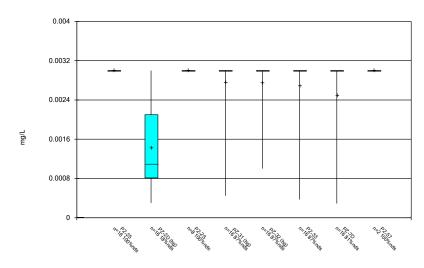
	PZ-25	PZ-2D (bg)	PZ-2S	PZ-31 (bg)	PZ-32 (bg)	PZ-33	PZ-7D	PZ-57
8/30/2016			<0.001					
9/1/2016							<0.001	
9/8/2016	<0.001							
10/18/2016				<0.001	<0.001			
12/6/2016				<0.001				
12/7/2016					0.0002 (J)		<0.001	
12/8/2016	<0.001					<0.001		
12/15/2016			<0.001					
3/21/2017			<0.001	6E-05 (J)				
3/22/2017	<0.001						0.0002 (J)	
3/23/2017					8E-05 (J)	0.0001 (J)		
7/11/2017	<0.001		<0.001	<0.001	7E-05 (J)			
7/12/2017						0.0001 (J)	0.0001 (J)	
10/17/2017			<0.001	<0.001	8E-05 (J)			
10/18/2017	<0.001							
10/19/2017						0.0001 (J)	0.0001 (J)	
2/20/2018			<0.001	<0.001	<0.001	. ,	.,	
2/21/2018	<0.001					<0.001	<0.001	
4/12/2018		<0.001						
5/23/2018		<0.001						
6/13/2018		<0.001						
7/11/2018		<0.001	<0.001	<0.001	<0.001			
7/12/2018	<0.001					<0.001	<0.001	
8/17/2018		<0.001						
9/12/2018		<0.001	<0.001	<0.001				
9/13/2018	<0.001				<0.001		<0.001	
9/14/2018						<0.001		
10/4/2018		<0.001				<0.001		
10/24/2018		0.00016 (J)				0.001		
10/1/2019		0.00010 (0)			<0.001			
10/2/2019	0.00024 (X)	<0.001		<0.001	-0.001			
10/3/2019	0.0002.7 (7.5)	0.001		0.001		0.00018 (X)	7.8E-05 (X)	
3/24/2020		<0.001				0.00010 (X)	7.02 00 (71)	
3/25/2020	0.00037 (J)	40.001		<0.001	<0.001			
3/26/2020	0.00037 (3)			\0.001	~ 0.001	0.00015 (J)	8.5E-05 (J)	
8/25/2020				<0.001	<0.001	0.00013 (0)	0.52-05 (0)	
8/26/2020	0.00037 (J)	<0.001		10.001	10.001	<0.001	<0.001	
10/6/2020	0.00037 (3)	<0.001		<0.001	<0.001	~0.001	~0.001	
10/7/2020	0.00027 (J)	40.001		10.001	10.001	<0.001	<0.001	
3/3/2021	0.00027 (J) 0.00036 (J)			<0.001	<0.001	~0.001	~0.001	
3/4/2021	0.00030 (3)			~0.001	~ 0.001	<0.001	<0.001	
3/8/2021		<0.001				<0.001	<0.001	
					~0.001			
9/14/2021	0.00066 (1)	<0.001		-0.001	<0.001			
9/15/2021 9/16/2021	0.00066 (J)			<0.001		<0.001	<0.001	
		<0.001				<0.001	<0.001	
1/25/2022	0.00000 (!)	<0.001		<0.001	<0.001			
1/26/2022	0.00039 (J)			<0.001	<0.001	-0.004	<0.001	-0.001
1/27/2022	0.0004071	-0.004		-0.001	<0.004	<0.001	<0.001	<0.001
8/24/2022	0.00048 (J)	<0.001		<0.001	<0.001	<0.001	-0.004	
8/25/2022							<0.001	-0.004
8/26/2022								<0.001

FIGURE B.


Box & Whiskers Plot

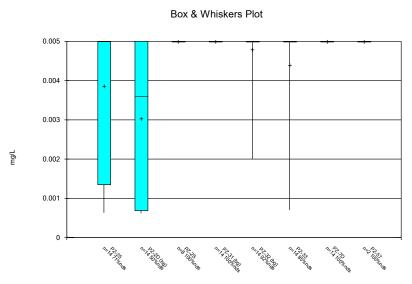
Constituent: Antimony Analysis Run 11/21/2022 9:27 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Sanitas[™] v.9.6.35 Groundwater Stats Consulting. UG

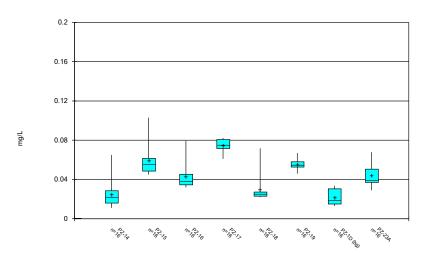
Constituent: Arsenic Analysis Run 11/21/2022 9:27 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Box & Whiskers Plot

Constituent: Antimony Analysis Run 11/21/2022 9:27 AM

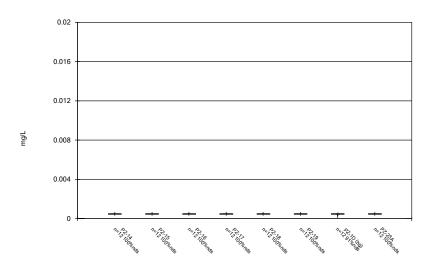
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Constituent: Arsenic Analysis Run 11/21/2022 9:27 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

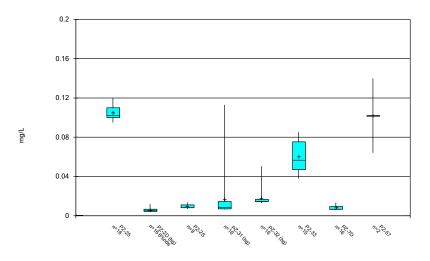
Box & Whiskers Plot



Constituent: Barium Analysis Run 11/21/2022 9:27 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

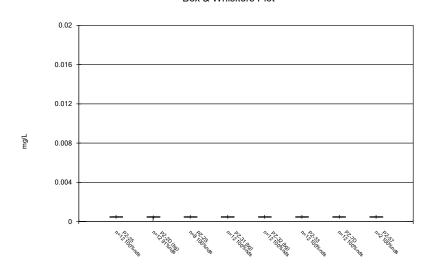
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Beryllium Analysis Run 11/21/2022 9:27 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

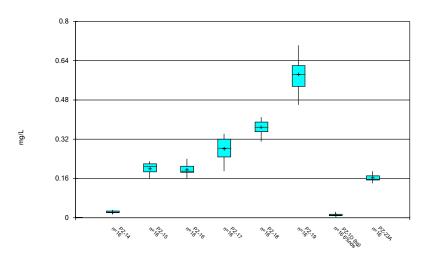
Box & Whiskers Plot



Constituent: Barium Analysis Run 11/21/2022 9:27 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

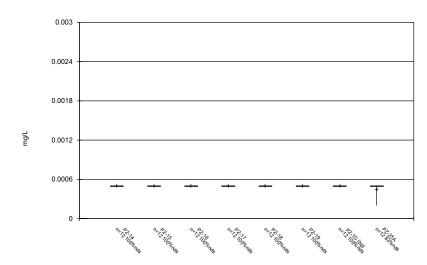
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Beryllium Analysis Run 11/21/2022 9:27 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

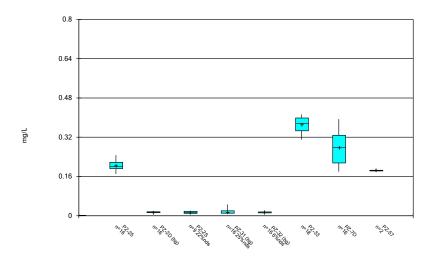
Box & Whiskers Plot



Constituent: Boron Analysis Run 11/21/2022 9:27 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

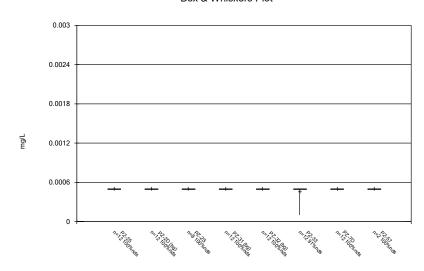
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Cadmium Analysis Run 11/21/2022 9:27 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

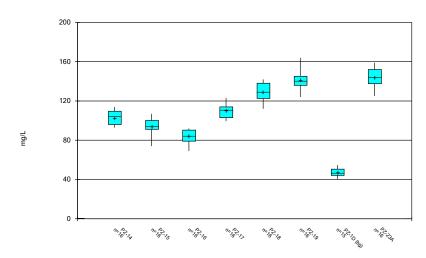
Box & Whiskers Plot



Constituent: Boron Analysis Run 11/21/2022 9:27 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

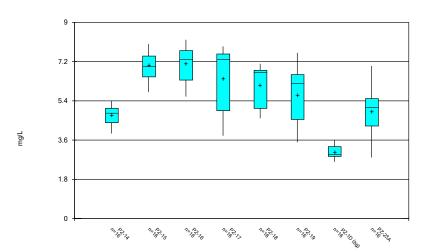
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Cadmium Analysis Run 11/21/2022 9:27 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

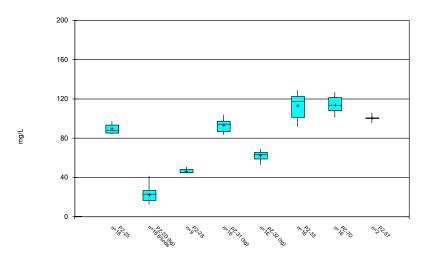
Box & Whiskers Plot



Constituent: Calcium Analysis Run 11/21/2022 9:27 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

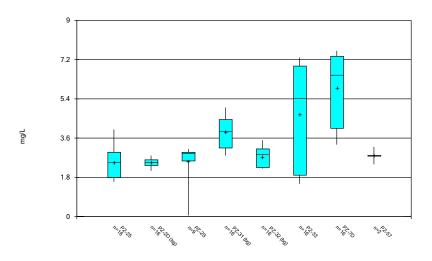
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

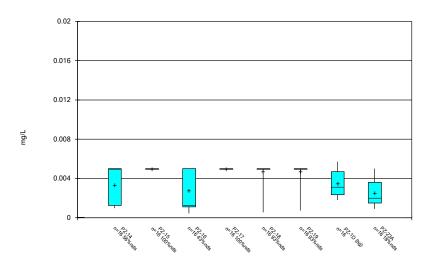
Constituent: Chloride Analysis Run 11/21/2022 9:27 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Box & Whiskers Plot



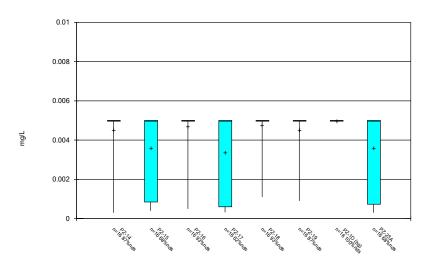
Constituent: Calcium Analysis Run 11/21/2022 9:27 AM


Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Box & Whiskers Plot

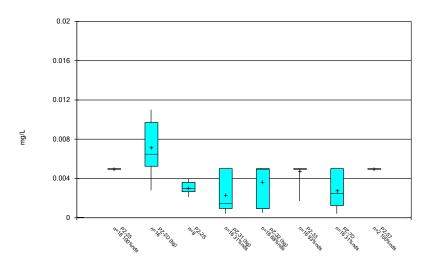
Box & Whiskers Plot



Constituent: Chromium Analysis Run 11/21/2022 9:27 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

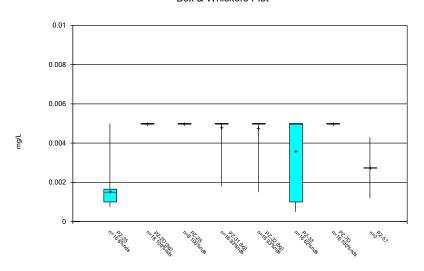
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Cobalt Analysis Run 11/21/2022 9:27 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

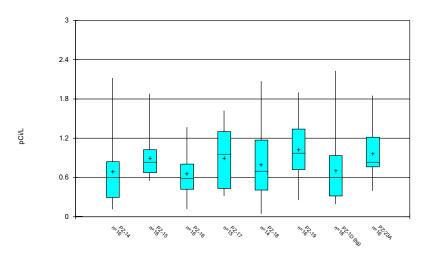
Box & Whiskers Plot



Constituent: Chromium Analysis Run 11/21/2022 9:27 AM

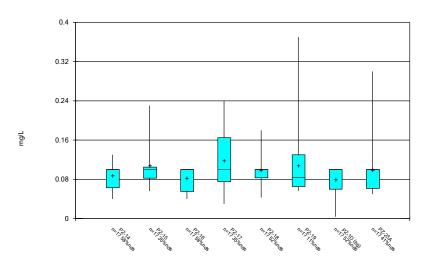
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

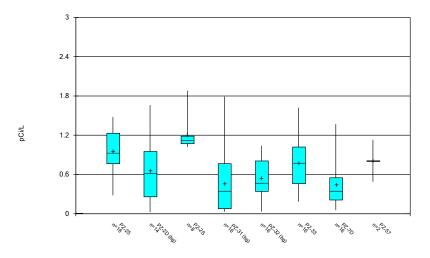
Constituent: Cobalt Analysis Run 11/21/2022 9:27 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Box & Whiskers Plot

Constituent: Combined Radium 226 + 228 Analysis Run 11/21/2022 9:27 AM
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

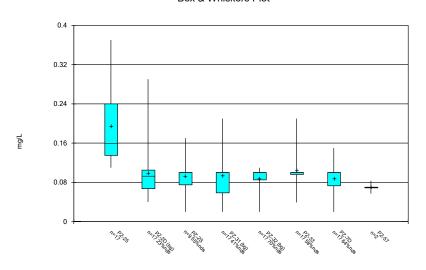
Sanitas[™] v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Fluoride Analysis Run 11/21/2022 9:27 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

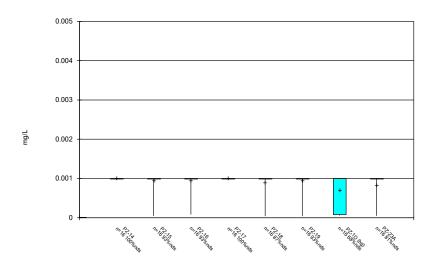
Box & Whiskers Plot



Constituent: Combined Radium 226 + 228 Analysis Run 11/21/2022 9:27 AM

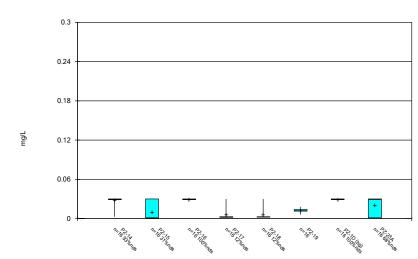
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Fluoride Analysis Run 11/21/2022 9:27 AM

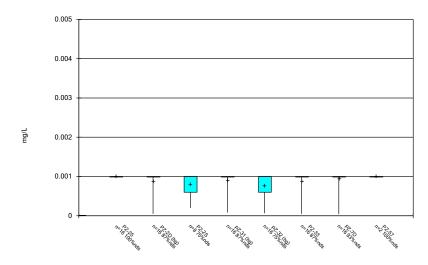
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR



Constituent: Lead Analysis Run 11/21/2022 9:27 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

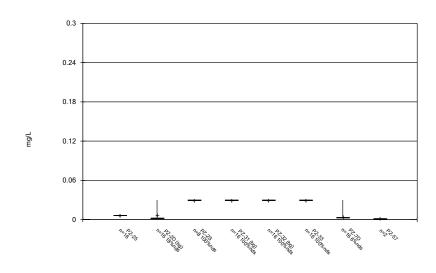
Sanitas[™] v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Lithium Analysis Run 11/21/2022 9:27 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

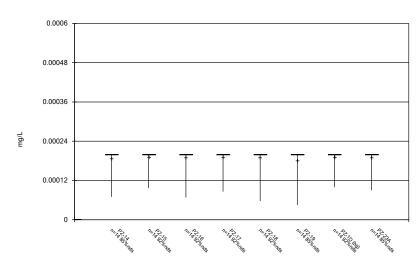
Box & Whiskers Plot



Constituent: Lead Analysis Run 11/21/2022 9:27 AM

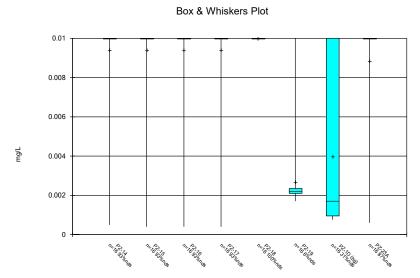
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

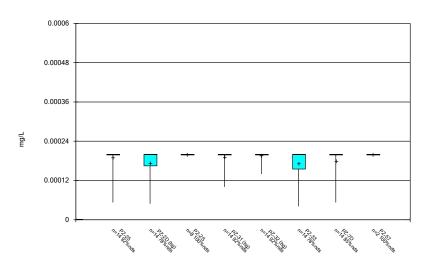
Constituent: Lithium Analysis Run 11/21/2022 9:27 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Box & Whiskers Plot

Constituent: Mercury Analysis Run 11/21/2022 9:27 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Sanitas[™] v.9.6.35 Groundwater Stats Consulting. UG

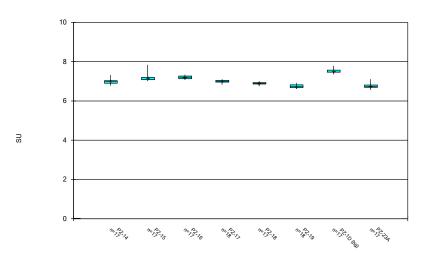
Constituent: Molybdenum Analysis Run 11/21/2022 9:27 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Box & Whiskers Plot

Constituent: Mercury Analysis Run 11/21/2022 9:27 AM

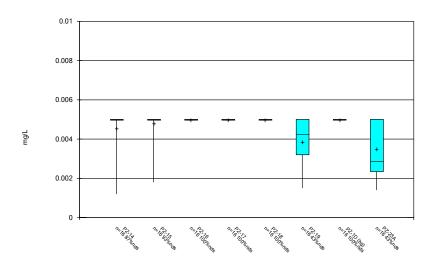
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

0.01 0.008 0.006 0.002 0.002

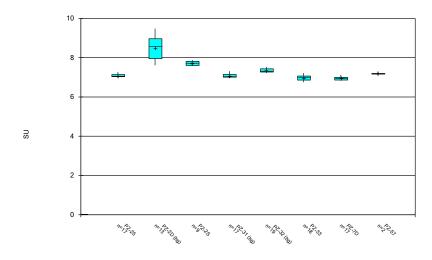
Constituent: Molybdenum Analysis Run 11/21/2022 9:27 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Box & Whiskers Plot

Constituent: pH Analysis Run 11/21/2022 9:28 AM
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

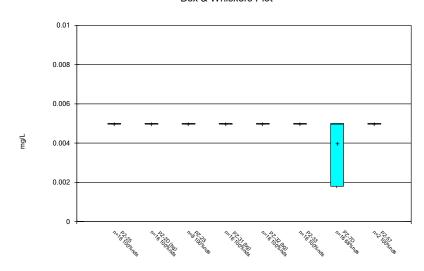
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Selenium Analysis Run 11/21/2022 9:28 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

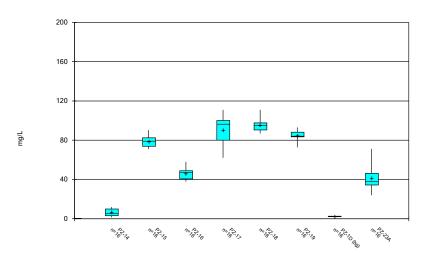
Box & Whiskers Plot



Constituent: pH Analysis Run 11/21/2022 9:28 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

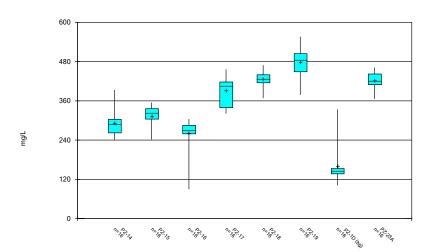
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Selenium Analysis Run 11/21/2022 9:28 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

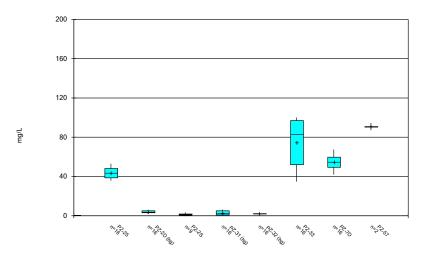
Box & Whiskers Plot



Constituent: Sulfate Analysis Run 11/21/2022 9:28 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

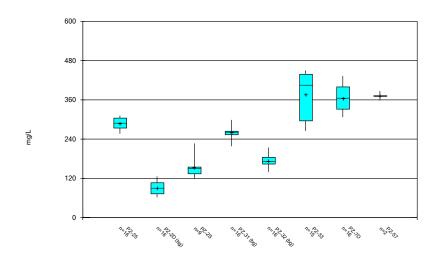
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: TDS Analysis Run 11/21/2022 9:28 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Box & Whiskers Plot

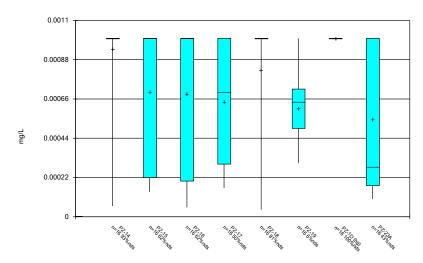


Constituent: Sulfate Analysis Run 11/21/2022 9:28 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

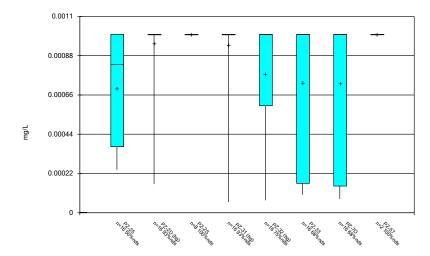
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Box & Whiskers Plot


Constituent: TDS Analysis Run 11/21/2022 9:28 AM

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Constituent: Thallium Analysis Run 11/21/2022 9:28 AM
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Box & Whiskers Plot

Constituent: Thallium Analysis Run 11/21/2022 9:28 AM
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

FIGURE C.

Outlier Summary

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR Printed 11/6/2022, 12:51 AM

12/8/2016 0.162 (o) 503 (o)

7/11/2017 7.82 (o)

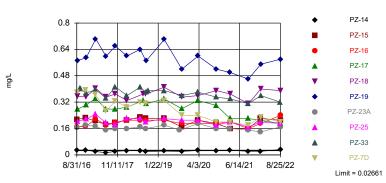
7/11/2018 65.3 (o)

FIGURE D.

Interwell Prediction Limits - Significant Results

	Pla	int Mitchell (Client: South	ern Company	/ Data: M	itchell Ash	Pond CCR	Printed 11/21/2	2022, 10):41 AM			
Constituent	Well	Upper Lim. Lower Lim. Date		Observ.	oserv. Sig. Bg N Bg Mean		Std. Dev. %NDs ND Adj.		Transform	m Alpha Method			
Boron (mg/L)	PZ-15	0.02661	n/a	8/25/2022	0.21	Yes 64	-4.313	0.3429	9.37	5 None	In(x)	0.0007523	Param Inter 1 of 2
Boron (mg/L)	PZ-16	0.02661	n/a	8/25/2022	0.24	Yes 64	-4.313	0.3429	9.37	5 None	In(x)	0.0007523	Param Inter 1 of 2
Boron (mg/L)	PZ-18	0.02661	n/a	8/25/2022	0.39	Yes 64	-4.313	0.3429	9.37	5 None	In(x)	0.0007523	Param Inter 1 of 2
Boron (mg/L)	PZ-19	0.02661	n/a	8/25/2022	0.58	Yes 64	-4.313	0.3429	9.37	5 None	In(x)	0.0007523	Param Inter 1 of 2
Boron (mg/L)	PZ-25	0.02661	n/a	8/24/2022	0.19	Yes 64	-4.313	0.3429	9.37	None	In(x)	0.0007523	Param Inter 1 of 2
Boron (mg/L)	PZ-33	0.02661	n/a	8/24/2022	0.32	Yes 64	-4.313	0.3429	9.37	None	In(x)	0.0007523	Param Inter 1 of 2
Boron (mg/L)	PZ-7D	0.02661	n/a	8/25/2022	0.2	Yes 64	-4.313	0.3429	9.37	5 None	In(x)	0.0007523	Param Inter 1 of 2
Calcium (mg/L)	PZ-18	109.6	n/a	8/25/2022	141	Yes 63	56.47	26.52	1.587	7 None	No	0.0007523	Param Inter 1 of 2
Calcium (mg/L)	PZ-19	109.6	n/a	8/25/2022	156	Yes 63	56.47	26.52	1.587	7 None	No	0.0007523	Param Inter 1 of 2
Calcium (mg/L)	PZ-23A	109.6	n/a	8/25/2022	145	Yes 63	56.47	26.52	1.587	7 None	No	0.0007523	Param Inter 1 of 2
Chloride (mg/L)	PZ-14	4.526	n/a	8/25/2022	4.6	Yes 64	1.088	0.2104	0	None	In(x)	0.0007523	Param Inter 1 of 2
Chloride (mg/L)	PZ-15	4.526	n/a	8/25/2022	6.4	Yes 64	1.088	0.2104	0	None	In(x)	0.0007523	Param Inter 1 of 2
Chloride (mg/L)	PZ-16	4.526	n/a	8/25/2022	6.3	Yes 64	1.088	0.2104	0	None	In(x)	0.0007523	Param Inter 1 of 2
Chloride (mg/L)	PZ-18	4.526	n/a	8/25/2022	4.6	Yes 64	1.088	0.2104	0	None	In(x)	0.0007523	Param Inter 1 of 2
Chloride (mg/L)	PZ-19	4.526	n/a	8/25/2022	4.6	Yes 64	1.088	0.2104	0	None	In(x)	0.0007523	Param Inter 1 of 2
pH (SU)	PZ-14	9.48	6.96	8/25/2022	6.93	Yes 64	n/a	n/a	0	n/a	n/a	0.0009281	NP Inter (normality) 1 of 2
pH (SU)	PZ-18	9.48	6.96	8/25/2022	6.76	Yes 64	n/a	n/a	0	n/a	n/a	0.0009281	NP Inter (normality) 1 of 2
pH (SU)	PZ-19	9.48	6.96	8/25/2022	6.67	Yes 64	n/a	n/a	0	n/a	n/a	0.0009281	NP Inter (normality) 1 of 2
pH (SU)	PZ-23A	9.48	6.96	8/25/2022	6.76	Yes 64	n/a	n/a	0	n/a	n/a	0.0009281	NP Inter (normality) 1 of 2
Sulfate (mg/L)	PZ-14	6.172	n/a	8/25/2022	10.7	Yes 64	1.633	0.4252	0	None	sqrt(x)	0.0007523	Param Inter 1 of 2
Sulfate (mg/L)	PZ-15	6.172	n/a	8/25/2022	75.5	Yes 64	1.633	0.4252	0	None	sqrt(x)	0.0007523	Param Inter 1 of 2
Sulfate (mg/L)	PZ-16	6.172	n/a	8/25/2022	38.7	Yes 64	1.633	0.4252	0	None	sqrt(x)	0.0007523	Param Inter 1 of 2
Sulfate (mg/L)	PZ-17	6.172	n/a	8/25/2022		Yes 64	1.633	0.4252	0	None	sqrt(x)	0.0007523	Param Inter 1 of 2
Sulfate (mg/L)	PZ-18	6.172	n/a	8/25/2022		Yes 64	1.633	0.4252	0	None	sqrt(x)	0.0007523	Param Inter 1 of 2
Sulfate (mg/L)	PZ-19	6.172	n/a	8/25/2022		Yes 64	1.633	0.4252	0	None	sqrt(x)	0.0007523	Param Inter 1 of 2
Sulfate (mg/L)	PZ-23A	6.172	n/a	8/25/2022		Yes 64	1.633	0.4252	0	None	sqrt(x)	0.0007523	Param Inter 1 of 2
Sulfate (mg/L)	PZ-25	6.172	n/a	8/24/2022		Yes 64	1.633	0.4252	0	None	sqrt(x)	0.0007523	Param Inter 1 of 2
Sulfate (mg/L)	PZ-33	6.172	n/a	8/24/2022		Yes 64	1.633	0.4252	0	None	sqrt(x)	0.0007523	Param Inter 1 of 2
Sulfate (mg/L)	PZ-7D	6.172	n/a	8/25/2022		Yes 64	1.633	0.4252	0	None	sqrt(x)	0.0007523	Param Inter 1 of 2
TDS (mg/L)	PZ-15	309.4	n/a	8/25/2022		Yes 62	173.2	67.95	0	None	No	0.0007523	Param Inter 1 of 2
TDS (mg/L)	PZ-17	309.4	n/a	8/25/2022		Yes 62	173.2	67.95	0	None	No	0.0007523	Param Inter 1 of 2
TDS (mg/L)	PZ-18	309.4	n/a	8/25/2022		Yes 62	173.2	67.95	0	None	No	0.0007523	Param Inter 1 of 2
TDS (mg/L)	PZ-19	309.4	n/a	8/25/2022		Yes 62	173.2	67.95	0	None	No 	0.0007523	Param Inter 1 of 2
TDS (mg/L)	PZ-23A	309.4	n/a	8/25/2022		Yes 62	173.2	67.95	0	None	No 	0.0007523	Param Inter 1 of 2
TDS (mg/L)	PZ-7D	309.4	n/a	8/25/2022	325	Yes 62	173.2	67.95	0	None	No	0.0007523	Param Inter 1 of 2

Interwell Prediction Limits - All Results

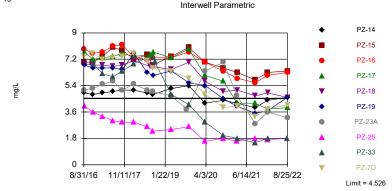

Data: Mitchell Ash Pond CCR Client: Southern Company Constituent Well Upper Lim. Lower Lim. Date Sig. Bg N Bg Mean Std. Dev. %NDs ND Adj Transform Method Observ. Boron (mg/L) PZ-14 0.02661 8/25/2022 0.032J No 64 -4.313 0.3429 9.375 None 0.0007523 Param Inter 1 of 2 n/a ln(x) 0.0007523 Boron (mg/L) PZ-15 0.02661 n/a 8/25/2022 0.21 Yes 64 -4.313 0.3429 9.375 None In(x) Param Inter 1 of 2 PZ-16 0.02661 8/25/2022 0.24 -4.313 0.3429 9.375 None 0.0007523 Param Inter 1 of 2 Boron (ma/L) n/a Yes 64 In(x) n/a Boron (mg/L) P7-17 0.02661 8/25/2022 0.19.1 No 64 -4 313 0.3429 9.375 None In(x) 0.0007523 Param Inter 1 of 2 PZ-18 0.02661 8/25/2022 Yes 64 -4.313 0.3429 9.375 None 0.0007523 Param Inter 1 of 2 Boron (ma/L) n/a In(x) Yes 64 Param Inter 1 of 2 0.02661 8/25/2022 0.58 -4.313 0.3429 9.375 None 0.0007523 Boron (mg/L) PZ-19 n/a In(x) 8/25/2022 0.17J No 64 Boron (mg/L) PZ-23A 0.02661 n/a -4.313 0.3429 9.375 None 0.0007523 Param Inter 1 of 2 In(x) Param Inter 1 of 2 Boron (mg/L) PZ-25 0.02661 n/a 8/24/2022 0.19 Yes 64 -4.313 0.3429 9.375 None In(x) 0.0007523 8/24/2022 0.32 Yes 64 -4.313 Boron (mg/L) PZ-33 0.02661 n/a 0.3429 9.375 None In(x) 0.0007523 Param Inter 1 of 2 Boron (mg/L) PZ-7D 0.02661 n/a 8/25/2022 0.2 Yes 64 -4.313 0.3429 9.375 None In(x) 0.0007523 Param Inter 1 of 2 Calcium (mg/L) PZ-14 8/25/2022 108 No 63 56.47 26.52 1.587 None 0.0007523 Param Inter 1 of 2 109.6 n/a Nο PZ-15 109.6 8/25/2022 No 63 56.47 26.52 0.0007523 Param Inter 1 of 2 Calcium (mg/L) n/a 96.7 1.587 None No PZ-16 8/25/2022 No 63 56.47 0.0007523 Calcium (mg/L) 109.6 92 26.52 1.587 None Param Inter 1 of 2 n/a No Calcium (mg/L) PZ-17 109.6 8/25/2022 99.5 No 63 56.47 26.52 1.587 None No 0.0007523 Param Inter 1 of 2 Calcium (mg/L) P7-18 109.6 n/a 8/25/2022 141 Yes 63 56.47 26.52 1.587 None Nο 0.0007523 Param Inter 1 of 2 Calcium (mg/L) 109.6 n/a 8/25/2022 1.587 None No 0.0007523 Param Inter 1 of 2 8/25/2022 145 Calcium (mg/L) P7-23A 109.6 n/a Yes 63 56.47 26.52 1.587 None Nο 0.0007523 Param Inter 1 of 2 Calcium (mg/L) PZ-25 109.6 8/24/2022 No 63 56.47 26.52 1.587 None 0.0007523 Param Inter 1 of 2 n/a No Calcium (mg/L) P7-33 109.6 n/a 8/24/2022 96.5 No 63 56.47 26.52 1.587 None No 0.0007523 Param Inter 1 of 2 Calcium (mg/L) P7-7D 109.6 n/a 8/25/2022 Nο 63 56 47 26.52 1.587 None No 0.0007523 Param Inter 1 of 2 Chloride (mg/L) P7-14 4.526 n/a 8/25/2022 4.6 Yes 64 1.088 0.2104 0 0.0007523 Param Inter 1 of 2 None In(x) 8/25/2022 6.4 Chloride (ma/L) PZ-15 4.526 Yes 64 1.088 0.2104 0 0.0007523 Param Inter 1 of 2 n/a None In(x) 1.088 Chloride (mg/L) PZ-16 4.526 8/25/2022 6.3 Yes 64 0.2104 0 0.0007523 Param Inter 1 of 2 n/a None In(x) 0 Chloride (mg/L) PZ-17 8/25/2022 3.9 No 64 1.088 0.0007523 Param Inter 1 of 2 4.526 n/a 0.2104 None In(x) Chloride (mg/L) PZ-18 4.526 n/a 8/25/2022 4.6 Yes 64 1.088 0.2104 0 None In(x) 0.0007523 Param Inter 1 of 2 Chloride (ma/L) PZ-19 4.526 n/a 8/25/2022 4.6 Yes 64 1.088 0.2104 0 None In(x) 0.0007523 Param Inter 1 of 2 Chloride (mg/L) P7-23A 4.526 n/a 8/25/2022 3.2 No 64 1.088 0 2104 0 ln(x) 0.0007523 Param Inter 1 of 2 64 0 PZ-25 4.526 8/24/2022 No 1.088 0.2104 0.0007523 Param Inter 1 of 2 Chloride (ma/L) n/a In(x) None PZ-33 4.526 8/24/2022 1.8 64 1.088 0.2104 0 0.0007523 Param Inter 1 of 2 Chloride (mg/L) n/a No In(x) Chloride (ma/L) PZ-7D 8/25/2022 4.1 No 64 1.088 0.2104 0 0.0007523 4.526 n/a None In(x) Param Inter 1 of 2 Fluoride (ma/L) PZ-14 0.29 8/25/2022 0.051J No 68 47.06 n/a 0.0004111 NP Inter (normality) 1 of 2 P7-15 0.29 8/25/2022 0.074.1 Nο 68 47 06 n/a 0.0004111 NP Inter (normality) 1 of 2 Fluoride (ma/L) n/a n/a n/a n/a Fluoride (mg/L) PZ-16 0.29 n/a 8/25/2022 0.058J No 47.06 n/a 0.0004111 NP Inter (normality) 1 of 2 n/a n/a Fluoride (ma/L) PZ-17 0.29 8/25/2022 0.078J 68 47.06 n/a 0.0004111 NP Inter (normality) 1 of 2 n/a Nο n/a n/a n/a Fluoride (mg/L) PZ-18 0.29 n/a 8/25/2022 No 68 47.06 n/a 0.0004111 NP Inter (normality) 1 of 2 n/a n/a Fluoride (mg/L) PZ-19 0.29 n/a 8/25/2022 0.086JNo 68 n/a n/a 47.06 n/a n/a 0.0004111 NP Inter (normality) 1 of 2 Fluoride (mg/L) PZ-23A 0.29 n/a 8/25/2022 0.074J No 68 n/a 47.06 n/a n/a 0.0004111 NP Inter (normality) 1 of 2 Fluoride (mg/L) PZ-25 0.29 n/a 8/24/2022 0.15 No 68 n/a n/a 47.06 n/a n/a 0.0004111 NP Inter (normality) 1 of 2 0.29 47.06 n/a Fluoride (mg/L) PZ-33 8/24/2022 0.092J No 68 n/a n/a 0.0004111 NP Inter (normality) 1 of 2 n/a n/a Fluoride (mg/L) PZ-7D 0.29 n/a 8/25/2022 0.056J No 68 47.06 n/a 0.0004111 NP Inter (normality) 1 of 2 n/a n/a pH (SU) PZ-14 9.48 6.96 8/25/2022 6.93 Yes 64 n/a n/a 0 n/a n/a 0.0009281 NP Inter (normality) 1 of 2 pH (SU) PZ-15 9.48 6.96 8/25/2022 7 15 No 64 n/a n/a 0 n/a n/a 0.0009281 NP Inter (normality) 1 of 2 pH (SU) PZ-16 9.48 6.96 8/25/2022 No 64 0 n/a n/a 0.0009281 NP Inter (normality) 1 of 2 n/a pH (SU) P7-17 9 48 6.96 8/25/2022 7.05 No 64 0 n/a n/a 0.0009281 NP Inter (normality) 1 of 2 n/a 8/25/2022 6.76 PZ-18 9.48 6.96 Yes 64 0 0.0009281 NP Inter (normality) 1 of 2 pH (SU) n/a n/a n/a n/a Yes 64 PZ-19 9.48 8/25/2022 0 0.0009281 NP Inter (normality) 1 of 2 pH (SU) 6.96 6.67 PZ-23A 9.48 8/25/2022 6.76 Yes 64 n/a 0 0.0009281 NP Inter (normality) 1 of 2 pH (SU) 6.96 n/a n/a n/a PZ-25 9.48 6.96 8/24/2022 7.1 No 64 0 0.0009281 NP Inter (normality) 1 of 2 pH (SU) n/a n/a n/a pH (SU) PZ-33 9.48 6.96 8/24/2022 7.1 No 64 n/a 0 n/a n/a 0.0009281 NP Inter (normality) 1 of 2 n/a PZ-7D 64 0 pH (SU) 9.48 6.96 8/25/2022 6.98 No 0.0009281 NP Inter (normality) 1 of 2 PZ-14 8/25/2022 10.7 Yes 64 1.633 0 0.0007523 Sulfate (mg/L) 6.172 n/a 0.4252 None sqrt(x) Param Inter 1 of 2 Sulfate (mg/L) PZ-15 6.172 n/a 8/25/2022 75.5 Yes 64 1.633 0.4252 0 None sqrt(x) 0.0007523 Param Inter 1 of 2 Sulfate (mg/L) PZ-16 6.172 n/a 8/25/2022 38.7 Yes 64 1.633 0.4252 0 None sqrt(x) 0.0007523 Param Inter 1 of 2 Sulfate (mg/L) PZ-17 6.172 n/a 8/25/2022 Yes 64 1.633 0 None sqrt(x) 0.0007523 Param Inter 1 of 2 Sulfate (mg/L) PZ-18 6.172 n/a 8/25/2022 96.3 Yes 64 1.633 0.4252 n None sqrt(x) 0.0007523 Param Inter 1 of 2

Interwell Prediction Limits - All Results

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR Printed 11/21/2022, 10:41 AM Well %NDs ND Adj. Constituent Upper Lim. Lower Lim. Date Observ. Sig. Bg N Bg Mean Std. Dev. Transform Alpha <u>Method</u> PZ-19 6.172 8/25/2022 84.4 Yes 64 1.633 0.4252 Sulfate (mg/L) n/a None sqrt(x) 0.0007523 Param Inter 1 of 2 Yes 64 1.633 0.0007523 Param Inter 1 of 2 Sulfate (mg/L) PZ-23A 6.172 8/25/2022 45.6 0.4252 n/a 0 None sqrt(x) Sulfate (mg/L) PZ-25 6.172 n/a 8/24/2022 35.7 Yes 64 1.633 0.4252 0 None 0.0007523 Param Inter 1 of 2 sart(x) Sulfate (mg/L) PZ-33 6.172 n/a 8/24/2022 34.7 Yes 64 1.633 0.4252 0 None sqrt(x) 0.0007523 Param Inter 1 of 2 8/25/2022 47.3 Sulfate (mg/L) PZ-7D 6.172 n/a Yes 64 1.633 0.4252 0 0.0007523 Param Inter 1 of 2 None sqrt(x) 8/25/2022 259 No 62 173.2 TDS (mg/L) PZ-14 309.4 n/a 67.95 0 None No 0.0007523 Param Inter 1 of 2 TDS (mg/L) PZ-15 309.4 8/25/2022 319 Yes 62 173.2 67.95 0 0.0007523 Param Inter 1 of 2 n/a None No TDS (mg/L) PZ-16 309.4 8/25/2022 90 No 62 173.2 67.95 0 0.0007523 Param Inter 1 of 2 TDS (mg/L) 309.4 n/a 8/25/2022 321 Yes 62 173.2 67.95 0 None 0.0007523 Param Inter 1 of 2 PZ-17 No TDS (mg/L) PZ-18 309.4 8/25/2022 446 Yes 62 173.2 67.95 0.0007523 Param Inter 1 of 2 PZ-19 309.4 8/25/2022 528 Yes 62 173.2 67.95 0.0007523 Param Inter 1 of 2 TDS (mg/L) n/a 0 None No TDS (mg/L) 309.4 8/25/2022 437 Yes 62 173.2 67.95 0 0.0007523 Param Inter 1 of 2 TDS (mg/L) PZ-33 309.4 8/24/2022 265 No 62 173.2 67.95 0 0.0007523 Param Inter 1 of 2 n/a None No TDS (mg/L) PZ-7D 309.4 8/25/2022 325 Yes 62 173.2 67.95 0.0007523 Param Inter 1 of 2

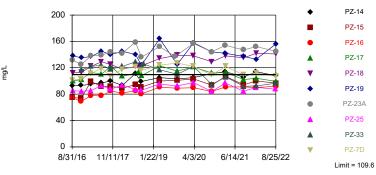
Exceeds Limit: PZ-15, PZ-16, PZ-18, PZ-19, PZ-25, PZ-33, PZ-7D

Prediction Limit Interwell Parametric


Background Data Summary (based on natural log transformation): Mean=-4.313, Std. Dev.=0.3429, n=64, 9.375% NDs. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9612, critical = 0.947. Kappa = 2.003 (c=7, w=10, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.0007523. Comparing 10 points to limit.

Constituent: Boron Analysis Run 11/21/2022 10:39 AM View: Appendix III - Interwell PLs Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

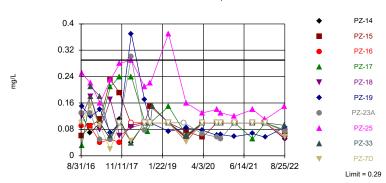
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Exceeds Limit: PZ-14, PZ-15, PZ-16, PZ-18, PZ-19

Prediction Limit

Background Data Summary (based on natural log transformation): Mean=1.088, Std. Dev.=0.2104, n=64. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9613, critical = 0.947. Kappa = 2.003 (c=7, w=10, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.0007523. Comparing 10 points to limit. Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Prediction Limit Exceeds Limit: PZ-18, PZ-19, PZ-23A Interwell Parametric

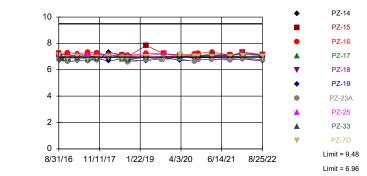


Background Data Summary: Mean=56.47, Std. Dev.=26.52, n=63, 1.587% NDs. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9649, critical = 0.947. Kappa = 2.004 (c=7, w=10, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.0007523. Comparing 10 points to limit.

Constituent: Calcium Analysis Run 11/21/2022 10:39 AM View: Appendix III - Interwell PLs Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit Interwell Non-parametric

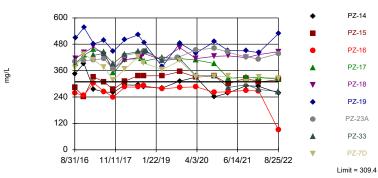

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 68 background values. 47.06% NDs. Annual perconstituent alpha = 0.00819. Individual comparison alpha = 0.0004111 (1 of 2). Comparing 10 points to limit.

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

S

Exceeds Limits: PZ-14, PZ-18, PZ-19, PZ-23A

Prediction Limit Interwell Non-parametric

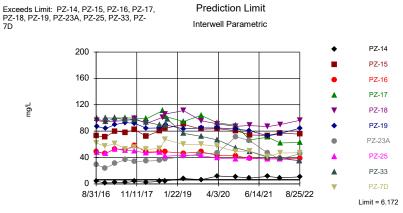

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 64 background values. Annual perconstituent alpha = 0.01848. Individual comparison alpha = 0.0009281 (1 of 2). Comparing 10 points to limit.

Constituent: pH Analysis Run 11/21/2022 10:39 AM View: Appendix III - Interwell PLs
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Exceeds Limit: PZ-15, PZ-17, PZ-18, PZ-19, PZ-23A, PZ-7D

Prediction Limit Interwell Parametric



Background Data Summary: Mean=173.2, Std. Dev_=67.95, n=62. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9631, critical = 0.947. Kappa = 2.006 (c=7, w=10, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.0007523. Comparing 9 points to limit. Assumes 1 future value.

Constituent: TDS Analysis Run 11/21/2022 10:40 AM View: Appendix III - Interwell PLs

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Background Data Summary (based on square root transformation): Mean=1.633, Std. Dev.=0.4252, n=64. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9479, critical = 0.947. Kappa = 2.003 (c=7, w=10, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.007523. Comparing 10 points to limit.

Constituent: Sulfate Analysis Run 11/21/2022 10:40 AM View: Appendix III - Interwell PLs
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Prediction Limit

Constituent: Boron (mg/L) Analysis Run 11/21/2022 10:41 AM View: Appendix III - Interwell PLs

					Company Data:	Mitchell Ash Pond C			
	PZ-1D (bg)	PZ-14	PZ-23A	PZ-7D	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19
8/30/2016	0.0132 (J)								
8/31/2016		0.0285 (J)	0.166						
9/1/2016				0.379	0.215				
9/6/2016						0.17			
9/7/2016							0.276	0.355	0.573
9/8/2016									
10/5/2016									
10/10/2016									
10/18/2016									
12/6/2016	0.0096 (J)								
12/7/2016		0.0292 (J)	0.182	0.394	0.224	0.173			
12/8/2016							0.303	0.351	0.588
3/21/2017	0.0082 (J)	0.0198 (J)	0.172						
3/22/2017				0.365	0.205	0.218	0.342	0.405	
3/23/2017									0.703
7/11/2017	0.0067 (J)	0.0137 (J)	0.149			0.18			
7/12/2017				0.267	0.184		0.278	0.35	0.598
10/17/2017	0.0083 (J)								
10/18/2017		0.0212 (J)	0.158		0.197	0.195	0.277	0.37	
10/19/2017				0.326					0.66
2/20/2018	0.024 (J)	0.026 (J)	0.16						
2/21/2018				0.29	0.21	0.21	0.29	0.33	0.6
4/12/2018									
5/23/2018									
6/13/2018									
7/11/2018	0.017 (J)	0.026 (J)	0.17						
7/12/2018				0.32	0.23	0.21			0.64
8/15/2018								0.37	
8/16/2018							0.33		
8/17/2018									
9/12/2018	0.012 (J)	0.02 (J)							
9/13/2018			0.16	0.31	0.22	0.21		0.37	
9/14/2018							0.31		0.57
10/4/2018									
10/24/2018									
3/26/2019	0.0082								
3/27/2019		0.023	0.18			0.21		0.41	
3/28/2019				0.33	0.22		0.34		0.7
9/10/2019			0.15						
10/1/2019	0.0064 (X)								
10/2/2019		0.021 (X)			0.17	0.19	0.28		
10/3/2019				0.24				0.35	0.52
3/24/2020	0.013 (J)								
3/25/2020		0.027 (J)	0.19				0.33		
3/26/2020				0.24	0.21	0.19		0.36	0.6
10/6/2020	0.015 (J)	0.026 (J)	0.16			0.19			
10/7/2020				0.2	0.19		0.3	0.39	0.52
3/3/2021	0.01 (J)	0.028 (J)	0.16						0.5
3/4/2021				0.2	0.16	0.2	0.22	0.37	
3/8/2021									
9/14/2021	<0.04								
9/15/2021		0.022 (J)	0.15		0.16	0.16			

Prediction Limit

Constituent: Boron (mg/L) Analysis Run 11/21/2022 10:41 AM View: Appendix III - Interwell PLs
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

					. ,				
	PZ-1D (bg)	PZ-14	PZ-23A	PZ-7D	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19
9/16/2021				0.18			0.22	0.31	0.46
1/25/2022	0.01 (J)								
1/26/2022		0.022 (J)	0.14		0.22	0.19			
1/27/2022				0.23			0.21	0.4	0.55
8/24/2022	0.011 (J)								
8/25/2022		0.032 (J)	0.17 (J)	0.2	0.21	0.24	0.19 (J)	0.39	0.58

Constituent: Boron (mg/L) Analysis Run 11/21/2022 10:41 AM View: Appendix III - Interwell PLs Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

			Plant Mi	tchell Client: Sout	nern Company [
	PZ-25	PZ-33	PZ-31 (bg)	PZ-32 (bg)	PZ-2D (bg)
8/30/2016					
8/31/2016					
9/1/2016					
9/6/2016					
9/7/2016					
9/8/2016	0.204				
10/5/2016		0.404			
10/10/2016		0.401			
10/18/2016			0.0174 (J)	0.0156 (J)	
12/6/2016			0.0133 (J)	. ,	
12/7/2016			, ,	0.0157 (J)	
12/8/2016	0.216	0.375		,	
3/21/2017			0.0103 (J)		
3/22/2017	0.247		()		
3/23/2017		0.396		0.0103 (J)	
7/11/2017	0.194		<0.04	<0.04	
7/12/2017		0.343			
10/17/2017			0.0116 (J)	0.0142 (J)	
10/18/2017	0.186		0.0110 (0)	0.0 1 12 (0)	
10/19/2017	0.100	0.413			
2/20/2018			0.046 (J)	0.011 (J)	
2/21/2018	0.22	0.36	212 12 (2)		
4/12/2018	0.22	0.00			0.016 (J)
5/23/2018					0.018 (J)
6/13/2018					0.014 (J)
7/11/2018			0.014 (J)	0.014 (J)	0.017 (J)
7/12/2018	0.22	0.41	0.011(0)	0.011(0)	0.017 (0)
8/15/2018	0.22	0			
8/16/2018					
8/17/2018					0.015 (J)
9/12/2018			0.0098 (J)		0.013 (J)
9/13/2018	0.2		0.0000 (0)	0.013 (J)	0.0.0
9/14/2018	0.2	0.38		0.010 (0)	
10/4/2018		0.39			0.016 (J)
10/24/2018		0.55			0.018 (J)
3/26/2019			0.0076		0.010 (0)
3/27/2019	0.22		0.0070	0.012	0.016
3/28/2019	0.22	0.39		0.012	0.010
9/10/2019		0.55			
10/1/2019				0.011 (X)	
10/1/2019	0.21		0.0084 (X)	0.011(X)	0.011 (V)
10/2/2019	0.21	0.36	0.0084 (X)		0.011 (X)
		0.30			0.015 (1)
3/24/2020	0.21		0.011 / 1)	0.016 (1)	0.015 (J)
3/25/2020 3/26/2020	0.21	0.29	0.011 (J)	0.016 (J)	
		0.38	0.011 / 1)	0.015 (1)	0.018 (1)
10/6/2020	0.10	0.25	0.011 (J)	0.015 (J)	0.018 (J)
10/7/2020	0.18	0.35	0.0007 (1)	0.022 (1)	
3/3/2021	0.2	0.24	0.0087 (J)	0.022 (J)	
3/4/2021		0.34			0.010 ())
3/8/2021				0.040 ("	0.013 (J)
9/14/2021	0.17		<0.04	0.012 (J)	0.011 (J)

<0.04

9/15/2021

0.17

	PZ-25	PZ-33	PZ-31 (bg)	PZ-32 (bg)	PZ-2D (bg)
9/16/2021		0.31			
1/25/2022					0.013 (J)
1/26/2022	0.2		<0.04	0.01 (J)	
1/27/2022		0.36			
8/24/2022	0.19	0.32	<0.04	0.022 (J)	0.012 (J)
8/25/2022					

	PZ-1D (bg)	PZ-14	PZ-23A	PZ-7D	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19
8/30/2016	40.4								
8/31/2016		92.9	132						
9/1/2016				101	74.8				
9/6/2016						74.6			
9/7/2016							100	112	138
9/8/2016									
10/18/2016									
12/6/2016	43.3								
12/7/2016		93.1	125	103	74	68.9			
12/8/2016							102	113	135
3/21/2017	44.1	95	138						
3/22/2017				111	99.3	77.8	113	122	
3/23/2017									137
7/11/2017	47.4	97.1	139			77.3			
7/12/2017				119	91.4		110	129	145
10/17/2017	48.7								
10/18/2017		100	144		92	84.7	122	125	
10/19/2017				107					140
2/20/2018	46.8	93.1	142						
2/21/2018				118	89	81.8	107	118	145
4/12/2018									
5/23/2018									
6/13/2018									
7/11/2018	65.3 (o)	111	159						
7/12/2018				121	94.5	85.2			140
8/15/2018								123	
8/16/2018							113		
8/17/2018									
9/12/2018	46.6	99.3							
9/13/2018			136	116	90.8	80.2		123	
9/14/2018							108		124
10/4/2018									
10/24/2018									
3/26/2019	43.3								
3/27/2019		105	152			90.5		134	
3/28/2019				124	100		123		164
9/10/2019			137						
10/1/2019	46.8								
10/2/2019		103			101	89.1	115		
10/3/2019				127				139	125
3/24/2020	48								
3/25/2020		105	157				121		
3/26/2020				122	103	89.8		138	158
10/6/2020	50.5	111	144			84			
10/7/2020				109	93.5		112	129	144
3/3/2021	54.7	114	154						142
3/4/2021				122	107	90.9	113	138	
3/8/2021									
9/14/2021	51								
9/15/2021		106	147		94	91			
9/16/2021				109			102	135	137
1/25/2022	53.1								

	PZ-1D (bg)	PZ-14	PZ-23A	PZ-7D	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19
1/26/2022		114	152		100	90.1			
1/27/2022				112			104	142	133
8/24/2022	45.8								
8/25/2022		108	145	107	96.7	92	99.5	141	156

			T Idili Willor	ell Chefft. Godffe	in company Date. Witchen Asi 1 ond Con
	PZ-25	PZ-32 (bg)	PZ-31 (bg)	PZ-33	PZ-2D (bg)
8/30/2016					
8/31/2016					
9/1/2016					
9/6/2016					
9/7/2016					
9/8/2016	85.2				
10/18/2016		57.2	88.3		
12/6/2016			83.4		
12/7/2016		52.8			
12/8/2016	84.5			117	
3/21/2017			94		
3/22/2017	85.3				
3/23/2017		59.1		122	
7/11/2017	93	59.7	86		
7/12/2017				124	
10/17/2017		64.9	91.6		
10/18/2017	87.6				
10/19/2017				118	
2/20/2018		64.1	86.5		
2/21/2018	93.9			122	
4/12/2018					<25
5/23/2018					17.6 (J)
6/13/2018					14.3
7/11/2018		60.4	95.4		15.6
7/12/2018	87.1			129	
8/15/2018					
8/16/2018					
8/17/2018					27
9/12/2018			86		26.9
9/13/2018	85.8	58.7			
9/14/2018				123	
10/4/2018				126	25
10/24/2018					23.8
3/26/2019			87.3		
3/27/2019	95.2	54.6			26.1
3/28/2019				117	
9/10/2019					
10/1/2019		64.3			
10/2/2019	92.3		95.5		21
10/3/2019				110	
3/24/2020					26.5
3/25/2020	97.5	66.6	95.8		
3/26/2020				122	
10/6/2020	0.1.5	62.8	98.8	0.1.7	22.7
10/7/2020	84.2	04.0.45.11	101	94.7	
3/3/2021	96.8	64.8 (M1)	104		
3/4/2021				106	
3/8/2021					41.7
9/14/2021		67.8			13.4
9/15/2021	84.4		101		
9/16/2021				92	
1/25/2022					20.7

	PZ-25	PZ-32 (bg)	PZ-31 (bg)	PZ-33	PZ-2D (bg)
1/26/2022	90.2	69.2	102		
1/27/2022				92.5	
8/24/2022	87.6	67.1	95.2	96.5	27.3
8/25/2022					

		PZ-1D (bg)	PZ-14	PZ-23A	PZ-7D	PZ-15	PZ-16	PZ-19	PZ-18	PZ-17
8/3	30/2016	3.1								
8/3	31/2016		4.9	5.1						
9/1	1/2016				7.4	7				
9/6	6/2016						7.9			
9/7	7/2016							6.8	6.9	7.7
9/8	3/2016									
10	/18/2016									
12	/6/2016	3.4								
12	/7/2016		4.8	5.2	7.6	7	7.6			
12	/8/2016							6.6	6.8	7.2
3/2	21/2017	2.9	4.9	5.5						
3/2	22/2017				7.2	7.4	7.7		6.8	7.3
3/2	23/2017							6.6		
7/1	11/2017	3.4	5	5.7			8.1			
7/1	12/2017				7.3	8		6.6	6.7	7.4
	/17/2017	3.3								
	/18/2017		5.1	5.1		7.8	8.2		6.8	7.6
	/19/2017				7.4			6.5		
	20/2018	3.3	5.1	5.5						
	21/2018				7.6	7.2	7.3	7.6	7.1	7.4
	12/2018									
	23/2018									
	13/2018									
	11/2018	2.9	4.9	5.1						
	12/2018				7.1	7.5	7.2	6.3		
	15/2018								6.7	
	16/2018									7.5
	17/2018									
	12/2018	2.8	4.8							
	13/2018			5	6.6	6.8	7.3		6.7	
	14/2018							6.1		7.7
	/4/2018									
	/24/2018									
	26/2019	3.3								
	27/2019		5.2	4.7			7.3		6.5	
	28/2019				6.4	7.4		6.4		7.3
	10/2019			3.8						
	/1/2019	3.6								
	/2/2019		5.4			8	7.7			7.9
	/3/2019				5.9			5.6	7	
	24/2020	2.8								
	25/2020		4.2	6.4						6.1
	26/2020				4.8	7	7	5.4	5.7	
	/6/2020	3	4.4	7			6.4			
	/7/2020				3.9	6.6		4.5	5	5.7
	3/2021	2.8	4.2	4.7	-	-		4		
	1/2021	-			4	6.3	5.9		5.1	4.2
	3/2021				•					··=
	14/2021	2.9								
	15/2021		3.9	2.8		5.8	5.6			
	16/2021				3.3			3.5	4.7	4.2
	25/2022	2.9								··=
.,,_		· -								

	PZ-1D (bg)	PZ-14	PZ-23A	PZ-7D	PZ-15	PZ-16	PZ-19	PZ-18	PZ-17
1/26/2022		4.4	3.6		6.3	6.1			
1/27/2022				3.8			3.7	4.9	3.8
8/24/2022	2.6								
8/25/2022		4.6	3.2	4.1	6.4	6.3	4.6	4.6	3.9

			T Idili Will	Chen Chent. Codu	tern company Data. Whicheli Asiri ond Cott
	PZ-25	PZ-31 (bg)	PZ-32 (bg)	PZ-33	PZ-2D (bg)
8/30/2016					
8/31/2016					
9/1/2016					
9/6/2016					
9/7/2016					
9/8/2016	4				
10/18/2016		4.5	3.5		
12/6/2016		5			
12/7/2016			3.2		
12/8/2016	3.6			6.9	
3/21/2017		4.3			
3/22/2017	3.3				
3/23/2017			2.9	6.2	
7/11/2017	3	4.7	3.1		
7/12/2017	0	7.7	0.1	6	
10/17/2017		4.6	3	Ü	
10/17/2017	2.9	4.0	3		
	2.9			6.4	
10/19/2017				6.4	
2/20/2018		4.4	3	0.0	
2/21/2018	2.9			6.9	
4/12/2018					2.6
5/23/2018					2.5
6/13/2018					2.5
7/11/2018		4	2.8		2.6
7/12/2018	2.6			7.3	
8/15/2018					
8/16/2018					
8/17/2018					2.6
9/12/2018		3.7			2.3
9/13/2018	2.3		2.2		
9/14/2018				7.3	
10/4/2018				7	2.7
10/24/2018					2.8
3/26/2019		3.8			
3/27/2019	2.4		3.1		2.5
3/28/2019				4.8	
9/10/2019					
10/1/2019			3.1		
10/2/2019	2.6	4.3			2.7
10/3/2019				4.1	
3/24/2020					2.2
3/25/2020	1.6	3	2.2		
3/26/2020				2.9	
10/6/2020		3.4	2.3	2.0	2.3
10/7/2020	1.8		2.0	2	
3/3/2021	1.6	3.1	2.2	-	
3/4/2021	1.0	0.1	£.£	1.8	
				1.0	24
3/8/2021			2.2		2.4
9/14/2021	1.0	2.0	۷.۷		2.5
9/15/2021	1.8	2.8		4.5	
9/16/2021				1.5	
1/25/2022					2.4

	PZ-25	PZ-31 (bg)	PZ-32 (bg)	PZ-33	PZ-2D (bg)
1/26/2022	1.7	3.2	2.4		
1/27/2022				1.8	
8/24/2022	1.8	3	2.7	1.8	2.1
8/25/2022					

		PZ-1D (bg)	PZ-14	PZ-23A	PZ-15	PZ-7D	PZ-16	PZ-17	PZ-18	PZ-19
8	8/30/2016	0.06 (J)								
8	8/31/2016		0.13 (J)	0.13 (J)						
9	9/1/2016				0.06 (J)	<0.1				
9	9/6/2016						0.09 (J)			
9	9/7/2016							0.03 (J)	0.12 (J)	0.15 (J)
9	9/8/2016									
	10/18/2016									
	12/6/2016	0.06 (J)								
	12/7/2016		0.07 (J)	0.13 (J)	0.09 (J)	0.15 (J)	0.09 (J)			
	12/8/2016							0.18 (J)	0.18 (J)	0.12 (J)
;	3/21/2017	0.004 (J)	<0.1	0.05 (J)						
	3/22/2017				0.11 (J)	0.09 (J)	0.04 (J)	0.09 (J)	0.08 (J)	
	3/23/2017				,	, ,	, ,	.,	. ,	0.14 (J)
	7/11/2017	0.05 (J)	0.05 (J)	0.05 (J)			0.05 (J)			
	7/12/2017	. ,	. ,	. ,	0.23 (J)	0.02 (J)	,	0.21 (J)	0.17 (J)	0.07 (J)
	10/17/2017	<0.1			,	· /		,	()	()
	10/18/2017		0.11 (J)	<0.1	0.19 (J)		0.04 (J)	0.24 (J)	0.06 (J)	
	10/19/2017		. ,		,	<0.1	()	, ,	. ,	<0.1
	2/20/2018	0.098 (J)	0.04 (J)	0.3 (J)						
	2/21/2018			(-)	0.093 (J)	0.045 (J)	<0.1	0.24 (J)	0.086 (J)	0.37
	4/12/2018				(-)	(-)		(-)	(,,	
	5/23/2018									
	6/13/2018									
	7/11/2018	<0.1	<0.1	0.077 (J)						
	7/12/2018			0.077 (0)	<0.1	<0.1	<0.1			0.17 (J)
	8/15/2018								<0.1	0 (0)
	8/16/2018							0.073 (J)		
	8/17/2018									
	9/12/2018	0.034 (J)	<0.1							
	9/13/2018	0.00 (0)		<0.1	0.15 (J)	<0.1	<0.1		<0.1	
	9/14/2018			-0.1	0.10 (0)	-0.1	-0.1	<0.1	-0.1	<0.1
	10/4/2018									
	10/24/2018									
	3/26/2019	<0.1								
	3/27/2019		<0.1	<0.1			<0.1		<0.1	
	3/28/2019				0.1	<0.1		0.15		0.074
	9/10/2019			<0.1						
	10/1/2019	0.062 (X)								
	10/2/2019	()	0.056 (X)		0.075 (X)		0.053 (X)	0.063 (X)		
	10/3/2019		,		,	0.041 (X)	,	,	0.043 (X)	0.084 (X)
	3/24/2020	<0.1								
	3/25/2020		<0.1	0.066 (J)				<0.1		
	3/26/2020			(1)	0.056 (J)	<0.1	<0.1		<0.1	0.077 (J)
	8/25/2020	<0.1			(-)					(-)
	8/26/2020		<0.1	0.057 (J)	<0.1	<0.1	<0.1	<0.1		0.062 (J)
	8/27/2020			()					<0.1	. ,
	10/6/2020	<0.1	<0.1	0.052 (J)			<0.1			
	10/7/2020			`,	<0.1	<0.1		<0.1	<0.1	0.064 (J)
	3/3/2021	<0.1	<0.1	<0.1						0.058 (J)
	3/4/2021				<0.1	<0.1	<0.1	<0.1	<0.1	. ,
	3/8/2021									
	9/14/2021	<0.1								

	PZ-1D (bg)	PZ-14	PZ-23A	PZ-15	PZ-7D	PZ-16	PZ-17	PZ-18	PZ-19
9/15/2021		<0.1	<0.1	<0.1		<0.1			
9/16/2021					<0.1		0.052 (J)	<0.1	0.067 (J)
1/25/2022	<0.1								
1/26/2022		<0.1	<0.1	<0.1		<0.1			
1/27/2022					<0.1		<0.1	<0.1	0.056 (J)
8/24/2022	0.08 (J)								
8/25/2022		0.051 (J)	0.074 (J)	0.074 (J)	0.056 (J)	0.058 (J)	0.078 (J)	0.052 (J)	0.086 (J)

			Flant IVII	icheli Client. 3001	idien Company Data. Milicreli Ash Fond Con
	PZ-25	PZ-32 (bg)	PZ-31 (bg)	PZ-33	PZ-2D (bg)
8/30/2016					
8/31/2016					
9/1/2016					
9/6/2016					
9/7/2016					
9/8/2016	0.25 (J)				
10/18/2016	,	0.11 (J)	0.16 (J)		
12/6/2016		(-)	0.15 (J)		
12/7/2016		0.07 (J)	0.10 (0)		
12/8/2016	0.22 (J)	0.07 (0)		0.21 (J)	
3/21/2017	0.22 (0)		0.02 (J)	0.21 (0)	
3/22/2017	0.16 (J)		0.02 (0)		
3/23/2017	0.10 (0)	<0.1		0.18 (J)	
7/11/2017	0.23 (J)	0.02 (J)	0.06 (J)	0.10 (0)	
7/12/2017	0.23 (0)	0.02 (0)	0.00 (3)	0.06 (J)	
10/17/2017		<0.1	0.05 (J)	0.00 (3)	
	0.28 (1)	<0.1	0.05 (3)		
10/18/2017	0.28 (J)			-0.4	
10/19/2017		.0.4	0.04 (1)	<0.1	
2/20/2018	0.00 (1)	<0.1	0.21 (J)	0.000 (1)	
2/21/2018	0.29 (J)			0.039 (J)	
4/12/2018					<0.1
5/23/2018					0.063 (J)
6/13/2018					0.11 (J)
7/11/2018		<0.1	0.087 (J)		<0.1
7/12/2018	0.21 (J)			<0.1	
8/15/2018					
8/16/2018					
8/17/2018					<0.1
9/12/2018			0.049 (J)		0.093 (J)
9/13/2018	0.22 (J)	<0.1			
9/14/2018				<0.1	
10/4/2018				0.15 (J)	0.15 (J)
10/24/2018					0.29 (J)
3/26/2019			<0.1		
3/27/2019	0.37	<0.1			0.04
3/28/2019				<0.1	
9/10/2019					
10/1/2019		0.042 (X)			
10/2/2019	0.16 (X)		0.057 (X)		0.11 (X)
10/3/2019				0.06 (X)	
3/24/2020					0.051 (J)
3/25/2020	0.13 (J)	<0.1	<0.1		
3/26/2020				<0.1	
8/25/2020		<0.1	<0.1		
8/26/2020	0.14			<0.1	0.057 (J)
8/27/2020					
10/6/2020		<0.1	<0.1		0.073 (J)
10/7/2020	0.13			<0.1	
3/3/2021	0.12	<0.1	<0.1		
3/4/2021				<0.1	
3/8/2021					<0.1
9/14/2021		<0.1			0.089 (J)

	PZ-25	PZ-32 (bg)	PZ-31 (bg)	PZ-33	PZ-2D (bg)
9/15/2021	0.14		<0.1		
9/16/2021				<0.1	
1/25/2022					0.071 (J)
1/26/2022	0.11	<0.1	<0.1		
1/27/2022				<0.1	
8/24/2022	0.15	0.058 (J)	0.069 (J)	0.092 (J)	0.088 (J)
8/25/2022					

Constituent: pH (SU) Analysis Run 11/21/2022 10:41 AM View: Appendix III - Interwell PLs

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-1D (bg)	PZ-14	PZ-23A	PZ-7D	PZ-15	PZ-16	PZ-19	PZ-18	PZ-17
8/30/2016	7.67								
8/31/2016		6.97	6.75						
9/1/2016				7.07	7.21				
9/6/2016						7.23			
9/7/2016						7.20	6.71	6.92	7.02
9/8/2016							0.71	0.02	7.02
10/4/2016									
10/5/2016									
10/17/2016									
10/18/2016									
12/6/2016	7.57								
12/7/2016	7.57	6.85	6.64	6.85	7.13	7.3			
12/8/2016		0.00	0.04	0.00	7.13	7.5	6.61	6.9	6.95
3/21/2017	7.54	7.04	6.73				0.01	0.9	0.93
3/22/2017	7.54	7.04	0.73	6.99	7.04	7.2		7	7.05
3/23/2017				0.99	7.04	7.2	6.69	,	7.03
7/11/2017	7.43	6.88	6.66			7.31	0.09		
7/11/2017	7.43	0.00	0.00	6 92	7.09	7.31	6 60	6.05	7.06
	7.7			6.83	7.09		6.69	6.95	7.00
10/17/2017	7.7	6 77	6.70		7.0	7.00	6.00		6.00
10/18/2017		6.77	6.73	0.01	7.2	7.28	6.88		6.99
10/19/2017	7.57	7.00 (D)	7.44	6.91			6.85		
2/20/2018	7.57	7.32 (D)	7.11	0.07	7.11	7.4	0.00	0.00	0.05
2/21/2018	7.40	7.10	7	6.97	7.11	7.1	6.66	6.89	6.95
7/11/2018	7.48	7.12	7	0.05	7.07	7.44	0.04	7.01	7.00
7/12/2018				6.85	7.07	7.14	6.84	7.01	7.06
8/15/2018								6.87	7.01
8/16/2018									7.01
9/12/2018	7.41	6.87							
9/13/2018			6.56	6.88	7.01	7.08		6.86	
9/14/2018	7.40						6.76		6.83
3/26/2019	7.49	0.00	0.75			7.00		0.00	
3/27/2019		6.98	6.75			7.23		6.92	
3/28/2019				6.96	7.84		6.67		6.97
9/10/2019	7.5		6.78						
10/1/2019	7.5	0.00			7.00	7.00			0.00
10/2/2019		6.96			7.22	7.22			6.99
10/3/2019	7.70			6.85			6.93	6.78	
3/24/2020	7.79	7.00	0.04						0.00
3/25/2020		7.02	6.84	7.40	7.00	7.40	0.7	7.01	6.93
3/26/2020				7.12	7.08	7.12	6.7	7.01	
8/25/2020	7.49	0.00	0.04	7.04	7.00	7.10	0.00		0.00
8/26/2020		6.98	6.64	7.01	7.08	7.18	6.68	0.00	6.98
8/27/2020	7.05	7.04	0.70			7.04		6.88	
10/6/2020	7.35	7.01	6.78	0.00		7.24	0.70	0.04	7.04
10/7/2020	7.50	0.00	0.70	6.98	7.11		6.78	6.91	7.04
3/3/2021	7.56	6.99	6.79	0.05	7.00	7.04	6.78	0.01	7.00
3/4/2021				6.95	7.09	7.34		6.91	7.09
3/8/2021	7.45								
9/14/2021	7.45	6.04	6.70		7.00	7.10			
9/15/2021		6.94	6.72	6.06	7.09	7.12	6.77	C 0F	7.02
9/16/2021	7.51			6.96			6.77	6.85	7.03
1/25/2022	7.51								

	PZ-1D (bg)	PZ-14	PZ-23A	PZ-7D	PZ-15	PZ-16	PZ-19	PZ-18	PZ-17
1/26/2022		7.05	6.83		7.33	7.26			
1/27/2022				7.03			6.8	6.92	7.03
8/24/2022	7.49								
8/25/2022		6.93	6.76	6.98	7.15	7.14	6.67	6.76	7.05

			Plant Mitche	II Client: Southern	Company Data: Mitchell Ash Pond CCR
	PZ-25	PZ-33	PZ-32 (bg)	PZ-31 (bg)	PZ-2D (bg)
8/30/2016					
8/31/2016					
9/1/2016					
9/6/2016					
9/7/2016					
9/8/2016	7.1				
10/4/2016		6.88			
10/5/2016		6.91			
10/17/2016			7.43		
10/18/2016			7.45	7.15	
12/6/2016				7.04	
12/7/2016			7.29		
12/8/2016	6.98	6.86			
3/21/2017				7.01	
3/22/2017	7.16				
3/23/2017	7.1.0	6.9	7.26		
7/11/2017	7.15	7.82 (o)	7.31	6.96	
7/12/2017	7.10	6.81	7.01	0.50	
10/17/2017		0.01	7.29	7.31	7.61
10/17/2017	7.09		7.23	7.51	7.01
10/19/2017	7.03	6.86			
2/20/2018		0.00	7.26		
2/21/2018	7.12	7.02	7.20		
7/11/2018	7.12	7.02	7.39	7.26	9.48
		6.00	7.39		5.40
7/12/2018		6.82		7.01	
8/15/2018					
8/16/2018				7.00	0.07
9/12/2018	7.00		7.05	7.02	9.07
9/13/2018	7.03		7.25		
9/14/2018		6.75		_	
3/26/2019				7	
3/27/2019	7.08		7.42		8.76
3/28/2019		6.96			
9/10/2019					
10/1/2019			7.43		
10/2/2019	7.2			7.09	8.97
10/3/2019		7.01			
3/24/2020					8.57
3/25/2020	7.01		7.23	7.15	
3/26/2020		7			
8/25/2020			7.53	7.14	
8/26/2020	7.09	6.99			7.97
8/27/2020					
10/6/2020			7.27	7.01	8.72
10/7/2020	6.95	7.04			
3/3/2021	7.04		7.41	7.14	
3/4/2021		7.22			
3/8/2021					7.77
9/14/2021			7.31		8.96
9/15/2021	7.05			6.99	
9/16/2021		7.1			
1/25/2022					8.4

	PZ-25	PZ-33	PZ-32 (bg)	PZ-31 (bg)	PZ-2D (bg)
1/26/2022	7.28		7.44	7.1	
1/27/2022		7.18			
8/24/2022	7.1	7.1	7.34	7.04	8.01
8/25/2022					

					,		-		
	PZ-1D (bg)	PZ-14	PZ-23A	PZ-7D	PZ-15	PZ-16	PZ-19	PZ-18	PZ-17
8/30/2016	2.1								
8/31/2016		4.1	29						
9/1/2016				62	73				
9/6/2016						49			
9/7/2016							87	96	99
9/8/2016									
10/18/2016									
12/6/2016	2.4								
12/7/2016		1.5	24	57	71	46			
12/8/2016							84	94	94
3/21/2017	2.5	2	31						
3/22/2017				61	80	53		95	100
3/23/2017							90		
7/11/2017	2.6	2	37			52			
7/12/2017				53	78		93	96	100
10/17/2017	2.5								
10/18/2017		4.2	34		82	58		99	100
10/19/2017				55			92		
2/20/2018	2.3	2.4	34.7				02		
2/21/2018	2.0	2.7	04.7	52.1	72.2	48.2	84.5	91.8	98.8
4/12/2018				52.1	7 2.2		00	01.0	00.0
5/23/2018									
6/13/2018									
7/11/2018	2.5	3.8	35.4						
7/12/2018	2.5	3.0	33.4	53.9	80.5	48.8	84.9		
8/15/2018				55.9	80.5	40.0	04.9	101	
8/16/2018								101	111
									111
8/17/2018	2	4.2							
9/12/2018	2	4.3	27.4	67.5	04.4	40.7		100	
9/13/2018			37.4	67.5	84.4	48.7	90 F	106	100
9/14/2018							89.5		102
10/4/2018									
10/24/2018	0.7								
3/26/2019	2.7	0.0	44.0			40.5		444	
3/27/2019		8.2	41.9	50.0	00.0	46.5	00.5	111	0.4.7
3/28/2019			45.4	59.6	90.3		83.5		94.7
9/10/2019	0.0		45.1						
10/1/2019	2.8	0.0			00	40.5			404
10/2/2019		6.2			83	48.5			104
10/3/2019				59.6			84.9	95.8	
3/24/2020	3								
3/25/2020		11.9	47						92.4
3/26/2020				57.1	83.6	43.5	84.9	91	
10/6/2020	2.4	11	71.2			42.4			
10/7/2020				48.9	80.7		83.3	87.3	89.1
3/3/2021	2.2	8.8	66				80.8		
3/4/2021				49.7	74.1	38.9		88.6	66.8
3/8/2021									
9/14/2021	2.6								
9/15/2021		11.4	46.8		73.4	37.8			
9/16/2021				41.8			72.7	86.9	70.9
1/25/2022	2.4								

	PZ-1D (bg)	PZ-14	PZ-23A	PZ-7D	PZ-15	PZ-16	PZ-19	PZ-18	PZ-17
1/26/2022		9.1	37.8		77.2	38.9			
1/27/2022				46.7			76.3	89.9 (M1)	62.1
8/24/2022	2.2								
8/25/2022		10.7	45.6	47.3	75.5	38.7	84.4	96.3	62.7

			Plant Mir	tchell Client: So	outnern Company Data: Mitchell Ash Pond CCR
	PZ-25	PZ-31 (bg)	PZ-32 (bg)	PZ-33	PZ-2D (bg)
8/30/2016					
8/31/2016					
9/1/2016					
9/6/2016					
9/7/2016					
9/8/2016	48				
10/18/2016		2.2	2.3		
12/6/2016		6.1			
12/7/2016			1.9		
12/8/2016	46			100	
3/21/2017		5.7			
3/22/2017	53				
3/23/2017			1.7	100	
7/11/2017	51	4.8	1.8		
7/12/2017				97	
10/17/2017		6.4	1.9		
10/18/2017	50				
10/19/2017				97	
2/20/2018		5.2	2.1		
2/21/2018	46.8			93.6	
4/12/2018					4.8 (J)
5/23/2018					4.5
6/13/2018					5.3
7/11/2018		3.6	2		5.4
7/12/2018	48.3			89.4	
8/15/2018					
8/16/2018					
8/17/2018					4.5
9/12/2018		2.7			4.4
9/13/2018	42		2.1		
9/14/2018				88.9	
10/4/2018				97.8	5.8
10/24/2018					6.2
3/26/2019		1.6			
3/27/2019	43.7		2.4		3.7
3/28/2019				76.7	
9/10/2019					
10/1/2019			2.2		
10/2/2019	43	1.6			4.1
10/3/2019				72.1	
3/24/2020					3.1
3/25/2020	39.1	1.5	1.9		
3/26/2020				66.6	
10/6/2020		0.98 (J)	1.9		3.1
10/7/2020	38.1			54.6	
3/3/2021	39.2	0.6 (J)	2		
3/4/2021				49.3	
3/8/2021					2.7
9/14/2021			1.8		3.8
9/15/2021	37.8	0.64 (J)			
9/16/2021				40.4	
1/25/2022					2.9

	PZ-25	PZ-31 (bg)	PZ-32 (bg)	PZ-33	PZ-2D (bg)
1/26/2022	37.5	0.69 (J)	1.9		
1/27/2022				40	
8/24/2022	35.7	0.56 (J)	1.7	34.7	2
8/25/2022					

Constituent: TDS (mg/L) Analysis Run 11/21/2022 10:41 AM View: Appendix III - Interwell PLs

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-1D (bg)	PZ-14	PZ-23A	PZ-15	PZ-7D	PZ-16	PZ-18	PZ-17	PZ-19
8/30/2016	136								
8/31/2016		344	400						
9/1/2016				284	373				
9/6/2016						257			
9/7/2016							415	392	508
10/18/2016									
12/6/2016	207								
12/7/2016		393	406	242	433	248			
12/8/2016							441	431	556
3/21/2017	128	276	409						
3/22/2017				332	409	304	469	456	
3/23/2017									482
7/11/2017	138	263	414			265			
7/12/2017				308	374		432	445	497
10/17/2017	101								
10/18/2017		261	366	275		240	368	349	
10/19/2017					318				448
2/20/2018	138	295	429						
2/21/2018				312	367	285	409	411	500
4/12/2018									
5/23/2018									
6/13/2018									
7/11/2018	153	294	440						
7/12/2018				337	423	285			523
8/15/2018							422		
8/16/2018								415	
8/17/2018									
9/12/2018	146	286							
9/13/2018			448	336	394	291	438		
9/14/2018								403	486
10/4/2018									
10/24/2018									
3/26/2019	334								
3/27/2019		281	410			277	408		
3/28/2019				337	365			420	378
9/10/2019			420						
10/1/2019	146								
10/2/2019		312		355		284		415	
10/3/2019					405		464		485
3/24/2020	228								
3/25/2020		330	454					408	
3/26/2020				330	332	286	415		440
10/6/2020	153	241	462			261			
10/7/2020				336	334		425	392	492
3/3/2021	134	258	444						452
3/4/2021	•			300	335	264	427	325	-
3/8/2021					-		-	- -	
9/14/2021	150								
9/15/2021	, .	292	422	326		270			
9/16/2021			-		307	-	419	330	450
1/25/2022	148								
1/26/2022		288	413	308		267			
			*						

Page 2

Prediction Limit

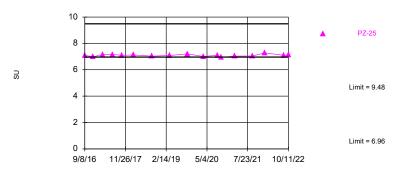
	PZ-1D (bg)	PZ-14	PZ-23A	PZ-15	PZ-7D	PZ-16	PZ-18	PZ-17	PZ-19
1/27/2022					331		433	329	442
8/24/2022	139								
8/25/2022		259	437	319	325	90	446	321	528

				Plant Mitche	ell Client: Southern Company Data: Mitchell Ash Pond CCR
		PZ-31 (bg)	PZ-32 (bg)	PZ-33	PZ-2D (bg)
8/3	30/2016				
8/3	31/2016				
9/1	1/2016				
9/6	6/2016				
	7/2016				
	/18/2016	264	152		
	/6/2016	299			
	/7/2016		214		
	/8/2016			503 (o)	
	21/2017	260		(-)	
	22/2017				
	23/2017		165	430	
	11/2017	244	162	.00	
	12/2017			438	
	/17/2017	218	140	400	
	/18/2017	210	140		
	/19/2017			393	
	20/2018	264	163	333	
	21/2018	204	103	435	
	12/2018			433	69
	23/2018				62
	13/2018	272	102		93 84
	11/2018	273	192	447	04
	12/2018			447	
	15/2018				
	16/2018				445
	17/2018	252			115
	12/2018	252	100		97
	13/2018		192		
	14/2018			447	400
	/4/2018			450	103
	/24/2018				110
	26/2019	253			
	27/2019		167		87
	28/2019			405	
	10/2019				
	/1/2019		187		-
	/2/2019	263			95
	/3/2019			414	
	24/2020				123
	25/2020	278	178		
	26/2020			336	
	/6/2020	254	169		81
	/7/2020			337	
	3/2021	264	166		
	4/2021			283	
	8/2021				126
	14/2021		179		71
	15/2021	256			
	16/2021			296	
	25/2022				68
1/2	26/2022	262	182		

Page 4

Prediction Limit

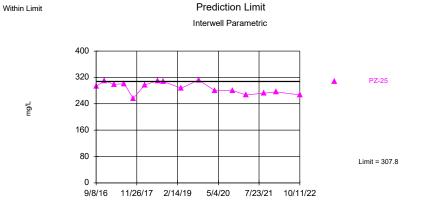
		PZ-31 (bg)	PZ-32 (bg)	PZ-33	PZ-2D (bg)
•	1/27/2022			274	
8	3/24/2022	261		265	
8	8/25/2022				


FIGURE E.

Interwell Prediction Limits - Resample Results (No Significant)

	Plant I	Mitchell Client: So	outhern Company	/ Data: Mi	tchell Ash Pond CCR	Printed 11/21/2	2022, 1	0:43 AM			
Constituent	<u>Well</u>	Upper Lim. Lowe	er Lim. Date	Observ.	Sig. Bg N Bg Mean	Std. Dev.	<u>%N[</u>	Os ND Adj.	Transform	<u>Alpha</u>	<u>Method</u>
pH (SU)	PZ-25	9.48 6.96	10/11/2022	2 7.13	No 66 n/a	n/a	0	n/a	n/a	0.0008751	NP Inter (normality) 1 of 2
TDS (mg/L)	PZ-25	307.8 n/a	10/11/2022	2 267	No 64 171.6	67.98	0	None	No	0.0007523	Param Inter 1 of 2

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Within Limits Prediction Limit
Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 66 background values. Annual perconstituent alpha = 0.01743. Individual comparison alpha = 0.008751 (1 of 2). Assumes 9 future values.

Constituent: pH Analysis Run 11/21/2022 10:43 AM View: Appendix III - Interwell PLs Resample
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

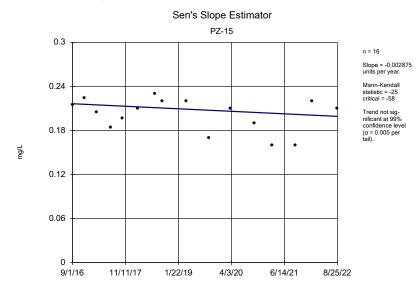
Background Data Summary: Mean=171.6, Std. Dev=67.98, n=64. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9633, critical = 0.947. Kappa = 2.003 (c=7, w=10, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.0007523. Assumes 9 future values.

Constituent: pH (SU) Analysis Run 11/21/2022 10:43 AM View: Appendix III - Interwell PLs Resample

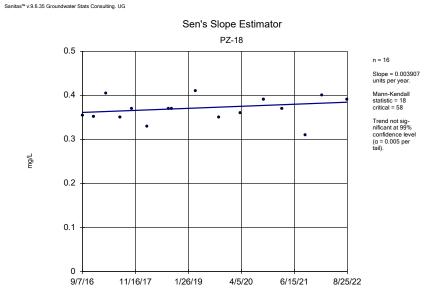
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-1D (bg)	PZ-25	PZ-32 (bg)	PZ-31 (bg)	PZ-2D (bg)	
8/30/2016	7.67					
9/8/2016		7.1				
10/17/2016			7.43			
10/18/2016			7.45	7.15		
12/6/2016	7.57			7.04		
12/7/2016			7.29			
12/8/2016		6.98				
3/21/2017	7.54			7.01		
3/22/2017		7.16				
3/23/2017			7.26			
7/11/2017	7.43	7.15	7.31	6.96		
10/17/2017	7.7		7.29	7.31	7.61	
10/18/2017		7.09				
2/20/2018	7.57		7.26			
2/21/2018		7.12				
7/11/2018	7.48		7.39	7.26	9.48	
7/12/2018				7.01		
9/12/2018	7.41			7.02	9.07	
9/13/2018		7.03	7.25			
3/26/2019	7.49			7		
3/27/2019		7.08	7.42		8.76	
10/1/2019	7.5		7.43			
10/2/2019		7.2		7.09	8.97	
3/24/2020	7.79				8.57	
3/25/2020		7.01	7.23	7.15		
8/25/2020	7.49		7.53	7.14		
8/26/2020		7.09			7.97	
10/6/2020	7.35		7.27	7.01	8.72	
10/7/2020		6.95				
3/3/2021	7.56	7.04	7.41	7.14		
3/8/2021					7.77	
9/14/2021	7.45		7.31		8.96	
9/15/2021		7.05		6.99		
1/25/2022	7.51				8.4	
1/26/2022		7.28	7.44	7.1		
8/24/2022	7.49	7.1	7.34	7.04	8.01	
10/11/2022	-	7.13	7.37	-	7.94	

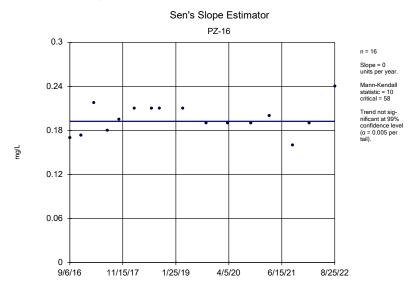
	PZ-1D (bg)	PZ-25	PZ-31 (bg)	PZ-32 (bg)	PZ-2D (bg)
8/30/2016	136				
9/8/2016		293			
10/18/2016			264	152	
12/6/2016	207		299		
12/7/2016				214	
12/8/2016		309			
3/21/2017	128		260		
3/22/2017		299			
3/23/2017				165	
7/11/2017	138	301	244	162	
10/17/2017	101		218	140	
10/18/2017		256			
2/20/2018	138		264	163	
2/21/2018		297			
4/12/2018					69
5/23/2018					62
6/13/2018					93
7/11/2018	153		273	192	84
7/12/2018		310			
8/17/2018					115
9/12/2018	146		252		97
9/13/2018		307		192	
10/4/2018					103
10/24/2018					110
3/26/2019	334		253		
3/27/2019		287		167	87
10/1/2019	146			187	
10/2/2019		312	263		95
3/24/2020	228				123
3/25/2020		280	278	178	
10/6/2020	153		254	169	81
10/7/2020		280			
3/3/2021	134	267	264	166	
3/8/2021	.=-			.=-	126
9/14/2021	150	070	050	179	71
9/15/2021	140	272	256		.00
1/25/2022	148	276	262	100	68
1/26/2022	120	276	262	182	
8/24/2022 10/11/2022	139	267	261	173	75
10/11/2022		207		1/3	13


FIGURE F.

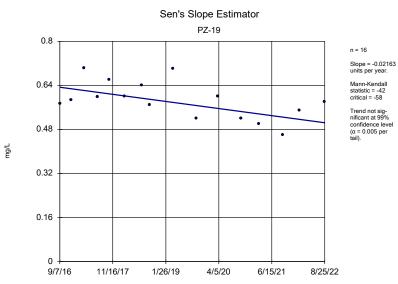
Trend Tests - Prediction Limit Exceedances - Significant Results


	Plant Mitchell	Client: Southern Company	Data: Mitchell	Ash Pond	CCR Pri	nted 1	1/21/20	22, 4:48	PM			
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	Xform	<u>Alpha</u>	Method
Boron (mg/L)	PZ-33		-0.01244	-78	-68	Yes	18	0	n/a	n/a	0.01	NP
Boron (mg/L)	PZ-7D		-0.0341	-84	-58	Yes	16	0	n/a	n/a	0.01	NP
Calcium (mg/L)	PZ-18		4.478	83	58	Yes	16	0	n/a	n/a	0.01	NP
Calcium (mg/L)	PZ-31 (bg)		2.442	69	58	Yes	16	0	n/a	n/a	0.01	NP
Calcium (mg/L)	PZ-32 (bg)		1.939	70	58	Yes	16	0	n/a	n/a	0.01	NP
Chloride (mg/L)	PZ-16		-0.347	-76	-58	Yes	16	0	n/a	n/a	0.01	NP
Chloride (mg/L)	PZ-18		-0.3988	-82	-58	Yes	16	0	n/a	n/a	0.01	NP
Chloride (mg/L)	PZ-19		-0.5273	-93	-58	Yes	16	0	n/a	n/a	0.01	NP
Chloride (mg/L)	PZ-31 (bg)		-0.3431	-86	-58	Yes	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	PZ-14		1.677	83	58	Yes	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	PZ-16		-2.677	-81	-58	Yes	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	PZ-19		-1.705	-61	-58	Yes	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	PZ-23A		4.222	84	58	Yes	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	PZ-25		-2.516	-92	-58	Yes	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	PZ-2D (bg)		-0.6424	-70	-58	Yes	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	PZ-31 (bg)		-0.9633	-91	-58	Yes	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	PZ-33		-12.82	-108	-58	Yes	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	PZ-7D		-2.016	-59	-58	Yes	16	0	n/a	n/a	0.01	NP
TDS (mg/L)	PZ-17		-16.07	-64	-58	Yes	16	0	n/a	n/a	0.01	NP
TDS (mg/L)	PZ-7D		-12.16	-60	-58	Yes	16	0	n/a	n/a	0.01	NP

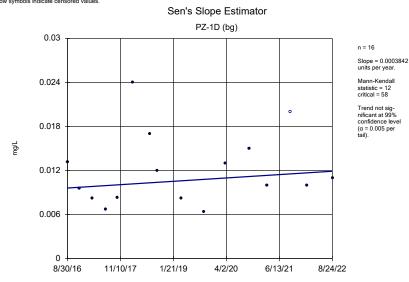
Trend Tests - Prediction Limit Exceedances - All Results


	Plant Mitchell	Client: Southern Company	Data: Mitchel	Ash Pond	CCR P	Printed 11/21/2022, 4:48 PM							
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method	
Boron (mg/L)	PZ-15		-0.002875	-25	-58	No	16	0	n/a	n/a	0.01	NP	
Boron (mg/L)	PZ-16		0	10	58	No	16	0	n/a	n/a	0.01	NP	
Boron (mg/L)	PZ-18		0.003907	18	58	No	16	0	n/a	n/a	0.01	NP	
Boron (mg/L)	PZ-19		-0.02163	-42	-58	No	16	0	n/a	n/a	0.01	NP	
Boron (mg/L)	PZ-1D (bg)		0.0003842	12	58	No	16	6.25	n/a	n/a	0.01	NP	
Boron (mg/L)	PZ-25		-0.005259	-41	-58	No	16	0	n/a	n/a	0.01	NP	
Boron (mg/L)	PZ-2D (bg)		-0.001017	-43	-58	No	16	0	n/a	n/a	0.01	NP	
Boron (mg/L)	PZ-31 (bg)		0	-1	-58	No	16	25	n/a	n/a	0.01	NP	
Boron (mg/L)	PZ-32 (bg)		0	-1	-58	No	16	6.25	n/a	n/a	0.01	NP	
Boron (mg/L)	PZ-33		-0.01244	-78	-68	Yes	18	0	n/a	n/a	0.01	NP	
Boron (mg/L)	PZ-7D		-0.0341	-84	-58	Yes	16	0	n/a	n/a	0.01	NP	
Calcium (mg/L)	PZ-18		4.478	83	58	Yes	16	0	n/a	n/a	0.01	NP	
Calcium (mg/L)	PZ-19		0.9209	11	58	No	16	0	n/a	n/a	0.01	NP	
Calcium (mg/L)	PZ-1D (bg)		1.612	53	53	No	15	0	n/a	n/a	0.01	NP	
Calcium (mg/L)	PZ-23A		2.968	52	58	No	16	0	n/a	n/a	0.01	NP	
Calcium (mg/L)	PZ-2D (bg)		2.155	30	58	No	16	6.25	n/a	n/a	0.01	NP	
Calcium (mg/L)	PZ-31 (bg)		2.442	69	58	Yes	16	0	n/a	n/a	0.01	NP	
Calcium (mg/L)	PZ-32 (bg)		1.939	70	58	Yes	16	0	n/a	n/a	0.01	NP	
Chloride (mg/L)	PZ-14		-0.1076	-35	-58	No	16	0	n/a	n/a	0.01	NP	
Chloride (mg/L)	PZ-15		-0.2275	-52	-58	No	16	0	n/a	n/a	0.01	NP	
Chloride (mg/L)	PZ-16		-0.347	-76	-58	Yes	16	0	n/a	n/a	0.01	NP	
Chloride (mg/L)	PZ-18		-0.3988	-82	-58	Yes	16	0	n/a	n/a	0.01	NP	
Chloride (mg/L)	PZ-19		-0.5273	-93	-58	Yes	16	0	n/a	n/a	0.01	NP	
Chloride (mg/L)	PZ-1D (bg)		-0.08315	-47	-58	No	16	0	n/a	n/a	0.01	NP	
Chloride (mg/L)	PZ-2D (bg)		-0.05458	-36	-58	No	16	0	n/a	n/a	0.01	NP	
Chloride (mg/L)	PZ-31 (bg)		-0.3431	-86	-58	Yes	16	0	n/a	n/a	0.01	NP	
Chloride (mg/L)	PZ-32 (bg)		-0.1674	-58	-58	No	16	0	n/a	n/a	0.01	NP	
pH (SU)	PZ-14		0.009753	13	63	No	17	0	n/a	n/a	0.01	NP	
pH (SU)	PZ-18		-0.01313	-37	-63	No	17	0	n/a	n/a	0.01	NP	
pH (SU)	PZ-19		0.007961	14	68	No	18	0	n/a	n/a	0.01	NP	
pH (SU)	PZ-1D (bg)		-0.01661	-30	-63	No	17	0	n/a	n/a	0.01	NP	
pH (SU)	PZ-23A		0.014	24	63	No	17 13	0	n/a	n/a	0.01	NP	
pH (SU) pH (SU)	PZ-2D (bg) PZ-31 (bg)		-0.2384 -0.003316	-28 -10	-43 -63	No No	17	0	n/a n/a	n/a n/a	0.01 0.01	NP NP	
pH (SU)	PZ-32 (bg)		0.004191	11	74	No	19	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	PZ-14		1.677	83	58	Yes	16	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	PZ-15		0.4002	12	58	No	16	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	PZ-16		-2.677	-81	-58	Yes	16	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	PZ-17		-5.533	-57	-58	No	16	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	PZ-18		-1.22	-27	-58	No	16	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	PZ-19		-1.705	-61	-58	Yes	16	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	PZ-1D (bg)		0	6	58	No	16	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	PZ-23A		4.222	84	58	Yes	16	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	PZ-25		-2.516	-92	-58	Yes	16	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	PZ-2D (bg)		-0.6424	-70	-58	Yes	16	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	PZ-31 (bg)		-0.9633	-91	-58	Yes	16	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	PZ-32 (bg)		-0.02024	-16	-58	No	16	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	PZ-33		-12.82	-108	-58	Yes	16	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	PZ-7D		-2.016	-59	-58	Yes	16	0	n/a	n/a	0.01	NP	
TDS (mg/L)	PZ-15		4.115	21	58	No	16	0	n/a	n/a	0.01	NP	
TDS (mg/L)	PZ-17		-16.07	-64	-58	Yes	16	0	n/a	n/a	0.01	NP	
TDS (mg/L)	PZ-18		2.236	13	58	No	16	0	n/a	n/a	0.01	NP	
TDS (mg/L)	PZ-19		-10.13	-32	-58	No	16	0	n/a	n/a	0.01	NP	
TDS (mg/L)	PZ-1D (bg)		2.035	21	58	No	16	0	n/a	n/a	0.01	NP	
TDS (mg/L)	PZ-23A		6.692	52	58	No	16	0	n/a	n/a	0.01	NP	
TDS (mg/L)	PZ-2D (bg)		1.433	4	58	No	16	0	n/a	n/a	0.01	NP	
TDS (mg/L)	PZ-31 (bg)		0	-1	-58	No	16	0	n/a	n/a	0.01	NP	
TDS (mg/L)	PZ-32 (bg)		2.04	23	58	No	16	0	n/a	n/a	0.01	NP	
TDS (mg/L)	PZ-7D		-12.16	-60	-58	Yes	16	0	n/a	n/a	0.01	NP	

Constituent: Boron Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

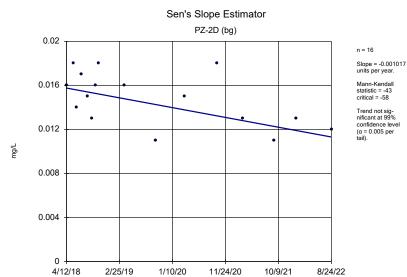


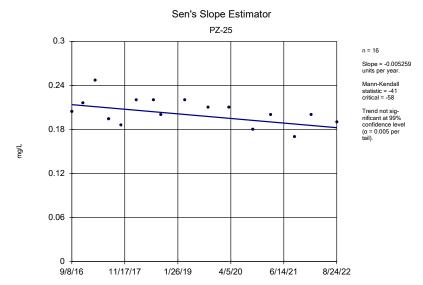
Constituent: Boron Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR



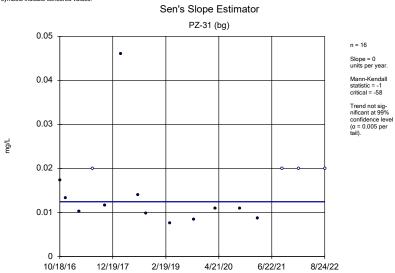
Constituent: Boron Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

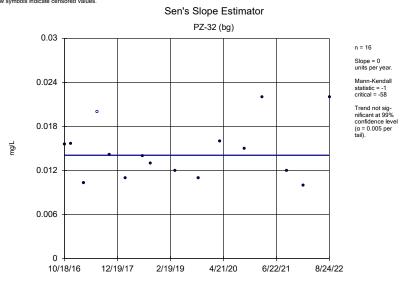

Constituent: Boron Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Constituent: Boron Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

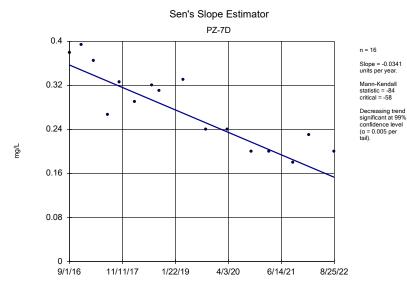


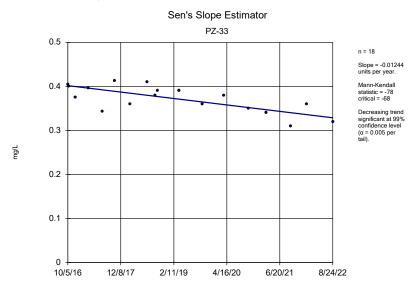
Constituent: Boron Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR



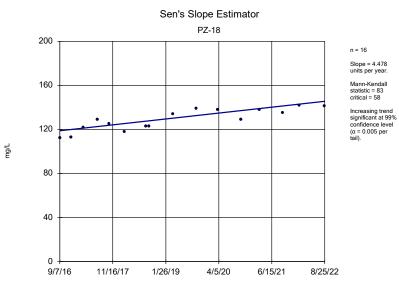
Constituent: Boron Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

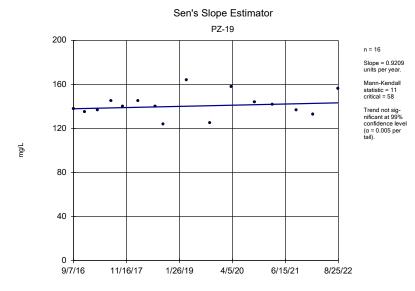
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Boron Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

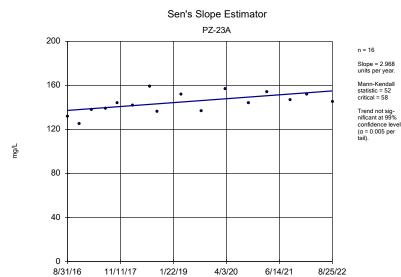

Constituent: Boron Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

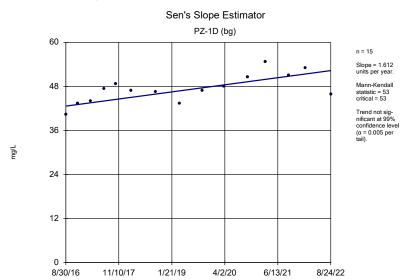


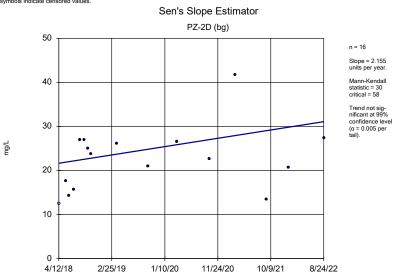

Constituent: Boron Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Constituent: Boron Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

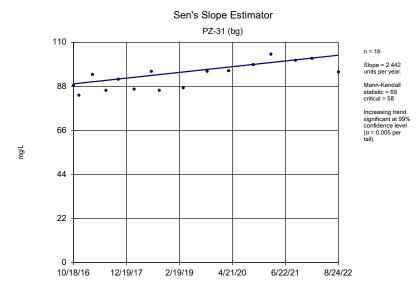


Constituent: Calcium Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Constituent: Calcium Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Constituent: Calcium Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR



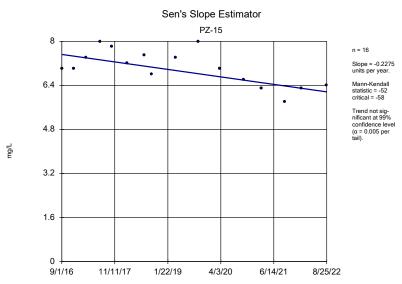
Constituent: Calcium Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

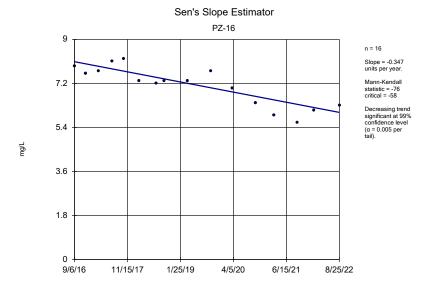

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



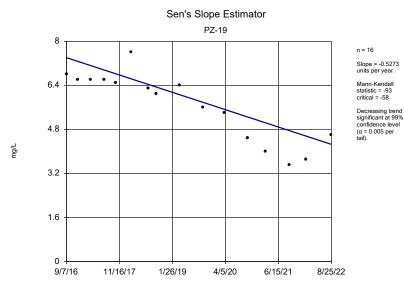
Constituent: Calcium Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Constituent: Calcium Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

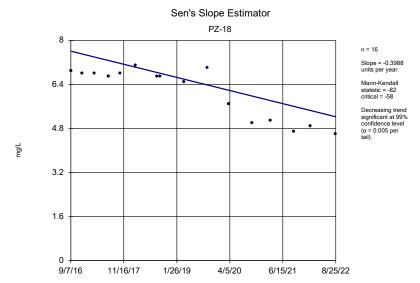



Constituent: Chloride Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

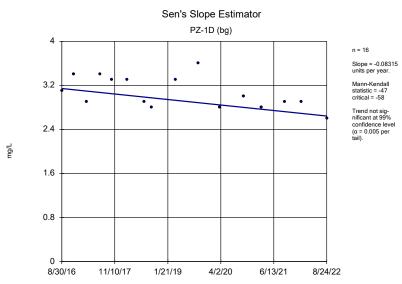
Constituent: Calcium Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

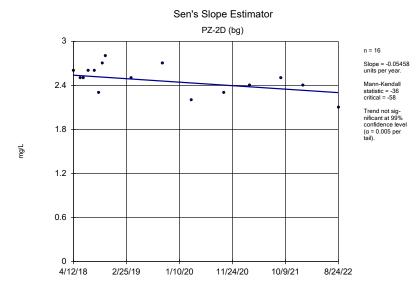


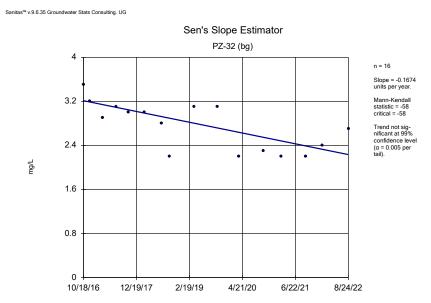
Constituent: Chloride Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

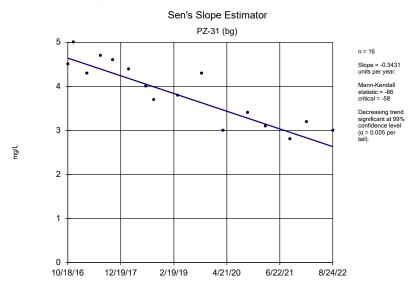


Constituent: Chloride Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

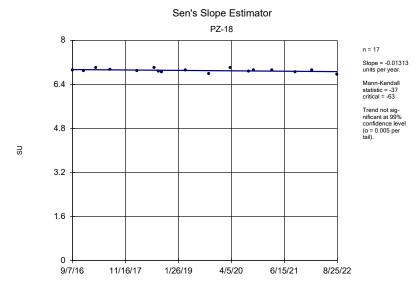



Constituent: Chloride Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

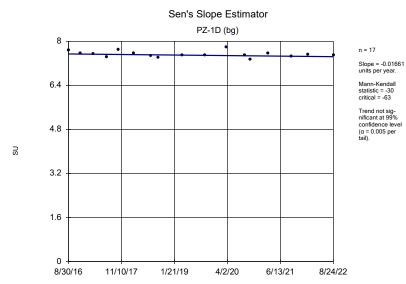

Constituent: Chloride Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Constituent: Chloride Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

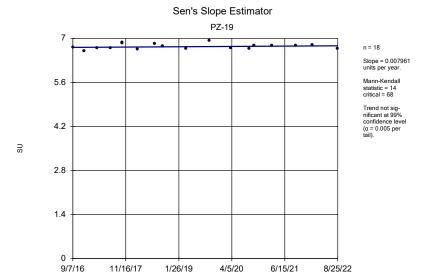
Constituent: Chloride Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Constituent: Chloride Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

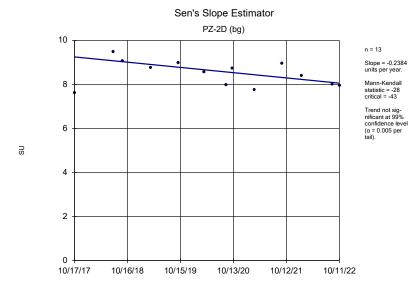
Constituent: Chloride Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR



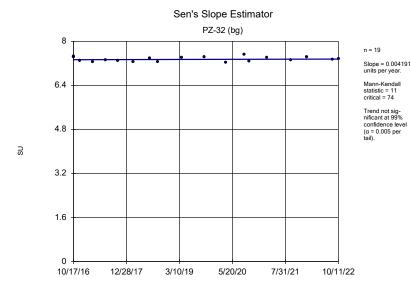
Constituent: pH Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR



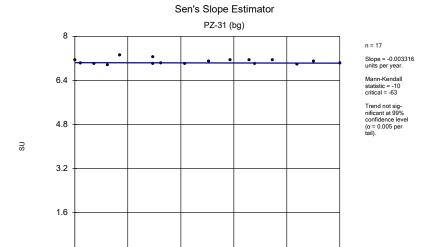
Constituent: pH Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Constituent: pH Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Constituent: pH Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR



Constituent: pH Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR



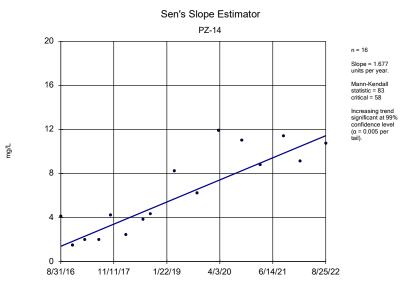
Constituent: pH Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Constituent: pH Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

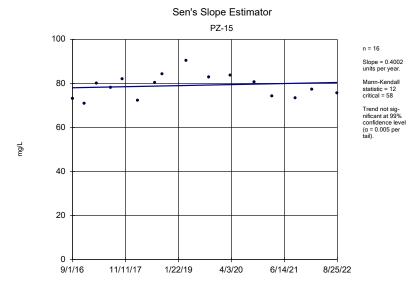
Constituent: pH Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

2/19/19

4/21/20

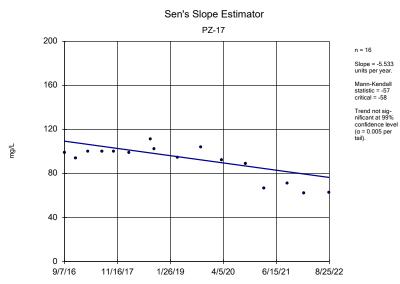

6/22/21

8/24/22

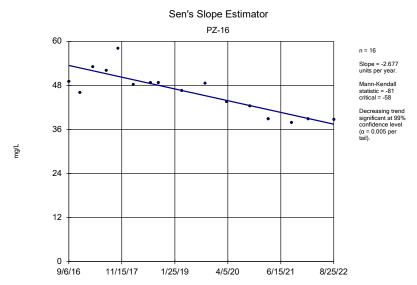

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

10/18/16

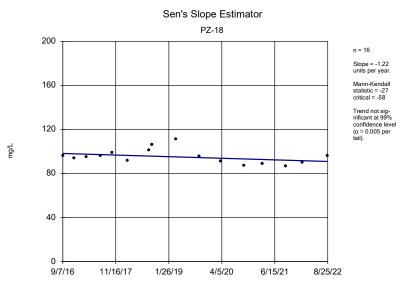
12/19/17



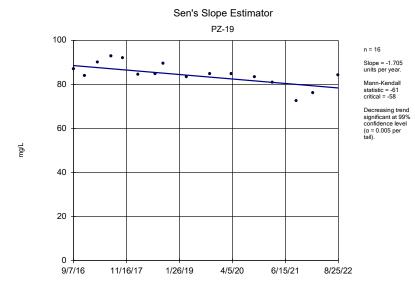
Constituent: Sulfate Analysis Run 11/21/2022 4:45 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR



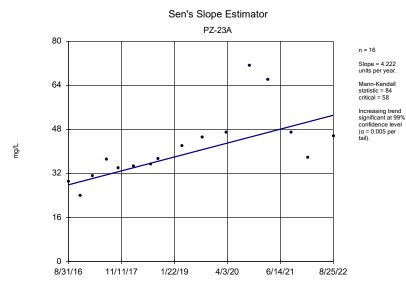
Constituent: Sulfate Analysis Run 11/21/2022 4:46 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR



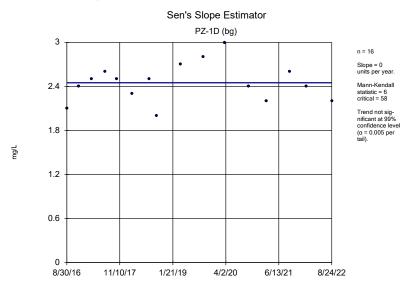
Constituent: Sulfate Analysis Run 11/21/2022 4:46 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR



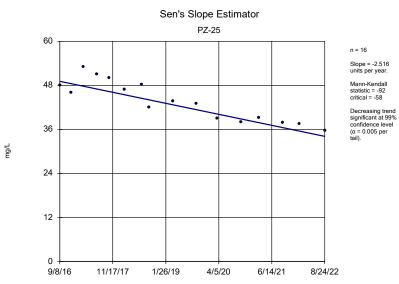
Constituent: Sulfate Analysis Run 11/21/2022 4:46 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

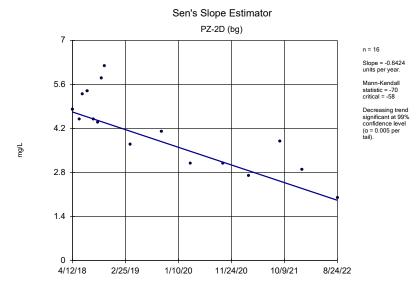

Constituent: Sulfate Analysis Run 11/21/2022 4:46 PM View: Appendix III - Trend Tests

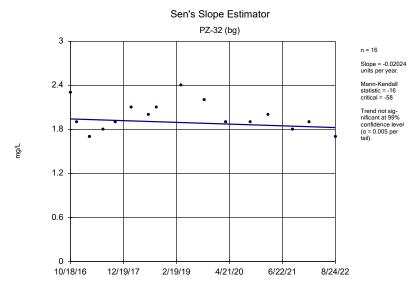
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

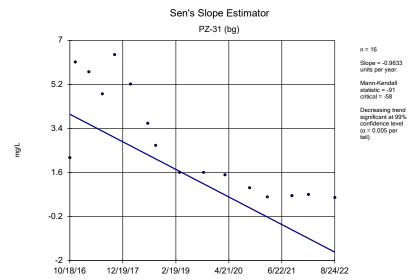


Constituent: Sulfate Analysis Run 11/21/2022 4:46 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR



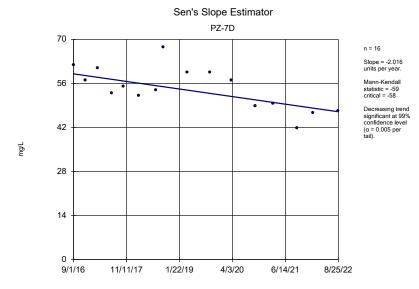

Constituent: Sulfate Analysis Run 11/21/2022 4:46 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Constituent: Sulfate Analysis Run 11/21/2022 4:46 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

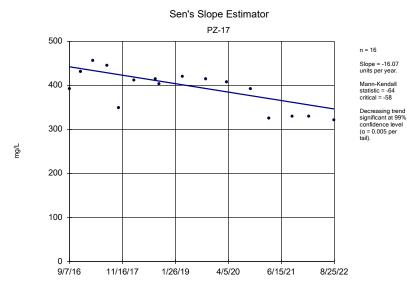

Constituent: Sulfate Analysis Run 11/21/2022 4:46 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Constituent: Sulfate Analysis Run 11/21/2022 4:46 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

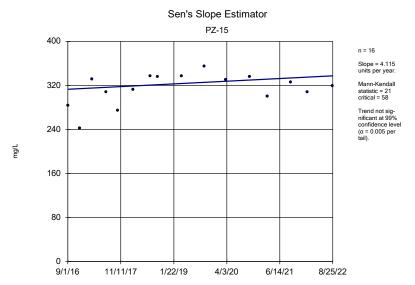
Constituent: Sulfate Analysis Run 11/21/2022 4:46 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

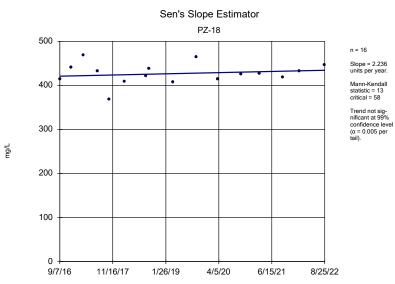


Constituent: Sulfate Analysis Run 11/21/2022 4:46 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

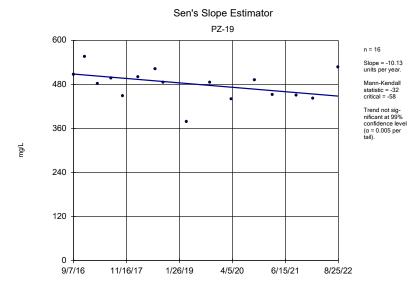

Constituent: Sulfate Analysis Run 11/21/2022 4:46 PM View: Appendix III - Trend Tests

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

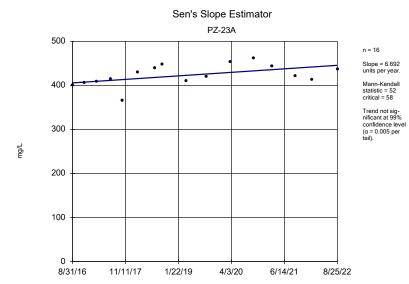

Constituent: Sulfate Analysis Run 11/21/2022 4:46 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR



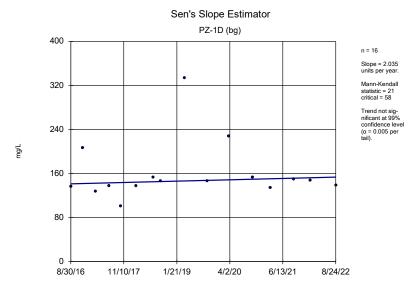
Constituent: TDS Analysis Run 11/21/2022 4:46 PM View: Appendix III - Trend Tests

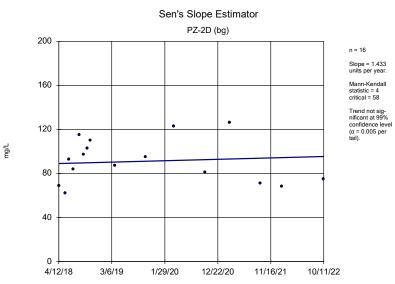

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Constituent: TDS Analysis Run 11/21/2022 4:46 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

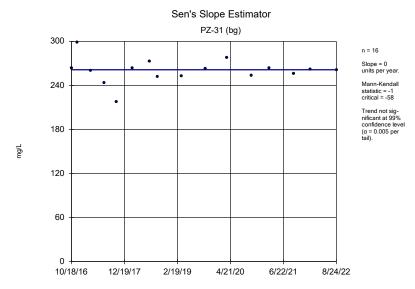

Constituent: TDS Analysis Run 11/21/2022 4:46 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Constituent: TDS Analysis Run 11/21/2022 4:46 PM View: Appendix III - Trend Tests

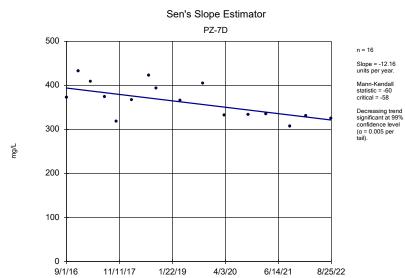

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR



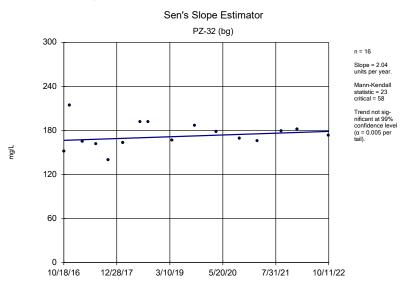
Constituent: TDS Analysis Run 11/21/2022 4:46 PM View: Appendix III - Trend Tests


Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Constituent: TDS Analysis Run 11/21/2022 4:46 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR



Constituent: TDS Analysis Run 11/21/2022 4:46 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR



Constituent: TDS Analysis Run 11/21/2022 4:46 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Constituent: TDS Analysis Run 11/21/2022 4:46 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Constituent: TDS Analysis Run 11/21/2022 4:46 PM View: Appendix III - Trend Tests
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

FIGURE G.

Upper Tolerance Limit Summary Table

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR Printed 11/21/2022, 10:54 AM Well Constituent Upper Lim. Lower Lim. Date Observ. Sig.Bg N Bg Mean Std. Dev. <u>%NDs</u> <u>ND Adj.</u> Transform Alpha Method n/a 64 n/a n/a 54.69 n/a 0.03752 NP Inter(NDs) Antimony (mg/L) n/a 0.0035 n/a n/a n/a n/a n/a n/a 85.71 n/a 0.05656 NP Inter(NDs) Arsenic (mg/L) n/a 0.005 n/a n/a n/a n/a 56 n/a Barium (mg/L) n/a 0.04787 n/a n/a 64 -4.397 0.6775 1.563 None 0.05 Inter n/a n/a ln(x) Beryllium (mg/L) n/a 0.0005 n/a n/a 48 n/a 95.83 n/a n/a 0.08526 NP Inter(NDs) Cadmium (mg/L) 0.08526 NP Inter(NDs) n/a 0.0005 n/a n/a n/a n/a 48 n/a n/a 100 n/a n/a Chromium (mg/L) n/a 0.009976 n/a n/a n/a 64 0.05165 0.02407 25 Kaplan-Meier sqrt(x) 0.05 Inter Cobalt (mg/L) 0.03752 NP Inter(NDs) n/a 0.005 n/a n/a 64 n/a n/a 96.88 n/a n/a n/a n/a Combined Radium 226 + 228 (pCi/L) 1.662 n/a n/a 62 0.7165 0.2849 0 sqrt(x) 0.05 Fluoride (mg/L) n/a 0.29 n/a n/a 68 n/a 47.06 n/a 0.03056 NP Inter(normality) n/a n/a n/a n/a Lead (mg/L) n/a 64 79.69 n/a 0.03752 NP Inter(NDs) n/a 64 0.03752 NP Inter(NDs) Lithium (mg/L) n/a 0.03 n/a n/a 79.69 n/a n/a n/a n/a Mercury (mg/L) 0.0002 n/a n/a 56 89.29 n/a n/a 0.05656 NP Inter(NDs) 0.03752 NP Inter(NDs) Molybdenum (mg/L) 0.01 n/a 78.13 n/a n/a n/a n/a n/a 64 n/a n/a n/a Selenium (mg/L) n/a 64 100 n/a n/a 0.03752 NP Inter(NDs) Thallium (mg/L) 0.001 90.63 n/a 0.03752 NP Inter(NDs) n/a n/a n/a n/a n/a 64 n/a n/a n/a

FIGURE H.

PLANT MITCHELL ASH POND GWPS					
		CCR-Rule			
Constituent Name	MCL	Specified	Background Limit	GWPS	
Antimony, Total (mg/L)	0.006		0.0035	0.006	
Arsenic, Total (mg/L)	0.01		0.005	0.01	
Barium, Total (mg/L)	2		0.048	2	
Beryllium, Total (mg/L)	0.004		0.0005	0.004	
Cadmium, Total (mg/L)	0.005		0.0005	0.005	
Chromium, Total (mg/L)	0.1		0.01	0.1	
Cobalt, Total (mg/L)	n/a	0.006	0.005	0.006	
Combined Radium, Total (pCi/L)	5		1.66	5	
Fluoride, Total (mg/L)	4		0.29	4	
Lead, Total (mg/L)	n/a	0.015	0.001	0.015	
Lithium, Total (mg/L)	n/a	0.04	0.03	0.04	
Mercury, Total (mg/L)	0.002		0.0002	0.002	
Molybdenum, Total (mg/L)	n/a	0.1	0.01	0.1	
Selenium, Total (mg/L)	0.05		0.005	0.05	
Thallium, Total (mg/L)	0.002		0.001	0.002	

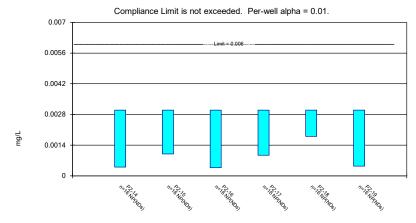
^{*}MCL = Maximum Contaminant Level

^{*}CCR = Coal Combustion Residuals

^{*}GWPS = Groundwater Protection Standard

FIGURE I.

Confidence Intervals - All Results (No Significant)

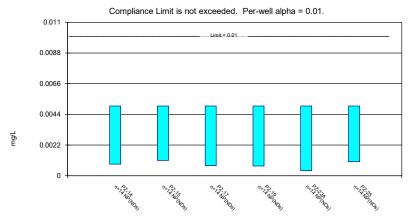

Client: Southern Company Data: Mitchell Ash Pond CCR Printed 11/21/2022, 11:01 AM Constituent Well Sig. <u>N</u> Std. Dev. %NDs ND Adj. Transform <u>Alpha</u> Method Upper Lim. Lower Lim Mean Antimony (mg/L) 0.003 0.0004 No 16 0.002838 0.00065 93.75 None No NP (NDs) NP (NDs) Antimony (mg/L) PZ-15 0.003 0.001 0.006 No 16 0.002726 0.0007512 87.5 None No 0.01 Antimony (mg/L) PZ-16 0.003 0.00037 0.006 No 0.002836 0.0006575 No NP (NDs) PZ-17 0.003 16 0.002569 NP (NDs) Antimony (mg/L) 0.00094 0.006 No 0.0009303 81.25 0.01 None Nο 0.0018 0.002825 NP (NDs) Antimony (mg/L) PZ-18 0.003 0.006 No 0.0004837 No Antimony (mg/L) PZ-19 0.003 0.00044 0.006 16 0.00284 0.00064 93.75 0.01 NP (NDs) No None No Antimony (mg/L) PZ-23A 0.003 0.0017 0.006 No 16 0.002755 0.0007115 87.5 No 0.01 NP (NDs) None Antimony (mg/L) PZ-33 0.003 0.00082 0.006 16 0.002699 0.0008256 87.5 NP (NDs) No None No 0.01 Antimony (mg/L) PZ-7D 0.003 0.00042 0.006 No 16 0.002501 0.001073 81.25 None No 0.01 NP (NDs) Arsenic (mg/L) PZ-14 0.005 0.00083 0.01 No 0.004702 0.001114 92.86 No 0.01 NP (NDs) P7-15 0.005 0.0011 14 0 004114 0.001764 NP (NDs) Arsenic (mg/L) 0.01 Nο 78 57 None Nο 0.01 PZ-17 Arsenic (mg/L) 0.005 0.00072 0.01 No 14 0.00408 0.001828 No NP (NDs) PZ-19 Arsenic (mg/L) 0.005 0.0007 0.01 No 14 0.004693 0.001149 92.86 None Nο 0.01 NP (NDs) 0.01 Arsenic (mg/L) PZ-23A 0.005 0.00036 No 14 0.004669 0.00124 None No 0.01 NP (NDs) PZ-25 14 0.00386 0.001885 NP (NDs) 0.005 0.001 0.01 No 71.43 0.01 Arsenic (mg/L) None No Arsenic (mg/L) PZ-33 0.005 0.00094 0.01 No 14 0.004403 0.001519 NP (NDs) None No 0.01 PZ-14 0.03145 0.01661 2 16 0.02474 0.01324 Barium (mg/L) No 0 None sqrt(x) 0.01 Param Barium (mg/L) P7-15 0.076 0.048 2 No 16 0.05913 0.01516 0 No 0.01 NP (normality) None PZ-16 0.0467 0.034 2 0.04293 0.0132 0 NP (normality) Barium (mg/L) No None No 0.01 P7-17 0.07887 16 0 07464 Barium (mg/L) 0.07041 2 Nο 0.006501 n None Nο 0.01 Param. Barium (mg/L) PZ-18 0.029 0.023 2 No 16 0.0295 0.01319 None No NP (normality) PZ-19 0.05859 16 0.05543 Barium (mg/L) 0.05228 2 No 0.004848 0 None Nο 0.01 Param PZ-23A 0.05067 0.03709 2 0.04388 0.01044 Barium (mg/L) No 0 0.01 PZ-25 2 16 0.1051 0.006471 0 NP (normality) Barium (mg/L) 0.11 0.1 No None No 0.01 Barium (mg/L) PZ-33 0.07063 0.04977 2 No 15 0.0602 0.01539 0 None No 0.01 Param Barium (mg/L) PZ-7D 0.009796 0.006842 2 No 16 0.008319 0.00227 n None No 0.01 Param. Cadmium (mg/L) PZ-23A 0.0005 0.0002 0.005 No 12 0.00045 0.0001168 83.33 None No 0.01 NP (NDs) PZ-33 0.0001155 Cadmium (mg/L) 0.0005 0.0001 0.005 No 12 0.0004667 91.67 None No 0.01 NP (NDs) Chromium (mg/L) PZ-14 0.005 0.0011 0.1 No 16 0.003334 0.001954 56 25 None No 0.01 NP (NDs) Chromium (mg/L) PZ-16 0.005 0.00087 0.1 No 16 0.002769 0.002042 43.75 None No 0.01 NP (normality) PZ-18 Chromium (mg/L) 0.005 0.00056 0.1 No 16 0.004722 0.00111 93.75 None No 0.01 NP (NDs) NP (NDs) Chromium (ma/L) PZ-19 0.005 0.00073 0.1 No 0.004733 0.001067 Chromium (ma/L) PZ-23A 0.002196 0.001274 0.1 No 16 0.002537 0.001455 18.75 Kaplan-Meier 0.01 Param In(x) 0.01 Chromium (mg/L) PZ-33 0.005 0.0017 0.1 No 16 0.004794 0.000825 Kaplan-Meier NP (NDs) PZ-7D 0.002159 0.0008284 Chromium (ma/L) 0.1 16 0.002762 0.001782 31.25 Kaplan-Meier Param No sart(x) 0.01 Cobalt (mg/L) PZ-14 0.005 0.002 0.006 No 16 0.004519 0.001351 87.5 None No 0.01 NP (NDs) Cobalt (mg/L) 0.005 0.0005 No 0.003625 0.002114 68.75 None No 0.01 NP (NDs) Cobalt (mg/L) PZ-16 0.005 0.0005 0.006 No 16 0.004719 0.001125 93.75 None No 0.01 NP (NDs) Cobalt (mg/L) PZ-17 0.005 0.0005 0.006 No 16 0.003351 0.002204 62.5 None No 0.01 NP (NDs) PZ-18 16 0.004756 Cobalt (mg/L) 0.005 0.0011 0.006 No 0.000975 93.75 None No 0.01 NP (NDs) Cobalt (mg/L) PZ-19 0.0012 No 0.004506 0.00135 No NP (NDs) 0.00058 16 0.003615 NP (NDs) Cobalt (mg/L) PZ-23A 0.005 0.006 0.002124 0.01 No 68.75 None Nο Cobalt (mg/L) PZ-25 0.0018 0.0008 0.006 16 0.001547 0.001003 NP (normality) No 6.25 None No 0.01 PZ-33 0.005 0.0007 0.006 0.002015 NP (NDs) Cobalt (mg/L) No 16 0.003614 62.5 None No 0.01 Combined Radium 226 + 228 (pCi/L) PZ-14 0.9475 0.3298 5 No 16 0.687 0.5554 0 Param None 0.01 Combined Radium 226 + 228 (pCi/L) 0.6938 16 0.8973 0.3291 0 Param. 1.066 5 No x^(1/3) 0.01 None Combined Radium 226 + 228 (pCi/L) PZ-16 0.8728 0.4454 5 No 16 0.6591 0.3284 0 None No 0.01 Param Combined Radium 226 + 228 (pCi/L) 1.183 0.6143 5 No 15 0.8987 0.4198 0 No 0.01 Param Combined Radium 226 + 228 (pCi/L) P7-18 14 0 7987 0.5292 n 1 173 0.4239 5 Nο None Nο 0.01 Param Combined Radium 226 + 228 (pCi/L) PZ-19 1.34 0.7215 5 No 1.031 0.4756 0 Combined Radium 226 + 228 (pCi/L) PZ-23A 1.197 0.7349 5 No 16 0.9661 0.3554 0 None No 0.01 Param Combined Radium 226 + 228 (pCi/L) PZ-25 1.183 0.7453 5 No 16 0.9644 0.3368 0 None No 0.01 Param Combined Radium 226 + 228 (pCi/L) PZ-33 1.009 0.5396 5 16 0.7743 0.3608 0 Param No None No 0.01 Combined Radium 226 + 228 (pCi/L) PZ-7D 0.6104 0.2246 5 No 16 0.4462 0.3344 0 None 0.01 Param Fluoride (mg/L) PZ-14 0.11 0.056 4 No 17 0.08865 0.02518 58.82 No 0.01 NP (NDs) Fluoride (mg/L) PZ-15 0.1172 0.07172 17 0.1075 0.04446 Kaplan-Meier 0.01 Param

Confidence Intervals - All Results (No Significant)

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR Printed 11/21/2022, 11:01 AM

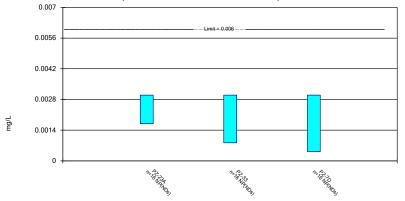
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliance	Sig	<u>N</u>	<u>Mean</u>	Std. Dev.	%NDs	ND Adj.	Transform	Alnha	Method
Fluoride (mg/L)	PZ-16	0.1	0.053	4	No.		0.08359	0.0241		Kaplan-Meier	No	0.01	NP (NDs)
Fluoride (mg/L)	PZ-17	0.1252	0.05759	4	No		0.118	0.06353		Kaplan-Meier	sqrt(x)	0.01	Param.
Fluoride (mg/L)	PZ-18	0.1202	0.08	4	No		0.09947	0.03486	52.94	•	No No	0.01	NP (NDs)
Fluoride (mg/L)	PZ-19	0.12	0.064	4	No		0.1087	0.07546	11.76	•	No	0.01	NP (normality)
Fluoride (mg/L)	PZ-23A	0.13	0.057	4			0.09918	0.05772				0.01	, ,,
		0.13			No		0.1947			None	No		NP (normality)
Fluoride (mg/L)	PZ-25		0.1492	4	No			0.07264	0	None	No No	0.01	Param.
Fluoride (mg/L)	PZ-33	0.15	0.092	4	No		0.1054	0.04146	58.82		No	0.01	NP (NDs)
Fluoride (mg/L)	PZ-7D	0.15	0.056	4	No		0.08835	0.03076		None	No	0.01	NP (NDs)
Lead (mg/L)	PZ-15	0.001	0.00005	0.015	No		0.0009406	0.0002375		None	No	0.01	NP (NDs)
Lead (mg/L)	PZ-16	0.001	0.000081	0.015	No		0.0009426	0.0002298		None	No	0.01	NP (NDs)
Lead (mg/L)	PZ-18	0.001	0.00043	0.015	No		0.0009045	0.0002704	87.5	None	No	0.01	NP (NDs)
Lead (mg/L)	PZ-19	0.001	0.000042	0.015	No		0.0009401	0.0002395		None	No	0.01	NP (NDs)
Lead (mg/L)	PZ-23A	0.001	0.00015	0.015	No		0.0008284	0.0003694		None	No	0.01	NP (NDs)
Lead (mg/L)	PZ-33	0.001	0.00009	0.015	No	16	0.0008836	0.0003183	87.5	None	No	0.01	NP (NDs)
Lead (mg/L)	PZ-7D	0.001	0.000041	0.015	No	16	0.0009401	0.0002398	93.75	None	No	0.01	NP (NDs)
Lithium (mg/L)	PZ-14	0.03	0.003	0.04	No	16	0.02831	0.00675	93.75	None	No	0.01	NP (NDs)
Lithium (mg/L)	PZ-15	0.03	0.0012	0.04	No	16	0.01026	0.01375	31.25	None	No	0.01	NP (normality)
Lithium (mg/L)	PZ-17	0.003	0.002	0.04	No	16	0.005794	0.009456	12.5	None	No	0.01	NP (normality)
Lithium (mg/L)	PZ-18	0.0033	0.0024	0.04	No	16	0.006131	0.009322	12.5	None	No	0.01	NP (normality)
Lithium (mg/L)	PZ-19	0.01455	0.01057	0.04	No	16	0.01256	0.00306	0	None	No	0.01	Param.
Lithium (mg/L)	PZ-23A	0.03	0.001	0.04	No	16	0.02094	0.01388	68.75	None	No	0.01	NP (NDs)
Lithium (mg/L)	PZ-25	0.006908	0.005581	0.04	No	16	0.006188	0.001108	0	None	x^2	0.01	Param.
Lithium (mg/L)	PZ-7D	0.0038	0.0023	0.04	No	16	0.004594	0.006797	6.25	None	No	0.01	NP (normality)
Mercury (mg/L)	PZ-14	0.0002	0.00015	0.002	No	14	0.0001871	0.00003625	85.71	None	No	0.01	NP (NDs)
Mercury (mg/L)	PZ-15	0.0002	0.000097	0.002	No	14	0.0001926	0.00002753	92.86	None	No	0.01	NP (NDs)
Mercury (mg/L)	PZ-16	0.0002	0.000068	0.002	No	14	0.0001906	0.00003528	92.86	None	No	0.01	NP (NDs)
Mercury (mg/L)	PZ-17	0.0002	0.000086	0.002	No	14	0.0001919	0.00003047	92.86	None	No	0.01	NP (NDs)
Mercury (mg/L)	PZ-18	0.0002	0.000057	0.002	No	14	0.0001898	0.00003822	92.86	None	No	0.01	NP (NDs)
Mercury (mg/L)	PZ-19	0.0002	0.0001	0.002	No	14	0.0001818	0.00004754	85.71	None	No	0.01	NP (NDs)
Mercury (mg/L)	PZ-23A	0.0002	0.00017	0.002	No	14	0.00019	0.00002987	85.71	None	No	0.01	NP (NDs)
Mercury (mg/L)	PZ-25	0.0002	0.000053	0.002	No	14	0.0001895	0.00003929	92.86	None	No	0.01	NP (NDs)
Mercury (mg/L)	PZ-33	0.0002	0.00011	0.002	No	14	0.000171	0.00005965	78.57	None	No	0.01	NP (NDs)
Mercury (mg/L)	PZ-7D	0.0002	0.00006	0.002	No		0.0001795	0.00005213		None	No	0.01	NP (NDs)
Molybdenum (mg/L)	PZ-14	0.01	0.0005	0.1	No		0.009406	0.002375		None	No	0.01	NP (NDs)
Molybdenum (mg/L)	PZ-15	0.01	0.0004	0.1	No		0.0094	0.0024		None	No	0.01	NP (NDs)
Molybdenum (mg/L)	PZ-16	0.01	0.0004	0.1	No		0.0094	0.0024		None	No	0.01	NP (NDs)
Molybdenum (mg/L)	PZ-17	0.01	0.0004	0.1	No		0.0094	0.0024		None	No	0.01	NP (NDs)
Molybdenum (mg/L)	PZ-19	0.0025	0.002	0.1	No		0.002669	0.001969	6.25	None	No	0.01	NP (normality)
Molybdenum (mg/L)	PZ-23A	0.01	0.002	0.1	No		0.008856	0.003127	87.5	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	PZ-25	0.01	0.001	0.1	No		0.009437	0.00225		None	No	0.01	NP (NDs)
Selenium (mg/L)	PZ-14	0.005	0.0015	0.05	No		0.004544	0.001248	87.5	None	No	0.01	NP (NDs)
Selenium (mg/L)	PZ-14 PZ-15	0.005	0.0013	0.05	No		0.004344	0.001248		None	No	0.01	NP (NDs)
, - ,		0.005											
Selenium (mg/L)	PZ-19		0.0019	0.05	No		0.00385	0.001328		None	No No	0.01	NP (normality)
Selenium (mg/L)	PZ-23A	0.005	0.0023	0.05	No		0.0035	0.00141		None	No	0.01	NP (normality)
Selenium (mg/L)	PZ-7D	0.005	0.0018	0.05	No		0.003987	0.001551		None	No	0.01	NP (NDs)
Thallium (mg/L)	PZ-14	0.001	0.00006	0.002	No		0.0009413	0.000235		None	No	0.01	NP (NDs)
Thallium (mg/L)	PZ-15	0.001	0.0002	0.002	No		0.0007006	0.0004001	62.5	None	No	0.01	NP (NDs)
Thallium (mg/L)	PZ-16	0.001	0.00018	0.002	No		0.0006877	0.0004177	62.5	None	No	0.01	NP (NDs)
Thallium (mg/L)	PZ-17	0.001	0.00022	0.002	No		0.0006444	0.0003726	50	None	No	0.01	NP (normality)
Thallium (mg/L)	PZ-18	0.001	0.000071	0.002	No		0.0008226	0.0003815	81.25		No	0.01	NP (NDs)
Thallium (mg/L)	PZ-19	0.0007268	0.0004869	0.002	No		0.0006069	0.0001843	6.25	None	No	0.01	Param.
Thallium (mg/L)	PZ-23A	0.001	0.00016	0.002	No		0.000545	0.0004167	43.75		No	0.01	NP (normality)
Thallium (mg/L)	PZ-25	0.001	0.00036	0.002	No		0.0006963	0.0003262	50	None	No	0.01	NP (normality)
Thallium (mg/L)	PZ-33	0.001	0.00015	0.002	No	16	0.0007269	0.0004188	68.75	None	No	0.01	NP (NDs)
Thallium (mg/L)	PZ-7D	0.001	0.0001	0.002	No	16	0.0007227	0.0004256	68.75	None	No	0.01	NP (NDs)

Non-Parametric Confidence Interval



Constituent: Antimony Analysis Run 11/21/2022 11:00 AM View: Appendix IV - Confidence Intervals

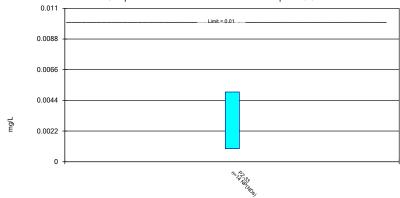
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Non-Parametric Confidence Interval

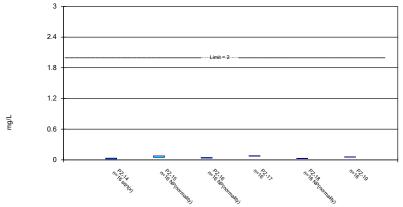
Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.


Constituent: Antimony Analysis Run 11/21/2022 11:00 AM View: Appendix IV - Confidence Intervals

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

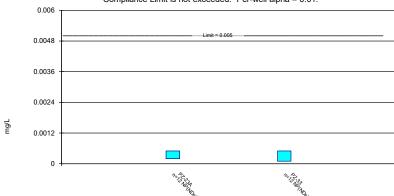
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

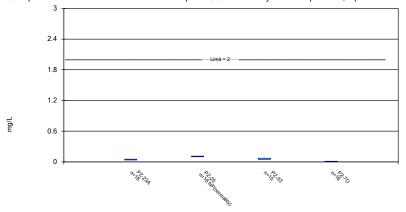
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Barium Analysis Run 11/21/2022 11:00 AM View: Appendix IV - Confidence Intervals
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

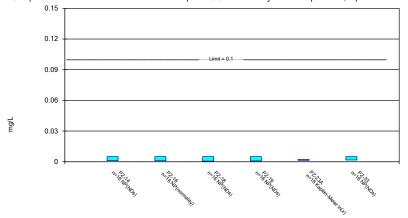
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

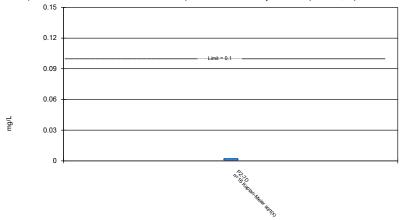
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Barium Analysis Run 11/21/2022 11:00 AM View: Appendix IV - Confidence Intervals
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

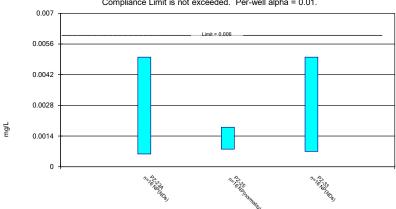
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

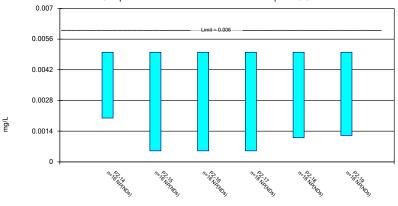
Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Chromium Analysis Run 11/21/2022 11:00 AM View: Appendix IV - Confidence Intervals Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

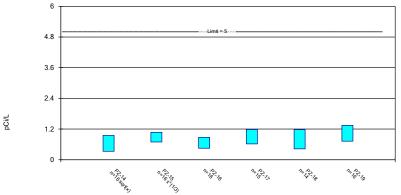
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

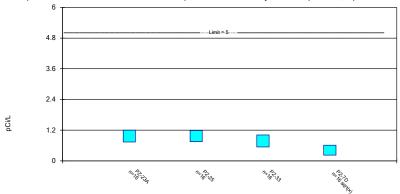
Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.



Constituent: Cobalt Analysis Run 11/21/2022 11:00 AM View: Appendix IV - Confidence Intervals Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

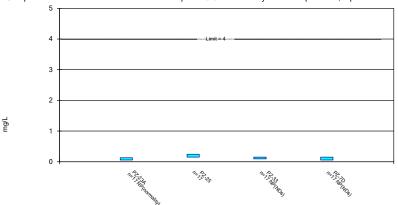
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric Confidence Interval

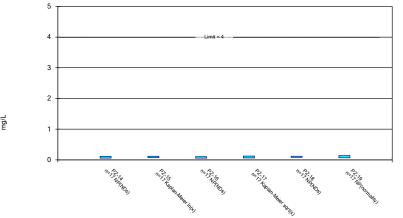
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Combined Radium 226 + 228 Analysis Run 11/21/2022 11:00 AM View: Appendix IV - Confid Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

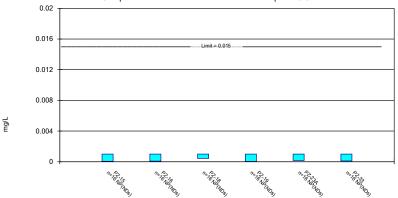
Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

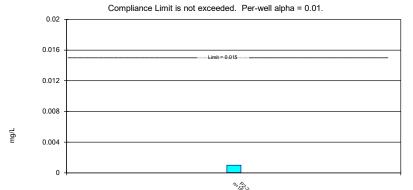
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

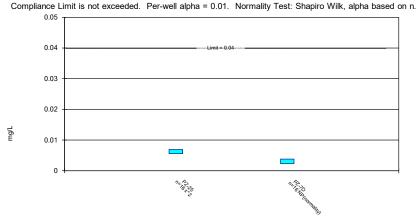


Constituent: Fluoride Analysis Run 11/21/2022 11:00 AM View: Appendix IV - Confidence Intervals Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

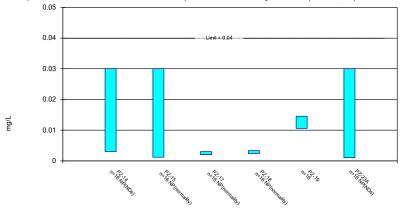

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.


Non-Parametric Confidence Interval

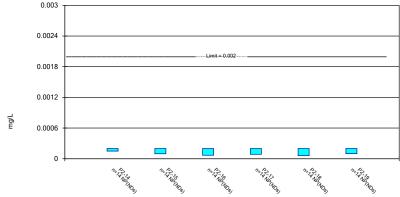
Constituent: Lead Analysis Run 11/21/2022 11:00 AM View: Appendix IV - Confidence Intervals Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

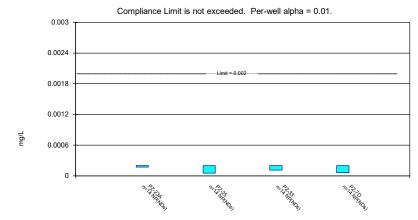
Parametric and Non-Parametric (NP) Confidence Interval

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

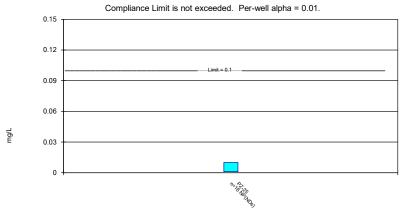


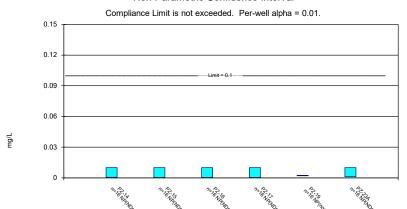
Constituent: Lithium Analysis Run 11/21/2022 11:00 AM View: Appendix IV - Confidence Intervals Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Non-Parametric Confidence Interval

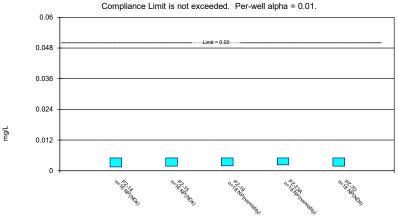
Compliance Limit is not exceeded. Per-well alpha = 0.01.


Non-Parametric Confidence Interval

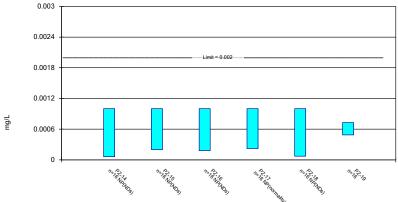

Constituent: Mercury Analysis Run 11/21/2022 11:00 AM View: Appendix IV - Confidence Intervals
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Non-Parametric Confidence Interval



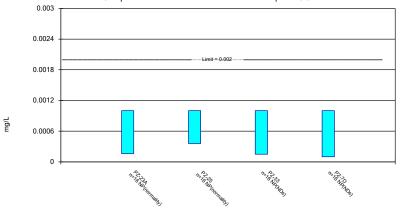
Non-Parametric Confidence Interval


Constituent: Molybdenum Analysis Run 11/21/2022 11:00 AM View: Appendix IV - Confidence Intervals
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Non-Parametric Confidence Interval

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Thallium Analysis Run 11/21/2022 11:00 AM View: Appendix IV - Confidence Intervals
Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

Constituent: Thallium Analysis Run 11/21/2022 11:00 AM View: Appendix IV - Confidence Intervals

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

 $Constituent: Antimony (mg/L) \quad Analysis \ Run \ 11/21/2022 \ 11:01 \ AM \quad View: Appendix \ IV - Confidence \ Intervals \ Analysis \ Analysis \ Run \ 11/21/2022 \ 11:01 \ AM \ Analysis \ Appendix \ IV - Confidence \ Intervals \ Analysis \ An$

			Flant Willone	ii Ciletti. Soutiletti	Company Data. I	VIII.CHEII ASH FUNG CC
	PZ-14	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19
8/31/2016	<0.003					
9/1/2016		0.001 (J)				
9/6/2016			<0.003			
9/7/2016				<0.003	<0.003	<0.003
12/7/2016	<0.003	<0.003	<0.003			
12/8/2016				<0.003	<0.003	<0.003
3/21/2017	0.0004 (J)					
3/22/2017		<0.003	<0.003	<0.003	<0.003	
3/23/2017						<0.003
7/11/2017	<0.003		<0.003			
7/12/2017		<0.003		<0.003	<0.003	<0.003
10/18/2017	<0.003	<0.003	<0.003	<0.003	<0.003	
10/19/2017						<0.003
2/20/2018	<0.003					
2/21/2018		<0.003	<0.003	<0.003	<0.003	<0.003
7/11/2018	<0.003					
7/12/2018		<0.003	<0.003			<0.003
8/15/2018					<0.003	
8/16/2018				<0.003		
9/12/2018	<0.003					
9/13/2018		<0.003	<0.003		<0.003	
9/14/2018				<0.003		<0.003
10/2/2019	<0.003	<0.003	<0.003	<0.003		
10/3/2019					<0.003	0.00044 (X)
3/25/2020	<0.003			0.00094 (J)		
3/26/2020		<0.003	<0.003		0.0018 (J)	<0.003
8/26/2020	<0.003	0.00062 (J)	0.00037 (J)	0.00061 (J)		<0.003
8/27/2020					<0.003	
10/6/2020	<0.003		<0.003			
10/7/2020		<0.003		<0.003	0.0014 (J)	<0.003
3/3/2021	<0.003					<0.003
3/4/2021		<0.003	<0.003	0.00055 (J)	<0.003	
9/15/2021	<0.003	<0.003	<0.003			
9/16/2021				<0.003	<0.003	<0.003
1/26/2022	<0.003	<0.003	<0.003			
1/27/2022				<0.003	<0.003	<0.003
8/25/2022	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Mean	0.002838	0.002726	0.002836	0.002569	0.002825	0.00284
Std. Dev.	0.00065	0.0007512	0.0006575	0.0009303	0.0004837	0.00064
Upper Lim.	0.003	0.003	0.003	0.003	0.003	0.003
Lower Lim.	0.0004	0.001	0.00037	0.00094	0.0018	0.00044

Constituent: Antimony (mg/L) Analysis Run 11/21/2022 11:01 AM View: Appendix IV - Confidence Intervals

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

			i idiit ivii
	PZ-23A	PZ-33	PZ-7D
8/31/2016	<0.003		
9/1/2016			<0.003
12/7/2016	<0.003		<0.003
12/8/2016		<0.003	
3/21/2017	<0.003		
3/22/2017			<0.003
3/23/2017		<0.003	
7/11/2017	<0.003		
7/12/2017		<0.003	<0.003
10/18/2017	<0.003		
10/19/2017		<0.003	<0.003
2/20/2018	<0.003		
2/21/2018		<0.003	<0.003
7/11/2018	<0.003		
7/12/2018		<0.003	<0.003
9/13/2018	<0.003		<0.003
9/14/2018		<0.003	
10/4/2018		<0.003	
9/10/2019	<0.003		
10/3/2019		<0.003	0.00029 (X)
3/25/2020	<0.003		
3/26/2020		<0.003	0.00042 (J)
8/26/2020	0.00038 (J)	<0.003	0.00031 (J)
10/6/2020	<0.003		
10/7/2020		0.00037 (J)	<0.003
3/3/2021	0.0017 (J)		
3/4/2021		<0.003	<0.003
9/15/2021	<0.003		
9/16/2021		<0.003	<0.003
1/26/2022	<0.003		
1/27/2022		<0.003	<0.003
8/24/2022		0.00082 (J)	
8/25/2022	<0.003		<0.003
Mean	0.002755	0.002699	0.002501
Std. Dev.	0.0007115	0.0008256	0.001073
Upper Lim.	0.003	0.003	0.003
Lower Lim.	0.0017	0.00082	0.00042

Constituent: Arsenic (mg/L) Analysis Run 11/21/2022 11:01 AM View: Appendix IV - Confidence Intervals

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

			i idili willonei	ii Ciletti. Oodiitetti	Company Data. 1	villenen Asir i ond o
	PZ-14	PZ-15	PZ-17	PZ-19	PZ-23A	PZ-25
8/31/2016	<0.005				<0.005	
9/1/2016		<0.005				
9/7/2016			<0.005	<0.005		
9/8/2016						0.0017 (J)
12/7/2016	<0.005	<0.005			<0.005	
12/8/2016			<0.005	<0.005		<0.005
3/21/2017	<0.005				<0.005	
3/22/2017		0.0011 (J)	0.0007 (J)			0.001 (J)
3/23/2017				0.0007 (J)		
7/11/2017	<0.005				<0.005	<0.005
7/12/2017		0.0006 (J)	<0.005	<0.005		
10/18/2017	<0.005	<0.005	<0.005		<0.005	<0.005
10/19/2017				<0.005		
2/20/2018	<0.005				<0.005	
2/21/2018		0.00089 (J)	0.00072 (J)	<0.005		0.00071 (J)
7/11/2018	<0.005				<0.005	
7/12/2018		<0.005		<0.005		<0.005
8/16/2018			0.0007 (J)			
9/12/2018	<0.005					
9/13/2018		<0.005			<0.005	<0.005
9/14/2018			<0.005	<0.005		
9/10/2019					0.00036 (X)	
10/2/2019	0.00083 (X)	<0.005	<0.005			0.00063 (X)
10/3/2019				<0.005		
3/25/2020	<0.005		<0.005		<0.005	<0.005
3/26/2020		<0.005		<0.005		
8/26/2020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
9/15/2021	<0.005	<0.005			<0.005	<0.005
9/16/2021			<0.005	<0.005		
1/26/2022	<0.005	<0.005			<0.005	<0.005
1/27/2022			<0.005	<0.005		
8/24/2022						<0.005
8/25/2022	<0.005	<0.005	<0.005	<0.005	<0.005	
Mean	0.004702	0.004114	0.00408	0.004693	0.004669	0.00386
Std. Dev.	0.001114	0.001764	0.001828	0.001149	0.00124	0.001885
Upper Lim.	0.005	0.005	0.005	0.005	0.005	0.005
Lower Lim.	0.00083	0.0011	0.00072	0.0007	0.00036	0.001

Constituent: Arsenic (mg/L) Analysis Run 11/21/2022 11:01 AM View: Appendix IV - Confidence Intervals

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-33
12/8/2016	<0.005
3/23/2017	0.0007 (J)
7/12/2017	<0.005
10/19/2017	<0.005
2/21/2018	0.00094 (J)
7/12/2018	<0.005
9/14/2018	<0.005
10/4/2018	<0.005
10/3/2019	<0.005
3/26/2020	<0.005
8/26/2020	<0.005
9/16/2021	<0.005
1/27/2022	<0.005
8/24/2022	<0.005
Mean	0.004403
Std. Dev.	0.001519
Upper Lim.	0.005
Lower Lim.	0.00094

Constituent: Barium (mg/L) Analysis Run 11/21/2022 11:01 AM View: Appendix IV - Confidence Intervals

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-14	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19
8/31/2016	0.0253					
9/1/2016		0.103				
9/6/2016			0.0794			
9/7/2016				0.0823	0.0717	0.067
12/7/2016	0.065	0.0781	0.0689			
12/8/2016				0.0668	0.0513	0.0522
3/21/2017	0.0379					
3/22/2017		0.0589	0.0423	0.0821	0.0273	
3/23/2017						0.0591
7/11/2017	0.036		0.0467			
7/12/2017		0.0613		0.0805	0.0269	0.0604
10/18/2017	0.0247	0.0617	0.0446	0.0776	0.0258	
10/19/2017						0.0542
2/20/2018	0.03					
2/21/2018		0.076	0.046	0.073	0.029	0.058
7/11/2018	0.027					
7/12/2018		0.056	0.043			0.057
8/15/2018					0.027	
8/16/2018				0.081		
9/12/2018	0.022					
9/13/2018		0.048	0.038		0.023	
9/14/2018				0.081		0.058
10/2/2019	0.017	0.049	0.038	0.074		
10/3/2019					0.025	0.057
3/25/2020	0.021			0.077		
3/26/2020		0.048	0.034		0.023	0.052
8/26/2020	0.016	0.053	0.036	0.077		0.049
8/27/2020					0.023	
10/6/2020	0.016		0.034			
10/7/2020		0.049		0.074	0.023	0.054
3/3/2021	0.017					0.055
3/4/2021		0.047	0.035	0.071	0.023	
9/15/2021	0.014	0.045	0.032			
9/16/2021	0.010	0.055	0.004	0.064	0.022	0.053
1/26/2022	0.016	0.055	0.034	0.070	0.005	0.055
1/27/2022	0.011	0.057	0.005	0.072	0.025	0.055
8/25/2022 Maan	0.011	0.057	0.035	0.061	0.026	0.046
Mean Std. Dov	0.02474	0.05913	0.04293	0.07464	0.0295	0.05543
Std. Dev.	0.01324	0.01516	0.0132	0.006501	0.01319	0.004848 0.05859
Upper Lim. Lower Lim.	0.03145 0.01661	0.076 0.048	0.0467 0.034	0.07887 0.07041	0.029 0.023	0.05228
LOWEI LIIII.	0.01001	0.040	0.034	0.07041	0.023	0.03220

Constituent: Barium (mg/L) Analysis Run 11/21/2022 11:01 AM View: Appendix IV - Confidence Intervals

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-23A	PZ-25	PZ-33	PZ-7D
8/31/2016	0.0407			
9/1/2016				0.0117
9/8/2016		0.102		
12/7/2016	0.0581			0.0133
12/8/2016		0.102	0.162 (o)	
3/21/2017	0.0678			
3/22/2017		0.0951		0.0114
3/23/2017			0.0753	
7/11/2017	0.0574	0.102		
7/12/2017			0.0756	0.0097 (J)
10/18/2017	0.0351	0.0997		
10/19/2017			0.0681	0.0091 (J)
2/20/2018	0.05			
2/21/2018		0.11	0.085	0.0086 (J)
7/11/2018	0.051			
7/12/2018		0.1	0.076	0.0093 (J)
9/13/2018	0.038	0.1		0.0078 (J)
9/14/2018			0.071	
10/4/2018			0.072	
9/10/2019	0.029			
10/2/2019		0.11		
10/3/2019			0.057	0.007 (X)
3/25/2020	0.048	0.11		
3/26/2020			0.057	0.0072 (J)
8/26/2020	0.039	0.1	0.051	0.007 (J)
10/6/2020	0.037			
10/7/2020		0.11	0.048	0.0061 (J)
3/3/2021	0.039	0.12		
3/4/2021			0.047	0.0061
9/15/2021	0.037	0.11		
9/16/2021			0.039	0.0062
1/26/2022	0.039	0.11		
1/27/2022			0.043	0.0068
8/24/2022		0.1	0.038	
8/25/2022	0.036			0.0058
Mean	0.04388	0.1051	0.0602	0.008319
Std. Dev.	0.01044	0.006471	0.01539	0.00227
Upper Lim.	0.05067	0.11	0.07063	0.009796
Lower Lim.	0.03709	0.1	0.04977	0.006842

 $Constituent: Cadmium \, (mg/L) \quad Analysis \, Run \, 11/21/2022 \, 11:01 \, AM \quad View: \, Appendix \, IV - Confidence \, Intervals \, IV - Confidence \, Intervals \, IV - Confidence \, Intervals \, IV - Confidence \, Intervals \, IV - Confidence \, INTERVAL \, IV - Confidence \, IV - Confiden$

	PZ-23A	PZ-33
8/31/2016	0.0002 (J)	
12/7/2016	0.0002 (J)	
12/8/2016		<0.0005
3/21/2017	<0.0005	
3/23/2017		0.0001 (J)
7/11/2017	<0.0005	
7/12/2017		<0.0005
10/18/2017	<0.0005	
10/19/2017		<0.0005
2/20/2018	<0.0005	
2/21/2018		<0.0005
7/11/2018	<0.0005	
7/12/2018		<0.0005
9/13/2018	<0.0005	
9/14/2018		<0.0005
10/4/2018		<0.0005
8/26/2020	<0.0005	<0.0005
9/15/2021	<0.0005	
9/16/2021		<0.0005
1/26/2022	<0.0005	
1/27/2022		<0.0005
8/24/2022		<0.0005
8/25/2022	<0.0005	
Mean	0.00045	0.0004667
Std. Dev.	0.0001168	0.0001155
Upper Lim.	0.0005	0.0005
Lower Lim.	0.0002	0.0001

Constituent: Chromium (mg/L) Analysis Run 11/21/2022 11:01 AM View: Appendix IV - Confidence Intervals

					,	
	PZ-14	PZ-16	PZ-18	PZ-19	PZ-23A	PZ-33
8/31/2016	<0.005				<0.005	
9/6/2016		<0.005				
9/7/2016			<0.005	<0.005		
12/7/2016	<0.005	<0.005			<0.005	
12/8/2016			<0.005	<0.005		<0.005
3/21/2017	<0.005				0.0009 (J)	
3/22/2017		0.0008 (J)	<0.005			
3/23/2017				<0.005		0.0017 (J)
7/11/2017	<0.005	<0.005			0.0016 (J)	
7/12/2017			<0.005	<0.005		<0.005
10/18/2017	<0.005	<0.005	<0.005		0.0019 (J)	
10/19/2017				<0.005		<0.005
2/20/2018	<0.005				<0.005	
2/21/2018		<0.005	<0.005	<0.005		<0.005
7/11/2018	<0.005				0.0021 (J)	
7/12/2018		<0.005		<0.005		<0.005
8/15/2018			<0.005			
9/12/2018	<0.005					
9/13/2018		<0.005	<0.005		0.0022 (J)	
9/14/2018				<0.005		<0.005
10/4/2018						<0.005
9/10/2019					0.0044 (X)	
10/2/2019	<0.005	0.00044 (X)				
10/3/2019			<0.005	<0.005		<0.005
3/25/2020	0.0013 (J)				0.0012 (J)	
3/26/2020		0.0013 (J)	0.00056 (J)	0.00073 (J)		<0.005
8/26/2020	0.0011 (J)	0.00087 (J)		<0.005	0.0014 (J)	<0.005
8/27/2020			<0.005			
10/6/2020	0.00098 (J)	0.0011 (J)			0.0015 (J)	
10/7/2020			<0.005	<0.005		<0.005
3/3/2021	0.00097 (J)			<0.005	0.0015 (J)	
3/4/2021		0.0012 (J)	<0.005			<0.005
9/15/2021	0.0014 (J)	0.0011 (J)			0.0019 (J)	
9/16/2021			<0.005	<0.005		<0.005
1/26/2022	0.0012 (J)	0.0013 (J)			0.0028 (J)	
1/27/2022			<0.005	<0.005		<0.005
8/24/2022						<0.005
8/25/2022	0.0014 (J)	0.0012 (J)	<0.005	<0.005	0.0022 (J)	
Mean	0.003334	0.002769	0.004722	0.004733	0.002537	0.004794
Std. Dev.	0.001954	0.002042	0.00111	0.001067	0.001455	0.000825
Upper Lim.	0.005	0.005	0.005	0.005	0.002196	0.005
Lower Lim.	0.0011	0.00087	0.00056	0.00073	0.001274	0.0017

Constituent: Chromium (mg/L) Analysis Run 11/21/2022 11:01 AM View: Appendix IV - Confidence Intervals

	PZ-7D
9/1/2016	<0.005
12/7/2016	0.003 (J)
3/22/2017	0.0005 (J)
7/12/2017	<0.005
10/19/2017	0.0005 (J)
2/21/2018	<0.005
7/12/2018	<0.005
9/13/2018	<0.005
10/3/2019	0.0004 (X)
3/26/2020	0.0016 (J)
8/26/2020	0.0011 (J)
10/7/2020	0.0014 (J)
3/4/2021	0.0024 (J)
9/16/2021	0.0025 (J)
1/27/2022	0.0034 (J)
8/25/2022	0.0024 (J)
Mean	0.002762
Std. Dev.	0.001782
Upper Lim.	0.002159
Lower Lim.	0.0008284

Constituent: Cobalt (mg/L) Analysis Run 11/21/2022 11:01 AM View: Appendix IV - Confidence Intervals

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-14	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19
8/31/2016	<0.005					
9/1/2016		0.0012 (J)				
9/6/2016			0.0005 (J)			
9/7/2016				0.0011 (J)	0.0011 (J)	0.0012 (J)
12/7/2016	0.002 (J)	0.0005 (J)	<0.005			
12/8/2016				0.0006 (J)	<0.005	0.0009 (J)
3/21/2017	<0.005					
3/22/2017		0.0005 (J)	<0.005	0.0006 (J)	<0.005	
3/23/2017						<0.005
7/11/2017	0.0003 (J)		<0.005			
7/12/2017		0.0004 (J)		0.0005 (J)	<0.005	<0.005
10/18/2017	<0.005	0.0004 (J)	<0.005	0.0005 (J)	<0.005	
10/19/2017						<0.005
2/20/2018	<0.005					
2/21/2018		<0.005	<0.005	<0.005	<0.005	<0.005
7/11/2018	<0.005					
7/12/2018		<0.005	<0.005			<0.005
8/15/2018					<0.005	
8/16/2018				<0.005		
9/12/2018	<0.005					
9/13/2018		<0.005	<0.005		<0.005	
9/14/2018				<0.005		<0.005
10/2/2019	<0.005	<0.005	<0.005	<0.005		
10/3/2019					<0.005	<0.005
3/25/2020	<0.005			0.00032 (J)		
3/26/2020		<0.005	<0.005		<0.005	<0.005
8/26/2020	<0.005	<0.005	<0.005	<0.005		<0.005
8/27/2020					<0.005	
10/6/2020	<0.005		<0.005			
10/7/2020		<0.005		<0.005	<0.005	<0.005
3/3/2021	<0.005					<0.005
3/4/2021		<0.005	<0.005	<0.005	<0.005	
9/15/2021	<0.005	<0.005	<0.005			
9/16/2021				<0.005	<0.005	<0.005
1/26/2022	<0.005	<0.005	<0.005			
1/27/2022				<0.005	<0.005	<0.005
8/25/2022	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Mean	0.004519	0.003625	0.004719	0.003351	0.004756	0.004506
Std. Dev.	0.001351	0.002114	0.001125	0.002204	0.000975	0.00135
Upper Lim.	0.005	0.005	0.005	0.005	0.005	0.005
Lower Lim.	0.002	0.0005	0.0005	0.0005	0.0011	0.0012

Constituent: Cobalt (mg/L) Analysis Run 11/21/2022 11:01 AM View: Appendix IV - Confidence Intervals

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-23A	PZ-25	PZ-33
8/31/2016	<0.005		
9/8/2016		0.0008 (J)	
12/7/2016	0.0008 (J)		
12/8/2016		<0.005	0.0041 (J)
3/21/2017	<0.005		
3/22/2017		0.001 (J)	
3/23/2017			0.0008 (J)
7/11/2017	<0.005	0.001 (J)	
7/12/2017			0.0007 (J)
10/18/2017	<0.005	0.0011 (J)	
10/19/2017			0.0005 (J)
2/20/2018	<0.005		
2/21/2018		0.00075 (J)	0.0012 (J)
7/11/2018	<0.005		
7/12/2018		0.0008 (J)	0.00053 (J)
9/13/2018	<0.005	0.001 (J)	
9/14/2018			<0.005
10/4/2018			<0.005
9/10/2019	<0.005		
10/2/2019		0.0017 (X)	
10/3/2019			<0.005
3/25/2020	0.0003 (J)	0.0018 (J)	
3/26/2020			<0.005
8/26/2020	0.00058 (J)	0.0016 (J)	<0.005
10/6/2020	0.00067 (J)		
10/7/2020		0.0014 (J)	<0.005
3/3/2021	0.00049 (J)	0.0016 (J)	
3/4/2021			<0.005
9/15/2021	<0.005	0.002 (J)	
9/16/2021			<0.005
1/26/2022	<0.005	0.0016 (J)	
1/27/2022			<0.005
8/24/2022		0.0016 (J)	<0.005
8/25/2022	<0.005		
Mean	0.003615	0.001547	0.003614
Std. Dev.	0.002124	0.001003	0.002015
Upper Lim.	0.005	0.0018	0.005
Lower Lim.	0.00058	0.0008	0.0007

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 11/21/2022 11:01 AM View: Appendix IV - Confidence Intervals

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

			i lant witche	ii Ciletti. Oodiitetti	Company Data. I	WILCHOIL ASITT ONG COTT
	PZ-14	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19
8/31/2016	1.77					
9/1/2016		1.19				
9/6/2016			1.12			
9/7/2016				1.06 (U)	1.51	1.22
12/7/2016	0.672 (U)	1.88	1.37			
12/8/2016				1.3	1.29	1.69
3/21/2017	0.33 (U)					
3/22/2017		0.617 (U)	0.435 (U)	0.566 (U)	0.799 (U)	
3/23/2017						1.07
7/11/2017	0.701 (U)		0.76 (U)			
7/12/2017		0.674 (U)		0.856 (U)	0.4 (U)	0.849 (U)
10/18/2017	0.808 (U)	0.844 (U)	0.847 (U)	0.957	0.613 (U)	
10/19/2017						0.398 (U)
2/20/2018	2.12					
2/21/2018		0.842 (U)	0.373 (U)	1.4	0.736 (U)	1.03 (U)
7/11/2018	0.232 (U)					
7/12/2018		0.552 (U)	0.408 (U)			1.28 (U)
9/12/2018	0.532 (U)					
9/13/2018		0.662 (U)	0.472 (U)		0.708 (U)	
9/14/2018				1.16		0.74 (U)
10/2/2019	0.915 (U)	1 (U)	0.65 (U)	1.34 (U)		
10/3/2019					2.07	1.9
3/25/2020	0.694 (U)			0.385 (U)		
3/26/2020		0.863 (U)	0.522 (U)		1.05	1.66
8/26/2020	0.115 (U)	0.681 (U)	0.499 (U)	1.62		0.703 (U)
10/6/2020	0.265 (U)		1.12 (U)			
10/7/2020		1.22 (U)		0.432 (U)	0.365 (U)	0.893
3/3/2021	0.328 (U)					0.469 (U)
3/4/2021		0.674 (U)	0.404 (U)	0.734 (U)	0.498 (U)	
9/15/2021	0.872 (U)	0.729 (U)	0.721 (U)			
9/16/2021				0.377 (U)	0.681 (U)	1.4
1/26/2022	0.185 (U)	0.879 (U)	0.117 (U)			
1/27/2022				0.314 (U)	0.418 (U)	0.255 (U)
8/25/2022	0.453 (U)	1.05	0.728 (U)	0.98 (U)	0.0434 (U)	0.937
Mean	0.687	0.8973	0.6591	0.8987	0.7987	1.031
Std. Dev.	0.5554	0.3291	0.3284	0.4198	0.5292	0.4756
Upper Lim.	0.9475	1.066	0.8728	1.183	1.173	1.34
Lower Lim.	0.3298	0.6938	0.4454	0.6143	0.4239	0.7215

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 11/21/2022 11:01 AM View: Appendix IV - Confidence Intervals

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-23A	PZ-25	PZ-33	PZ-7D
8/31/2016	1.85			
9/1/2016				0.88 (U)
9/8/2016		1.41		
12/7/2016	0.844 (U)			0.179 (U)
12/8/2016		1.39	0.968 (U)	
3/21/2017	0.832 (U)			
3/22/2017		0.852 (U)		0.279 (U)
3/23/2017			0.444 (U)	
7/11/2017	0.824 (U)	1.04		
7/12/2017			0.814 (U)	0.125 (U)
10/18/2017	1.19	0.678 (U)		
10/19/2017			0.748 (U)	0.329 (U)
2/20/2018	0.975 (U)			
2/21/2018		0.863 (U)	1.05 (U)	0.504 (U)
7/11/2018	1.29			
7/12/2018		1.42	0.751 (U)	0.188 (U)
9/13/2018	0.765 (U)	0.766 (U)		0.0542 (U)
9/14/2018			1.01 (U)	
10/4/2018			1.05	
9/10/2019	0.575 (U)			
10/2/2019		1.48		
10/3/2019			1.62 (U)	1.37
3/25/2020	1.39	0.91 (U)		
3/26/2020			0.473 (U)	0.43 (U)
8/26/2020	0.774 (U)	0.95 (U)	0.782 (U)	0.572 (U)
10/6/2020	1.24 (U)			
10/7/2020		1.01 (U)	0.442 (U)	0.232 (U)
3/3/2021	1.01 (U)	0.545 (U)		
3/4/2021			1.03 (U)	0.529 (U)
9/15/2021	0.742 (U)	1.07 (U)		
9/16/2021			0.184 (U)	0.382 (U)
1/26/2022	0.76 (U)	0.282 (U)		
1/27/2022			0.259 (U)	0.315 (U)
8/24/2022		0.764 (U)	0.764 (U)	
8/25/2022	0.396 (U)			0.771 (U)
Mean	0.9661	0.9644	0.7743	0.4462
Std. Dev.	0.3554	0.3368	0.3608	0.3344
Upper Lim.	1.197	1.183	1.009	0.6104
Lower Lim.	0.7349	0.7453	0.5396	0.2246

Constituent: Fluoride (mg/L) Analysis Run 11/21/2022 11:01 AM View: Appendix IV - Confidence Intervals

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

						anom company b	ia. miloton / lott / ond oork	
		PZ-14	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19	
8/31	1/2016	0.13 (J)						
9/1/2	2016		0.06 (J)					
9/6/2	2016			0.09 (J)				
9/7/2	2016				0.03 (J)	0.12 (J)	0.15 (J)	
12/7	7/2016	0.07 (J)	0.09 (J)	0.09 (J)				
12/8	3/2016				0.18 (J)	0.18 (J)	0.12 (J)	
3/21	1/2017	<0.1						
3/22	2/2017		0.11 (J)	0.04 (J)	0.09 (J)	0.08 (J)		
3/23	3/2017						0.14 (J)	
7/11	1/2017	0.05 (J)		0.05 (J)				
7/12	2/2017		0.23 (J)		0.21 (J)	0.17 (J)	0.07 (J)	
10/1	18/2017	0.11 (J)	0.19 (J)	0.04 (J)	0.24 (J)	0.06 (J)		
10/1	19/2017						<0.1	
2/20)/2018	0.04 (J)						
2/21	1/2018		0.093 (J)	<0.1	0.24 (J)	0.086 (J)	0.37	
7/11	1/2018	<0.1						
7/12	2/2018		<0.1	<0.1			0.17 (J)	
8/15	5/2018					<0.1		
8/16	6/2018				0.073 (J)			
9/12	2/2018	<0.1						
9/13	3/2018		0.15 (J)	<0.1		<0.1		
9/14	1/2018				<0.1		<0.1	
3/27	7/2019	<0.1		<0.1		<0.1		
3/28	3/2019		0.1		0.15		0.074	
10/2	2/2019	0.056 (X)	0.075 (X)	0.053 (X)	0.063 (X)			
10/3	3/2019					0.043 (X)	0.084 (X)	
3/25	5/2020	<0.1			<0.1			
3/26	6/2020		0.056 (J)	<0.1		<0.1	0.077 (J)	
8/26	6/2020	<0.1	<0.1	<0.1	<0.1		0.062 (J)	
8/27	7/2020					<0.1		
10/6	6/2020	<0.1		<0.1				
10/7	7/2020		<0.1		<0.1	<0.1	0.064 (J)	
3/3/2	2021	<0.1					0.058 (J)	
3/4/2	2021		<0.1	<0.1	<0.1	<0.1		
9/15	5/2021	<0.1	<0.1	<0.1				
9/16	5/2021				0.052 (J)	<0.1	0.067 (J)	
1/26	6/2022	<0.1	<0.1	<0.1				
1/27	7/2022				<0.1	<0.1	0.056 (J)	
8/25	5/2022	0.051 (J)	0.074 (J)	0.058 (J)	0.078 (J)	0.052 (J)	0.086 (J)	
Mea	an	0.08865	0.1075	0.08359	0.118	0.09947	0.1087	
	Dev.	0.02518	0.04446	0.0241	0.06353	0.03486	0.07546	
Upp	er Lim.	0.11	0.1172	0.1	0.1252	0.12	0.14	
Low	er Lim.	0.056	0.07172	0.053	0.05759	0.08	0.064	

Constituent: Fluoride (mg/L) Analysis Run 11/21/2022 11:01 AM View: Appendix IV - Confidence Intervals

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

			Flam WillChei	i Ciletti. 30
	PZ-23A	PZ-25	PZ-33	PZ-7D
8/31/2016	0.13 (J)			
9/1/2016				<0.1
9/8/2016		0.25 (J)		
12/7/2016	0.13 (J)			0.15 (J)
12/8/2016		0.22 (J)	0.21 (J)	
3/21/2017	0.05 (J)			
3/22/2017		0.16 (J)		0.09 (J)
3/23/2017			0.18 (J)	
7/11/2017	0.05 (J)	0.23 (J)		
7/12/2017			0.06 (J)	0.02 (J)
10/18/2017	<0.1	0.28 (J)		
10/19/2017			<0.1	<0.1
2/20/2018	0.3 (J)			
2/21/2018		0.29 (J)	0.039 (J)	0.045 (J)
7/11/2018	0.077 (J)			
7/12/2018		0.21 (J)	<0.1	<0.1
9/13/2018	<0.1	0.22 (J)		<0.1
9/14/2018			<0.1	
10/4/2018			0.15 (J)	
3/27/2019	<0.1	0.37		
3/28/2019			<0.1	<0.1
9/10/2019	<0.1			
10/2/2019		0.16 (X)		
10/3/2019			0.06 (X)	0.041 (X)
3/25/2020	0.066 (J)	0.13 (J)		
3/26/2020			<0.1	<0.1
8/26/2020	0.057 (J)	0.14	<0.1	<0.1
10/6/2020	0.052 (J)			
10/7/2020		0.13	<0.1	<0.1
3/3/2021	<0.1	0.12		
3/4/2021			<0.1	<0.1
9/15/2021	<0.1	0.14		
9/16/2021			<0.1	<0.1
1/26/2022	<0.1	0.11		
1/27/2022			<0.1	<0.1
8/24/2022		0.15	0.092 (J)	
8/25/2022	0.074 (J)			0.056 (J)
Mean	0.09918	0.1947	0.1054	0.08835
Std. Dev.	0.05772	0.07264	0.04146	0.03076
Upper Lim.	0.13	0.2402	0.15	0.15
Lower Lim.	0.057	0.1492	0.092	0.056

Constituent: Lead (mg/L) Analysis Run 11/21/2022 11:01 AM View: Appendix IV - Confidence Intervals

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-15	PZ-16	PZ-18	PZ-19	PZ-23A	PZ-33
8/31/2016					<0.001	
9/1/2016	<0.001					
9/6/2016		<0.001				
9/7/2016			<0.001	<0.001		
12/7/2016	<0.001	<0.001			<0.001	
12/8/2016			<0.001	<0.001		<0.001
3/21/2017					<0.001	
3/22/2017	5E-05 (J)	<0.001	<0.001			
3/23/2017				<0.001		9E-05 (J)
7/11/2017		<0.001			<0.001	
7/12/2017	<0.001		<0.001	<0.001		<0.001
10/18/2017	<0.001	<0.001	<0.001		<0.001	
10/19/2017				<0.001		<0.001
2/20/2018					<0.001	
2/21/2018	<0.001	<0.001	0.00043 (J)	<0.001		<0.001
7/11/2018					<0.001	
7/12/2018	<0.001	<0.001		<0.001		<0.001
8/15/2018			<0.001			
9/13/2018	<0.001	<0.001	<0.001		<0.001	
9/14/2018				<0.001		<0.001
10/4/2018						<0.001
9/10/2019					<0.001	
10/2/2019	<0.001	8.1E-05 (X)				
10/3/2019			<0.001	<0.001		4.7E-05 (X)
3/25/2020					0.00015 (J)	
3/26/2020	<0.001	<0.001	<0.001	<0.001		<0.001
8/26/2020	<0.001	<0.001		<0.001	<0.001	<0.001
8/27/2020			<0.001			
10/6/2020		<0.001			4.7E-05 (J)	
10/7/2020	<0.001		4.2E-05 (J)	4.2E-05 (J)		<0.001
3/3/2021				<0.001	5.8E-05 (J)	
3/4/2021	<0.001	<0.001	<0.001			<0.001
9/15/2021	<0.001	<0.001			<0.001	
9/16/2021			<0.001	<0.001		<0.001
1/26/2022	<0.001	<0.001			<0.001	
1/27/2022			<0.001	<0.001		<0.001
8/24/2022						<0.001
8/25/2022	<0.001	<0.001	<0.001	<0.001	<0.001	
Mean	0.0009406	0.0009426	0.0009045	0.0009401	0.0008284	0.0008836
Std. Dev.	0.0002375	0.0002298	0.0002704	0.0002395	0.0003694	0.0003183
Upper Lim.	0.001	0.001	0.001	0.001	0.001	0.001
Lower Lim.	5E-05	8.1E-05	0.00043	4.2E-05	0.00015	9E-05

Constituent: Lead (mg/L) Analysis Run 11/21/2022 11:01 AM View: Appendix IV - Confidence Intervals

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-7D
9/1/2016	<0.001
12/7/2016	<0.001
3/22/2017	<0.001
7/12/2017	<0.001
10/19/2017	<0.001
2/21/2018	<0.001
7/12/2018	<0.001
9/13/2018	<0.001
10/3/2019	<0.001
3/26/2020	<0.001
8/26/2020	<0.001
10/7/2020	<0.001
3/4/2021	4.1E-05 (J)
9/16/2021	<0.001
1/27/2022	<0.001
8/25/2022	<0.001
Mean	0.0009401
Std. Dev.	0.0002398
Upper Lim.	0.001
Lower Lim.	4.1E-05

Constituent: Lithium (mg/L) Analysis Run 11/21/2022 11:01 AM View: Appendix IV - Confidence Intervals

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

8/31/2016	PZ-23A PO.03 PO.03 PO.03 PO.03
9/1/2016	c0.03 c0.03
97//2016	:0.03
12/7/2016	:0.03
12/8/2016	:0.03
3/21/2017	
3/22/2017	
3/23/2017	0.03
7/11/2017	:0.03
7/12/2017 <0.03	:0.03
10/18/2017 <0.03	
10/19/2017	
2/20/2018 <0.03	:0.03
2/21/2018 <0.03	
7/11/2018	0.03
7/12/2018	
8/15/2018	0.03
8/16/2018	
9/12/2018	
9/13/2018	
9/14/2018	
9/10/2019 10/2/2019 <0.03	0.03
10/2/2019 <0.03	
10/3/2019	0.03
3/25/2020 < 0.03	
3/26/2020 0.0014 (J) 0.0027 (J) 0.013 (J) 8/26/2020 <0.03	
8/26/2020 <0.03).0011 (J)
8/27/2020	
10/6/2020 <0.03 10/7/2020 0.0013 (J) 0.0029 (J) 0.003 (J) 0.013 (J) 0.015 (J) 0.015 (J) 0.015 (J) 0.015 (J) 0.015 (J) 0.015 (J) 0.015 (J) 0.015 (J) 0.015 (J) 0.015 (J) 0.015 (J) 0.015 (J) 0.015 (J) 0.015 (J) 0.015 (J) 0.0021 (J) 0.0023 (J) 0.013 (J)	0.0011 (J)
10/7/2020 0.0013 (J) 0.0029 (J) 0.003 (J) 0.013 (J) 3/3/2021 <0.03 0.015 (J) 0.015 (J) 0.015 (J) 0.015 (J) 0.015 (J) 0.015 (J) 0.0020 (J) 0.0029 (J) 0.0029 (J) 0.0021 (J) 0.0023 (J) 0.013 (J) 0.0023 (J) 0.013 (J)	(-/
3/3/2021 <0.03 0.015 (J) 0	(- /
3/4/2021 0.0014 (J) 0.002 (J) 0.0029 (J) 9/15/2021 <0.03 0.0013 (J) 0.0021 (J) 0.0023 (J) 0.013 (J)	0.00097 (J)
9/15/2021 <0.03 0.0013 (J) 0.0021 (J) 0.0023 (J) 0.013 (J)	
9/16/2021 0.0021 (J) 0.0023 (J) 0.013 (J)	
· · · · · · · · · · · · · · · · · · ·	0.00097 (J)
1/26/2022 <0.03 0.0013 (1)	0.00097 (J)
1/20/2022 0.03 0.0013 (3)	0.00097 (J)
1/27/2022 0.0022 (J) 0.003 (J) 0.016 (J)	0.00097 (J)
8/25/2022 <0.03 0.0012 (J) 0.0018 (J) 0.0033 (J) 0.012 (J)	0.00097 (J) 0.001 (J) 0.00085 (J)
	0.00097 (J) 0.001 (J) 0.00085 (J) 0.003
	0.00097 (J) 0.001 (J) 0.00085 (J) 0.003 0.003
	0.00097 (J) 0.001 (J) 0.00085 (J) 0.003 0.003 0.02094 0.01388
Lower Lim. 0.003 0.0012 0.002 0.0024 0.01057 0	0.00097 (J) 0.001 (J) 0.00085 (J) 0.003 0.003 0.02094 0.01388

Constituent: Lithium (mg/L) Analysis Run 11/21/2022 11:01 AM View: Appendix IV - Confidence Intervals

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-25	PZ-7D
9/1/2016		0.0022 (J)
9/8/2016	0.0038 (J)	
12/7/2016		0.0023 (J)
12/8/2016	0.0038 (J)	
3/22/2017	0.0068 (J)	0.0025 (J)
7/11/2017	0.0059 (J)	
7/12/2017		0.0033 (J)
10/18/2017	0.0057 (J)	
10/19/2017		<0.03
2/21/2018	0.0063 (J)	0.0034 (J)
7/12/2018	0.0063 (J)	0.0038 (J)
9/13/2018	0.0061 (J)	0.0026 (J)
10/2/2019	0.0074 (X)	
10/3/2019		0.0032 (X)
3/25/2020	0.0066 (J)	
3/26/2020		0.0031 (J)
8/26/2020	0.0065 (J)	0.0023 (J)
10/7/2020	0.0063 (J)	0.0023 (J)
3/3/2021	0.0061 (J)	
3/4/2021		0.0031 (J)
9/15/2021	0.0061 (J)	
9/16/2021		0.0025 (J)
1/26/2022	0.008 (J)	
1/27/2022		0.0039 (J)
8/24/2022	0.0073 (J)	
8/25/2022		0.003 (J)
Mean	0.006188	0.004594
Std. Dev.	0.001108	0.006797
Upper Lim.	0.006908	0.0038
Lower Lim.	0.005581	0.0023

Constituent: Mercury (mg/L) Analysis Run 11/21/2022 11:01 AM View: Appendix IV - Confidence Intervals

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

		PZ-14	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19
8/3	31/2016	<0.0002					
9/1	1/2016		<0.0002				
9/6	6/2016			<0.0002			
9/7	7/2016				<0.0002	<0.0002	<0.0002
12	/7/2016	7E-05 (J)	<0.0002	<0.0002			
12	/8/2016				<0.0002	<0.0002	<0.0002
3/2	21/2017	<0.0002					
3/2	22/2017		<0.0002	<0.0002	<0.0002	<0.0002	
3/2	23/2017						<0.0002
7/1	11/2017	<0.0002		<0.0002			
7/1	12/2017		<0.0002		<0.0002	<0.0002	<0.0002
10	/18/2017	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	
10	/19/2017						<0.0002
2/2	20/2018	<0.0002					
2/2	21/2018		9.7E-05 (J)	6.8E-05 (J)	8.6E-05 (J)	5.7E-05 (J)	4.5E-05 (J)
7/1	11/2018	<0.0002					
7/1	12/2018		<0.0002	<0.0002			<0.0002
8/1	15/2018					<0.0002	
8/1	16/2018				<0.0002		
9/1	12/2018	<0.0002					
9/1	13/2018		<0.0002	<0.0002		<0.0002	
9/1	14/2018				<0.0002		<0.0002
	26/2020	0.00015 (J)	<0.0002	<0.0002	<0.0002		0.0001 (J)
	27/2020					<0.0002	
	/6/2020	<0.0002		<0.0002			
	/7/2020		<0.0002		<0.0002	<0.0002	<0.0002
	3/2021	<0.0002					<0.0002
	4/2021		<0.0002	<0.0002	<0.0002	<0.0002	
	15/2021	<0.0002	<0.0002	<0.0002			
	16/2021				<0.0002	<0.0002	<0.0002
	26/2022	<0.0002	<0.0002	<0.0002			
	27/2022				<0.0002	<0.0002	<0.0002
	25/2022	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
	ean	0.0001871	0.0001926	0.0001906	0.0001919	0.0001898	0.0001818
	d. Dev.	3.625E-05	2.753E-05	3.528E-05	3.047E-05	3.822E-05	4.754E-05
	per Lim.	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
Lo	wer Lim.	0.00015	9.7E-05	6.8E-05	8.6E-05	5.7E-05	0.0001

Constituent: Mercury (mg/L) Analysis Run 11/21/2022 11:01 AM View: Appendix IV - Confidence Intervals

Plant Mitchell Client: Southern Company Data: Mitchell Ash Pond CCR

	PZ-23A	PZ-25	PZ-33	PZ-7D
8/31/2016	<0.0002			
9/1/2016				<0.0002
9/8/2016		<0.0002		
12/7/2016	9E-05 (J)			6E-05 (J)
12/8/2016		<0.0002	<0.0002	
3/21/2017	<0.0002			
3/22/2017		<0.0002		<0.0002
3/23/2017			<0.0002	
7/11/2017	<0.0002	<0.0002		
7/12/2017			<0.0002	<0.0002
10/18/2017	<0.0002	<0.0002		
10/19/2017			<0.0002	<0.0002
2/20/2018	<0.0002			
2/21/2018		5.3E-05 (J)	4.3E-05 (J)	5.3E-05 (J)
7/11/2018	<0.0002			
7/12/2018		<0.0002	<0.0002	<0.0002
9/13/2018	<0.0002	<0.0002		<0.0002
9/14/2018			4.1E-05 (J)	
10/4/2018			<0.0002	
8/26/2020	0.00017 (J)	<0.0002	0.00011 (J)	<0.0002
10/6/2020	<0.0002			
10/7/2020		<0.0002	<0.0002	<0.0002
3/3/2021	<0.0002	<0.0002		
3/4/2021			<0.0002	<0.0002
9/15/2021	<0.0002	<0.0002		
9/16/2021			<0.0002	<0.0002
1/26/2022	<0.0002	<0.0002		
1/27/2022			<0.0002	<0.0002
8/24/2022			<0.0002	
8/25/2022	<0.0002			<0.0002
10/11/2022		<0.0002		
Mean	0.00019	0.0001895	0.000171	0.0001795
Std. Dev.	2.987E-05	3.929E-05	5.965E-05	5.213E-05
Upper Lim.	0.0002	0.0002	0.0002	0.0002
Lower Lim.	0.00017	5.3E-05	0.00011	6E-05

Constituent: Molybdenum (mg/L) Analysis Run 11/21/2022 11:01 AM View: Appendix IV - Confidence Intervals

	PZ-14	PZ-15	PZ-16	PZ-17	PZ-19	PZ-23A
8/31/2016	<0.01					<0.01
9/1/2016		<0.01				
9/6/2016			<0.01			
9/7/2016				<0.01	0.0027 (J)	
12/7/2016	<0.01	<0.01	<0.01			<0.01
12/8/2016				<0.01	0.0022 (J)	
3/21/2017	0.0005 (J)					0.0006 (J)
3/22/2017		0.0004 (J)	0.0004 (J)	0.0004 (J)		
3/23/2017					0.0025 (J)	
7/11/2017	<0.01		<0.01			<0.01
7/12/2017		<0.01		<0.01	0.0022 (J)	
10/18/2017	<0.01	<0.01	<0.01	<0.01		<0.01
10/19/2017					0.0021 (J)	
2/20/2018	<0.01					<0.01
2/21/2018		<0.01	<0.01	<0.01	<0.01	
7/11/2018	<0.01					<0.01
7/12/2018		<0.01	<0.01		0.0022 (J)	
8/16/2018				<0.01		
9/12/2018	<0.01					
9/13/2018		<0.01	<0.01			<0.01
9/14/2018				<0.01	0.0023 (J)	
9/10/2019						<0.01
10/2/2019	<0.01	<0.01	<0.01	<0.01		
10/3/2019					0.0024 (X)	
3/25/2020	<0.01			<0.01		0.0011 (J)
3/26/2020		<0.01	<0.01		0.0021 (J)	
8/26/2020	<0.01	<0.01	<0.01	<0.01	0.002 (J)	<0.01
10/6/2020	<0.01		<0.01			<0.01
10/7/2020		<0.01		<0.01	0.0019 (J)	
3/3/2021	<0.01				0.0021 (J)	<0.01
3/4/2021		<0.01	<0.01	<0.01		
9/15/2021	<0.01	<0.01	<0.01			<0.01
9/16/2021				<0.01	0.0021 (J)	
1/26/2022	<0.01	<0.01	<0.01			<0.01
1/27/2022				<0.01	0.0022 (J)	
8/25/2022	<0.01	<0.01	<0.01	<0.01	0.0017 (J)	<0.01
Mean	0.009406	0.0094	0.0094	0.0094	0.002669	0.008856
Std. Dev.	0.002375	0.0024	0.0024	0.0024	0.001969	0.003127
Upper Lim.	0.01	0.01	0.01	0.01	0.0025	0.01
Lower Lim.	0.0005	0.0004	0.0004	0.0004	0.002	0.0011

Constituent: Molybdenum (mg/L) Analysis Run 11/21/2022 11:01 AM View: Appendix IV - Confidence Intervals

	PZ-25
9/8/2016	<0.01
12/8/2016	<0.01
3/22/2017	0.001 (J)
7/11/2017	<0.01
10/18/2017	<0.01
2/21/2018	<0.01
7/12/2018	<0.01
9/13/2018	<0.01
10/2/2019	<0.01
3/25/2020	<0.01
8/26/2020	<0.01
10/7/2020	<0.01
3/3/2021	<0.01
9/15/2021	<0.01
1/26/2022	<0.01
8/24/2022	<0.01
Mean	0.009437
Std. Dev.	0.00225
Upper Lim.	0.01
Lower Lim.	0.001

Constituent: Selenium (mg/L) Analysis Run 11/21/2022 11:01 AM View: Appendix IV - Confidence Intervals

					,
	PZ-14	PZ-15	PZ-19	PZ-23A	PZ-7D
8/31/2016	0.0012 (J)			0.0014 (J)	
9/1/2016		<0.005			<0.005
9/7/2016			<0.005		
12/7/2016	<0.005	<0.005		<0.005	<0.005
12/8/2016			<0.005		
3/21/2017	<0.005			<0.005	
3/22/2017		<0.005			<0.005
3/23/2017			<0.005		
7/11/2017	<0.005			<0.005	
7/12/2017		<0.005	<0.005		<0.005
10/18/2017	<0.005	<0.005		<0.005	
10/19/2017			<0.005		<0.005
2/20/2018	<0.005			<0.005	
2/21/2018		<0.005	<0.005		<0.005
7/11/2018	<0.005			<0.005	
7/12/2018		<0.005	<0.005		<0.005
9/12/2018	<0.005				
9/13/2018		<0.005		<0.005	<0.005
9/14/2018			0.0015 (J)		
9/10/2019				0.0018 (X)	
10/2/2019	0.0015 (X)	<0.005			
10/3/2019			0.0034 (X)		0.0017 (X)
3/25/2020	<0.005			0.003 (J)	
3/26/2020		<0.005	0.0016 (J)		<0.005
8/26/2020	<0.005	0.0018 (J)	0.0031 (J)	0.0026 (J)	0.0018 (J)
10/6/2020	<0.005			0.0027 (J)	
10/7/2020		<0.005	0.0035 (J)		<0.005
3/3/2021	<0.005		0.0033 (J)	0.0025 (J)	
3/4/2021		<0.005			0.0018 (J)
9/15/2021	<0.005	<0.005		0.0024 (J)	
9/16/2021			0.0033 (J)		<0.005
1/26/2022	<0.005	<0.005		0.0023 (J)	
1/27/2022			0.005		0.0018 (J)
8/25/2022	<0.005	<0.005	0.0019 (J)	0.0023 (J)	0.0017 (J)
Mean	0.004544	0.0048	0.00385	0.0035	0.003987
Std. Dev.	0.001248	0.0008	0.001328	0.00141	0.001551
Upper Lim.	0.005	0.005	0.005	0.005	0.005
Lower Lim.	0.0015	0.0018	0.0019	0.0023	0.0018

Constituent: Thallium (mg/L) Analysis Run 11/21/2022 11:01 AM View: Appendix IV - Confidence Intervals

					,	
	PZ-14	PZ-15	PZ-16	PZ-17	PZ-18	PZ-19
8/31/2016	<0.001					
9/1/2016		<0.001				
9/6/2016			<0.001			
9/7/2016				<0.001	<0.001	<0.001
12/7/2016	<0.001	<0.001	<0.001			
12/8/2016				<0.001	<0.001	0.0003 (J)
3/21/2017	6E-05 (J)					
3/22/2017		<0.001	0.0002 (J)	<0.001	4E-05 (J)	
3/23/2017						0.0003 (J)
7/11/2017	<0.001		0.0002 (J)			
7/12/2017		<0.001		<0.001	<0.001	0.0004 (J)
10/18/2017	<0.001	<0.001	0.0002 (J)	<0.001	5E-05 (J)	
10/19/2017						0.0005 (J)
2/20/2018	<0.001					
2/21/2018		<0.001	0.00018 (J)	<0.001	<0.001	0.00049 (J)
7/11/2018	<0.001					
7/12/2018		<0.001	<0.001			0.00077 (J)
8/15/2018					<0.001	
8/16/2018				<0.001		
9/12/2018	<0.001					
9/13/2018		<0.001	0.00017 (J)		<0.001	
9/14/2018				<0.001		0.00076 (J)
10/2/2019	<0.001	0.00016 (X)	5.3E-05 (X)	0.00016 (X)		
10/3/2019					<0.001	0.00071 (X)
3/25/2020	<0.001			0.0002 (J)		
3/26/2020		0.00014 (J)	<0.001		7.1E-05 (J)	0.00068 (J)
8/26/2020	<0.001	0.00027 (J)	<0.001	0.00025 (J)		0.00056 (J)
8/27/2020					<0.001	
10/6/2020	<0.001		<0.001			
10/7/2020		0.00022 (J)		0.00022 (J)	<0.001	0.0007 (J)
3/3/2021	<0.001					0.00072 (J)
3/4/2021		0.00022 (J)	<0.001	0.00039 (J)	<0.001	
9/15/2021	<0.001	0.0002 (J)	<0.001			
9/16/2021				0.00034 (J)	<0.001	0.00066 (J)
1/26/2022	<0.001	<0.001	<0.001			
1/27/2022				0.00038 (J)	<0.001	0.00063 (J)
8/25/2022	<0.001	<0.001	<0.001	0.00037 (J)	<0.001	0.00053 (J)
Mean	0.0009413	0.0007006	0.0006877	0.0006444	0.0008226	0.0006069
Std. Dev.	0.000235	0.0004001	0.0004177	0.0003726	0.0003815	0.0001843
Upper Lim.	0.001	0.001	0.001	0.001	0.001	0.0007268
Lower Lim.	6E-05	0.0002	0.00018	0.00022	7.1E-05	0.0004869

Constituent: Thallium (mg/L) Analysis Run 11/21/2022 11:01 AM View: Appendix IV - Confidence Intervals

			Flam Willen	Client. 300
	PZ-23A	PZ-25	PZ-33	PZ-7D
8/31/2016	<0.001			
9/1/2016				<0.001
9/8/2016		<0.001		
12/7/2016	0.0002 (J)			<0.001
12/8/2016		<0.001	<0.001	
3/21/2017	0.0003 (J)			
3/22/2017		<0.001		0.0002 (J)
3/23/2017			0.0001 (J)	
7/11/2017	0.0002 (J)	<0.001		
7/12/2017			0.0001 (J)	0.0001 (J)
10/18/2017	0.0001 (J)	<0.001		
10/19/2017			0.0001 (J)	0.0001 (J)
2/20/2018	0.00026 (J)			
2/21/2018		<0.001	<0.001	<0.001
7/11/2018	0.00018 (J)			
7/12/2018		<0.001	<0.001	<0.001
9/13/2018	<0.001	<0.001		<0.001
9/14/2018			<0.001	
10/4/2018			<0.001	
9/10/2019	<0.001			
10/2/2019		0.00024 (X)		
10/3/2019			0.00018 (X)	7.8E-05 (X)
3/25/2020	0.00015 (J)	0.00037 (J)		
3/26/2020			0.00015 (J)	8.5E-05 (J)
8/26/2020	0.00016 (J)	0.00037 (J)	<0.001	<0.001
10/6/2020	<0.001			
10/7/2020		0.00027 (J)	<0.001	<0.001
3/3/2021	0.00017 (J)	0.00036 (J)		
3/4/2021			<0.001	<0.001
9/15/2021	<0.001	0.00066 (J)		
9/16/2021			<0.001	<0.001
1/26/2022	<0.001	0.00039 (J)		
1/27/2022			<0.001	<0.001
8/24/2022		0.00048 (J)	<0.001	
8/25/2022	<0.001			<0.001
Mean	0.000545	0.0006963	0.0007269	0.0007227
Std. Dev.	0.0004167	0.0003262	0.0004188	0.0004256
Upper Lim.	0.001	0.001	0.001	0.001
Lower Lim.	0.00016	0.00036	0.00015	0.0001