

ASSESSMENT OF CORRECTIVE MEASURES REPORT

Plant McManus Former Ash Pond 1, Brunswick, Georgia

December 4, 2020

ASSESSMENT OF CORRECTIVE MEASURES REPORT

Plant McManus Former Ash Pond 1, Brunswick, Georgia

Prepared for:

Georgia Power Company

Prepared by:

Arcadis U.S., Inc.

2839 Paces Ferry Road

Suite 900

Atlanta

Georgia 30339

Tel 770 431 8666

Fax 770 435 2666

Our Ref:

30050105

Date:

December 4, 2020

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Geoffrey Gay, PE Project Manager

S. Culbus Gon

Margaret Gentile, PhD Technical Expert

Maryenet Gentles

Kathryn Farris, M. Sc. Environmental Engineer

CONTENTS

Acror	nyms a	and Abbreviations	iii
1 I	Introd	uction	1
1.1	Pι	urpose	2
1.2	Si	ite Location and Description	2
1.3	Po	ond Closure	2
2 (Conce	eptual Site Model	3
2.1	G	eology	3
2.2	H	ydrology and Groundwater Flow	4
3 I	Nature	e and Extent of Appendix IV Constituents	5
3.1	G	roundwater Monitoring & Constituents of Concern	5
3	3.1.1	Groundwater Monitoring Program	5
3	3.1.2	Appendix IV Constituent SSL	5
3.2	Fi	ield Investigation Activities	6
4 (Groun	ndwater Corrective Measures Alternatives	7
4.1	0	bjectives of the Corrective Measures	7
4.2	Sı	ummary of Potential Corrective Measures	8
4	1.2.1	Geochemical Approaches (In Situ Injection)	8
4	1.2.2	In Situ Stabilization/Solidification	11
4	1.2.3	Hydraulic Containment (Pump and Treat)	12
4	1.2.4	Monitored Natural Attenuation	13
4	1.2.5	Permeable Reactive Barriers	14
4	1.2.6	Phytoremediation	16
4	1.2.7	Subsurface Vertical Barrier Walls	17
5 I	Reme	dy Selection Process	18
5.1	Po	ond Closure and Site Management Strategy	18
5.2	Ad	dditional Data Gathering	19
5.3	So	chedule, Reporting, and Next Steps	19
6 I	Refere	ences	20

TABLES

- Table 1A. Monitoring Well Network
- Table 1B. Piezometers and Dewatering Wells
- Table 2. Groundwater Protection Standards
- Table 3. Single Well Hydraulic Conductivity Test Results
- Table 4. June 2020 Supplemental Sample Results
- Table 5. Remedy Evaluation Summary

FIGURES

- Figure 1. Site Map and Compliance Monitoring Well Network
- Figure 2A. Site Plan
- Figure 2B. Cross Section A-A'
- Figure 2C. Cross Section B-B'
- Figure 2D. Cross Section C-C'
- Figure 3. Supplemental Investigation and Dewatering Wells
- Figure 4. Isoconcentration Map Arsenic March 2020

APPENDICES

- Appendix A. Risk Evaluation Report
- Appendix B. Potentiometric Maps (Resolute 2020a)
- Appendix C. Gamma Logs and Conductivity Summary (Resolute 2020a)
- Appendix D. Analytical Summary Tables (Resolute 2020a)
- Appendix E. Analytical Reports Deep Piezometer Investigation, June 2020 Supplemental Sampling, August Scan Event
- Appendix F. Technical Memo: Surface Water Sampling Results, Georgia Power Plant McManus

ACRONYMS AND ABBREVIATIONS

ACM Assessment of Corrective Measures

AP Ash Pond

Arcadis U.S. Inc.

ASD Alternate Source Demonstration

CCR Coal Combustion Residuals

CFR Code of Federal Regulations

cm/s centimeters per second

GAEPD Georgia Environmental Protection Division

Georgia Power Company

GWPS Groundwater Protection Standard

ISS in situ stabilization/solidification

ITRC Interstate Technology and Regulatory Council

mg/L milligram(s) per liter

MNA monitored natural attenuation

O&M operations and maintenance

ORP oxidation reduction potential

P&T pump and treat

PRB permeable reactive barrier

Site Former Ash Pond 1

SSL Statistically Significant Level

USEPA United States Environmental Protection Agency

ZVI zero valent iron

1 INTRODUCTION

In accordance with the United States Environmental Protection Agency (USEPA) Coal Combustion Residuals (CCR) Rule (40 Code of Federal Regulations [CFR] Part 257 Subpart D) and the Georgia Environmental Protection Division (GAEPD) Rules of Solid Waste Management 391-3-4-.10, Arcadis U.S. Inc. (Arcadis) has prepared this assessment of corrective measures (ACM) report for Georgia Power Company's (Georgia Power's) Plant McManus Ash Pond (AP)-1 (the Site). As required by 40 CFR § 257.96 and GAEPD Rule 391-3-4-.10(6)(a), this ACM evaluates potential corrective measures to address a statistically significant level (SSL) of arsenic in one monitoring well (MCM-06) associated with the groundwater monitoring network at AP-1. Although an SSL of lithium was also identified as an SSL at the former CCR Unit, an alternate source demonstration (ASD) was completed for lithium and submitted under a separate cover (Arcadis, 2020). Therefore, lithium was not considered in this ACM.

The ACM was initiated on July 9, 2020 within 90 days of identifying the SSL on May 8, 2020. A 60-day extension until December 4, 2020 for completion of the ACM was filed on October 7, 2020. This ACM is the first step in identifying viable corrective measures to address an SSL in groundwater at the former CCR Unit. Based on the evaluation in the ACM, further evaluation may be performed, additional studies may be completed specific to the former CCR Unit, and a remedy will be selected and implemented pursuant to § 257.97 and § 257.98 and 391-3-4-.10(6). Delineation well, DPZ-02, installed to assess the extent of arsenic in groundwater at former AP-1, shows that arsenic is vertically delineated at MCM-06. Due to the presence of a surface water feature downgradient direction of MCM-06, installation of wells to horizontally characterize this area is infeasible. Georgia Power proactively collected surface water samples from along four transects in the tidal marsh adjacent to wells MCM-05, MCM-06, MCM-07, and MCM-14 of former AP-1 in February 2020. The surface water sample results from the transects are well below the Georgia instream water quality standard chronic standard for dissolved arsenic for marine estuary environments. Surface water data will be collected semi-annually with routine groundwater sampling and reported in semi-annual and annual groundwater monitoring reports. Based on arsenic results for data collected to date, no arsenic impacts to surface water have been detected and horizontal delineation is complete.

Georgia Power conducted a human health and ecological risk evaluation to evaluate constituents that exhibit SSLs in groundwater, arsenic and lithium, at former AP-1. The ASD demonstrates that concentrations of lithium in groundwater are naturally occurring. However, for completeness, lithium was carried forward into the refined risk evaluation. The risk evaluation used a conservative, health-protective approach that is consistent with USEPA risk assessment guidance, GAEPD regulations and guidance, and standard practice for risk assessment in the State of Georgia. As part of the risk evaluation, a well survey of potential groundwater wells within a three-mile radius of former AP-1 was conducted and consisted of reviewing federal, state, and county records and online sources, in addition to conducting a windshield survey of the area. The risk evaluation relied on groundwater data collected by Georgia Power from 2015 through March 2020 in compliance with the federal and state CCR rules. Based upon this risk evaluation, which included multiple conservative assumptions, concentrations of arsenic and lithium detected in groundwater at former AP-1 are not expected to pose a risk to human health or the environment. The *Risk Evaluation Report* (Wood, 2020) and associated well survey are provided as **Appendix A**.

arcadis.com

1.1 Purpose

The purpose of this ACM for Plant McManus former AP-1 is to begin the process of selecting technically feasible groundwater corrective measure(s) to address SSLs of arsenic at the site. This process is typically iterative and may be composed of multiple steps to analyze the effectiveness of corrective measures to address the potential migration of CCR constituents in groundwater at former AP-1.

Per § 257.96(c), the remedy evaluation in this ACM considers the following criteria:

- Performance
- Reliability
- Ease of implementation
- Potential impacts of the remedy
- Time required to begin and complete the remedy
- Institutional requirements.

Based on the outcome of the ACM, further evaluations may be performed, site-specific studies completed, and progress documented in semi-annual remedy selection reports. The results of the ACM will be presented in a public meeting at least 30 days prior to the selection of a final remedy.

1.2 Site Location and Description

Plant McManus is an electrical power generation plant located on Crispen Island in Glynn County, near Brunswick, Georgia (**Figure 1**). The physical address of the plant is 1 Crispen Island Drive, Brunswick, GA 31523. Crispen Island originally consisted of several smaller islands that were joined to construct Plant McManus. It was separated from the mainland to the northeast by tidal marsh and bound to the west and southwest by the Turtle River.

The plant was originally constructed in 1952 and consisted of two boilers and nine diesel-fired combustion turbines. Use of coal for production ceased in 1972, and Georgia Power retired all coal power generating assets at Plant McManus prior to April 16, 2015. During operation of the coal-fired units from 1959 until 1972, CCR was disposed in an approximately 80-acre surface impoundment (AP-1) on the Plant McManus Site northeast of the plant.

AP-1 was formed by the construction of a dike from the northeast corner of Crispen Island to the mainland. This dike formed the northwest side of AP-1, while Crispen Island, the mainland, and a southern roadway and dike (Crispen Boulevard) formed the other sides of AP-1.

1.3 Pond Closure

Georgia Power completed closure of AP-1 between 2016 and 2019 by dewatering and removing the CCR material. A notification of intent to close the former CCR Unit was placed in the operating record on December 7, 2015 and posted to the Plant McManus CCR Rule Compliance website within 30 days. The initial Closure Plan was submitted to GAEPD on April 17, 2018 as part of the permit application package describing the closure activities and requirements in accordance with 40 CFR § 257.102. The Closure

arcadis.com

Plan and notification of closure completion are posted on the Plant McManus CCR Rule Compliance website, available to the public.

CCR material removal was conducted within the Plant McManus Surface Impoundment in accordance with 40 CFR § 257.100(b)(5) and GAEPD Rule 391-3-4-.10(9)(c)6. All visible CCR within the surface impoundment, as well as an additional six inches of native soil below the limits of ash, was removed, stockpiled, and loaded into trucks for transportation and disposal at an approved solid waste management facility.

The closure of the former AP-1 as described above provides a long-term source control measure by eliminating the source CCR material.

2 CONCEPTUAL SITE MODEL

The following section summarizes the geologic and hydrogeologic conditions at Plant McManus as described in the June 2020 Hydrogeologic Assessment Report submitted to GAEPD (Resolute 2020b). The Site plan is provided on **Figure 2A**. The monitoring well network and piezometers are shown on this figure, as well as the locations of the dewatering wells used to dewater AP-1 during its excavation. Cross-section alignments are shown on **Figures 2B, 2C,** and **2D** and are based on boring logs compiled in the September 2020 Well Installation Addendum (Resolute 2020c).

2.1 Geology

Plant McManus is located within the Coastal Plain Province of Georgia. This area is underlain by three regional aquifer systems which extend to depths exceeding 1,100 feet. The uppermost regional aquifer is the surficial aquifer, which in this area extends to approximately 185 feet bgs (Resolute 2020b). The surficial aquifer is made up of three formations: the Satilla Formation, the Cypresshead Formation, and the Ebenezer Formation (Resolute 2020b).

The soils underlying the Site are comprised of fine sands containing varying amounts of silt and clay interspersed with discontinuous clay/silty clay layers down to between 33 and 43 feet bgs (Resolute 2020a). This unit is interpreted to be the Upper Satilla Formation (ATC Associates, Inc. 1997) and is where most of the onsite monitoring wells, dewatering wells, and piezometers are screened. It is also the portion of the surficial aquifer that is depicted on cross-section **Figures 2B, 2C, and 2D**. In the aquifer under the northern dike, the monitoring wells are screened predominantly in sands with a relatively lower percentage of fines with lower permeability layers interspersed, as shown on cross-section AA' (**Figure 2B**). Additional deposits of finer grained materials are found in the groundwater underlying the island, cross-section BB' (**Figure 2C**), and mainland, cross-section CC' (**Figure 2D**).

At greater depths, the Upper Satilla Formation fines downward to a silty fine sand. These siltier sands were interpreted to be Lower Satilla (ATC Associates, Inc. 1997) but may also correspond to be the Cypresshead Formation (Huddleston 1988). The underlying Ebenezer Formation begins at approximately 50 feet bgs and is comprised of a confining zone approximately 25 feet thick, then a water-bearing zone about 35 feet thick, which is followed by another pair of confining and water-bearing zones down to approximately 185 feet bgs (Weems and Edwards 2001).

Gamma log data and vertical permeability tests performed from Shelby tubes in onsite borings indicate a lower permeability layer starting generally between 35 and 50 feet bgs (Resolute 2020a, 2020b). Representative samples were collected from deeper intervals of the surficial aquifer (Lower Satilla, Cypresshead, or potentially the Ebenezer Formation) and identified a potential aquitard.

The surface of the tidal marsh is covered by silt and vegetation, except where scoured by tidal creeks with fine sands in their channels. The surficial aquifer formed in a similar depositional environment, with paleo tidal channels likely present throughout, and discontinuous layers/channels of fine sand or clay. The surficial aquifer is generally unconfined, but there may be localized layers of lower permeability soils, resulting in a semi-confined condition at some locations.

2.2 Hydrology and Groundwater Flow

A groundwater monitoring network has been established within the uppermost aquifer around former AP-1 pursuant to § 257.91 (**Tables 1A** and **1B**; **Figure 1**). This monitoring well network includes upgradient and downgradient monitoring points and serves to monitor groundwater passing the boundary of the former AP-1 within the Upper Satilla section of the surficial aquifer. Potentiometric surface maps that were developed from data collected at low and high tide in March 2020 and at high tide in October 2020 are provided in **Appendix B**.

The potentiometric surface maps in **Appendix B** show that there are two components of groundwater flow at the Site, within the Upper Satilla Formation. The first is toward former AP-1 from the mainland (on the northeast side), and from Crispen Island (on the southwest side). The groundwater elevations in the monitoring wells and piezometer on both the mainland (MCM-01, -02, -15, and -16) and Crispen Island (MCM-08 and -11) are consistently higher than the surface water elevation in AP-1 and the monitoring wells along both dikes at both high and low tide. This indicates that groundwater flows consistently toward AP-1 from Crispen Island and the mainland.

The second component of groundwater flow is between AP-1 and the tidal marsh, to the northwest and southeast. Under the present conditions, the gradient changes direction with the tides. Based on the March 2020 high and low tide potentiometric surface maps presented in **Appendix B**, at low tide the gradient is toward the marsh, and at high tide the gradient is inward toward former AP-1.

According to the Hydrogeologic Assessment Report (Resolute 2020b), the tides have a six-hour cycle, and the amount of time available for groundwater movement at each tide is approximately three hours. During the remainder of time in each cycle, there is minimal hydraulic gradient (and correspondingly minimal flow) as the flow directions reverse, likely resulting in minimal net groundwater flow toward the marsh (Resolute 2020b).

Slug tests have also been conducted at wells and piezometers screened in the Upper Satilla Formation, around the former AP-1. Results from these tests identified a range of average hydraulic conductivity values from 8.67 x 10⁻⁵ centimeters per second (cm/s) to 2.90 x 10⁻³ cm/s, with a geometric mean of 7.39 x 10⁻⁴ cm/s and an overall average hydraulic conductivity for the Site of 1.18 x 10⁻³ cm/s (**Table 3**; Resolute 2020b). The range of hydraulic conductivity is consistent with sand to silty-sand aquifer materials. The magnitude of the range observed is consistent with the variable nature of the interspersed sands, silty sands, and clays underlying the Site. The highest hydraulic conductivities were observed in monitoring wells along the dike and mainland. The lowest hydraulic conductivities were observed in wells

located on the island. The higher hydraulic conductivity in wells along the northern dike correspond to relatively lower levels of fines in the "MCM" monitoring wells along the dike and mainland, as shown on cross-sections AA' and CC' (**Figure 2B** and **2D**), in comparison to the greater amount of fines in the island wells, shown on cross-section BB' (**Figure 2C**), which correspond to relatively lower hydraulic conductivities.

Gamma log data and Shelby tube samples were collected at six stratigraphic borings drilled through the Satilla, Cypresshead, and Ebenezer Formations in March 2020 **(Appendix C)**. Vertical hydraulic conductivity of the Upper Satilla and Lower Satilla/Cypresshead Formations was determined by hydraulic conductivity testing of Shelby tube samples collected while the borings were being drilled. The average vertical hydraulic conductivity measured in the interval screened in the compliance well network (1.18 x 10⁻³ cm/s) is two orders of magnitude greater than the average vertical hydraulic conductivity measured in the Lower Satilla Formation (3.25 x 10⁻⁵ cm/s), indicating that the formation limits downward vertical flow at the Site (Resolute 2020a). Note that the gamma log data and vertical hydraulic conductivity measurements extended past the depth of the logged borings shown on the cross-sections.

3 NATURE AND EXTENT OF APPENDIX IV CONSTITUENTS

Monitoring-related field assessment activities performed in support of delineating the nature and extent of the SSL in groundwater and evaluating potential corrective measures are described below.

3.1 Groundwater Monitoring & Constituents of Concern

3.1.1 **Groundwater Monitoring Program**

A groundwater monitoring network has been established for the Site in accordance with 40 CFR § 257.91 and certified by a Professional Engineer on April 17, 2019. The certified compliance monitoring well network for AP-1 consists of a total of 15 monitoring wells: eight upgradient wells and seven downgradient wells. As part of the assessment program, piezometer DPZ-02 was converted to a vertical delineation well to vertically delineate the groundwater quality at MCM-06. The locations of the compliance monitoring wells are shown on **Figure 1**; well construction details are listed in **Tables 1A and 1B**. Additionally, there are 20 non-network wells and/or piezometers, five deep piezometers, and 10 former dewatering wells used for the assessment of groundwater conditions at the Site (**Figure 3**). A summary of analytical data since the initiation of assessment monitoring is presented in **Appendix D**.

3.1.2 Appendix IV Constituent SSL

Groundwater monitoring data collected from August 2019 through August 2020 are provided in **Appendix D**. A statistical evaluation was completed on data collected through the March 2020 sampling event in accordance with the Professional Engineer-certified statistical method (Resolute 2020b). Results from these monitoring events were compared to the Groundwater Protection Standards (GWPSs) for each parameter established under § 257.95(h) and GAEPD Rule 391-3-4-.10(6)(a) (**Table 2**). Based on this evaluation, the following SSLs were identified at AP-1:

- Lithium at monitoring well MCM-06.
- Arsenic at monitoring well MCM-06.

An ASD indicated that lithium observed at AP-1 is attributable to a natural source (i.e., influx of brackish surface water) and not the CCR unit. The ASD was submitted to the GAEPD on November 17, 2020.

An isoconcentration map for arsenic from the most recent assessment monitoring event (March 2020) is presented on **Figure 4**.

3.2 Field Investigation Activities

Following the identification of the arsenic SSL, additional field investigation activities were completed to delineate the vertical and lateral extent of arsenic concentrations above the GWPS and characterize geochemical conditions at the Site.

Six deep piezometers (DPZ-01 through DPZ-06) were installed in March 2020 (**Figure 3**) to provide vertical characterization of groundwater conditions. Supplemental sampling of these piezometers was performed after installation in March 2020. Arsenic was not detected in the samples collected from deep piezometer DPZ-02, screened between 28.84 and 33.84 feet of elevation and located adjacent to MCM-06. This indicates that that the elevated arsenic concentrations present in groundwater at MCM-06 do not extend to the deeper portion of the aquifer and that DPZ-02 provides vertical delineation of arsenic at MCM-06. DPZ-02 is now incorporated into the monitoring well network and will be sampled in the future to monitor deeper arsenic concentrations. Analytical data from DPZ-02 is provided in **Appendix E**.

Due to space limitations on the dikes, additional monitoring wells could not be installed between the existing detection monitoring network wells (MCM-04, MCM-05, MCM-06, MCM-07, MCM-08, and MCM-14) and the tidal marsh to evaluate the nature and extent of arsenic. Georgia Power proactively completed additional sampling to assess concentrations of arsenic in surface water in the tidal salt marsh in February 2020. A memorandum detailing the study and results is provided in **Appendix F**. Surface water samples were collected along four transects (T1 through T4) adjacent to wells MCM-05, MCM-06, MCM-07, and MCM-14 (**Figures 1 through 3 in Appendix F**). Samples from two upstream surface water sample locations were collected to establish background conditions. In addition, water samples in the former AP-1 were collected. Dissolved arsenic concentrations in surface water samples ranged from not detected at 0.0012 milligram per liter (mg/L) to 0.0023 mg/L. These results are well below the Georgia instream water quality chronic standard for dissolved arsenic (0.036 mg/L) for marine estuary environments. Arsenic concentrations in background surface water sample locations ranged from 0.0014 mg/L (estimated) to 0.0016 mg/L (estimated). Based on the data collected, no impacts to surface water have been detected and horizontal delineation is complete.

Supplemental sampling was completed in June 2020 to assist in the development of this ACM and the lithium ASD. One of the goals of this investigation was to identify the geochemical conditions along the northern portion of dike, specifically in the area adjacent to MCM-06. Groundwater samples were collected at three locations: MCM-06, vertical delineation well DPZ-02, and MCM-07 (a well installed on the northern dike that does not present an SSL for arsenic). Groundwater collected at these wells was analyzed for major cations and anions, select total and dissolved metals, sulfide, total organic carbon, and biological oxygen demand (**Table 4**). Field parameters (pH, dissolved oxygen, oxidation reduction potential [ORP], salinity, temperature, specific conductance, and depth to water) were also recorded.

arcadis.com

Results of this sampling event indicate highly reducing conditions present in groundwater at MCM-06, demonstrated by low ORP values (-310.5 millivolts) and elevated biological oxygen demand (77.6 mg/L). These results indicate more strongly-reducing conditions present at MCM-06 than represented by other monitoring wells, including MCM-07, which yielded -198.9 millivolts ORP and a biological oxygen demand of 3.2 mg/L. The results of the two wells suggest that conditions are sulfate and iron reducing, with sulfur and iron cycling between mineral and groundwater phases to variable extents. Sulfate is relatively lower at MCM-06 (663 mg/L) than MCM-07 (961 mg/L) and DPZ-02 (970 mg/L), indicating sulfate reduction is occurring. Lower sulfide concentrations at MCM-06 (0.41 mg/L) indicate potential precipitation at that location, compared to the elevated sulfide concentration at MCM-07 (33.9 mg/L). Low iron concentrations are present at both MCM-06 (0.046 mg/L) and MCM-07 (0.088 mg/L), while manganese is an order of magnitude higher at MCM-06 (0.29 mg/L) and MCM-07 (0.20 mg/L). These results indicate that metal reducing conditions are present, but there may also be precipitation of soluble reduced-phase minerals such as ferrous sulfides (e.g., pyrite ferrous disulfide [FeS₂]). The presence of reducing conditions is a factor in evaluating potential remedy options, particularly geochemical manipulation, as discussed in Section 4.2 below. In addition to the reducing conditions, groundwater quality at MCM-06 is influenced by brackish surface water as represented by elevated salinity (17,800 mg/L total dissolved solids) and alkalinity (725 mg/L). These conditions can influence the effectiveness of several remedial options through altering reaction chemistry or through formation of fouling precipitates, such as carbonates.

In addition to the surface water evaluation, sampling of dewatering wells (RW-1 through RW-10) and a subset of deep piezometers and monitoring wells was performed in October 2020 concurrently with the semi-annual sampling event. This sampling evaluated the lateral extent of arsenic and provided further understanding of the geochemical conditions near MCM-06. Groundwater locations to be evaluated include the following: RW-1 through RW-10, MCM-07, MCM-05, MCM-14, and MCM-06 and its paired deep vertical delineation well, DPZ-02. Analytical data collected during this sampling event included total and dissolved arsenic, iron, manganese, major ions, alkalinity, total organic carbon, biological oxygen demand, and arsenic speciation. Results will be reported in a February 2021 supplemental remedy selection progress report.

4 GROUNDWATER CORRECTIVE MEASURES ALTERNATIVES

4.1 Objectives of the Corrective Measures

The effectiveness of potential corrective measures were evaluated using the criteria listed in 40 CFR § 257.96(c), including performance, reliability, ease of implementation, potential impacts, time required, and institutional and public health requirements. The following criteria listed in 40 CFR § 257.97(b) must be met by the selected corrective measure:

- Be protective of human health and the environment.
- Attain applicable GWPSs.
- Control the sources of releases to reduce or eliminate, to the maximum extent feasible, further releases of Appendix IV constituents to the environment.

- Remove from the environment as much of the contaminated material that was released from the CCR unit as is feasible, taking into account factors such as avoiding inappropriate disturbance of sensitive ecosystems.
- Comply with standards for management of wastes as specified in § 257.98(d).

Corrective measures selected for evaluation herein for potential use at former AP-1 are anticipated to satisfy the above criteria to varying degrees of effectiveness.

4.2 Summary of Potential Corrective Measures

The closure of AP-1, as described in Section 1.3, is a source control measure that reduces the potential for migration of CCR constituents to groundwater. Corrective measures discussed in this ACM are being evaluated to address an SSL in groundwater downgradient of the permitted boundary.

This section presents potential corrective measures capable of remediating arsenic in groundwater at AP-1. Each corrective measure is evaluated relative to criteria specified in 40 CFR §§ 257.96(c) and 257.97(b). **Table 5** provides a comparative screening of the corrective measures discussed in this section.

The following potential corrective measures are considered in this ACM:

- Geochemical Approaches (In Situ Injection)
- In Situ Stabilization/Solidification (ISS)
- Hydraulic Containment (Pump and Treat, or P&T)
- Monitored Natural Attenuation (MNA)
- Permeable Reactive Barrier (PRB)
- Phytoremediation
- Subsurface Vertical Barrier Walls.

4.2.1 Geochemical Approaches (In Situ Injection)

Subsurface in situ injections of reagents are a remediation technology for inorganic constituents. In situ injections for inorganic constituents may be applied in three modes that influence solubility, mobility, and/or toxicity of inorganic constituents: (i) ORP (redox) manipulation; (ii) adsorption onto or coprecipitation with iron oxyhydroxides, other metal oxyhydroxides, or various sulfate compounds under oxidizing groundwater conditions; and (iii) adsorption to, or coprecipitation with, iron or other metal sulfides under reducing conditions. This technology requires an understanding of Site subsurface transport and (geo)chemical characteristics and a thorough understanding of the reaction kinetics to facilitate that appropriate reagent dosing is applied to the subsurface. Often this technology is field evaluated in a relatively small area (i.e., a pilot test) to bolster the understanding of these factors prior to remedial selection, design, and/or implementation.

Geochemical immobilization of arsenic can occur through a wide variety of mechanisms and under a variety of geochemical conditions. Potential geochemical immobilization approaches for arsenic may incorporate biological processes, chemical oxidants or reductants, and/or the introduction of sorbent.

Under oxic conditions, mechanisms for immobilization include oxidation of arsenite to arsenate, enhanced sorption, and co-precipitation. Potential sorbents include iron and aluminum (oxy)hydroxide mineral species, which have a high affinity for arsenic, in particular arsenate, limiting mobility. Sorbents can be introduced directly or generated in the subsurface. For example, iron could be introduced through placement of zero valent iron (ZVI) or injection of ferric salts (e.g., ferric chloride [FeCl₃]) to promote the formation of ferric hydroxides in situ and result in precipitation and sorption of arsenic (Vu et al. 2003). Ferric iron adsorbents and precipitates can also be formed through the oxidation of ferrous iron introduced by injection or already present in groundwater. Potential oxidants include oxygen via sparging, or chemical oxidants such as persulfate. These oxic approaches are likely challenging under the ambient geochemical conditions at MCM-06, given the strongly reducing conditions present (see Section 3.2).

Under reducing conditions, arsenic can be immobilized through the formation of reduced arsenic, iron, and sulfur minerals such as arsenopyrite (FeAsS), orpiment (As₂S₃), and realgar (AsS). Cycling of iron under reducing conditions or at anaerobic/aerobic interfaces can promote co-precipitation. In the case of ZVI, sorption can be promoted under reducing conditions through oxidation of arsenite to arsenate by the ZVI and sorption onto generated iron oxide surfaces. Precipitation of reduced iron and sulfide minerals can be promoted through introduction of organic carbon reagents and/or ZVI to stimulate sulfate reduction and precipitation of arsenic/iron/sulfur minerals, through direct injection of sulfide reagents such as calcium polysulfide, or through the direct placement of iron and sulfide minerals such as ZVI and ferrous sulfide. Reduced-phase minerals have a smaller stability field compared to oxidized mineral species, which can make it difficult to balance the formation of solid phases of arsenic with soluble phases of arsenic.

In situ injections can be used in isolation but are also compatible with other groundwater corrective actions that are potentially viable for the former AP-1. For example, in situ injections can be implemented in smaller, isolated areas, where performance can be readily monitored and additional treatment applied, if needed; MNA, hydraulic containment, or another technology can be used broadly downgradient of the former AP-1.

In order to evaluate the applicability of this technology for former AP-1, Site-specific bench-scale and pilot-scale testing would be necessary. These tests would evaluate the ratios of different additives and their effect on arsenic mobilization, the potential for undesirable co-reactions (e.g., precipitation of non-arsenic containing minerals), and the potential for mobilization of other naturally occurring constituents (e.g., iron and manganese).

Criteria Evaluation

Performance: The performance of in situ injections is considered moderate. Effective immobilization of arsenic has been shown under aerobic and anaerobic conditions; however, the effectiveness of both aerobic and anaerobic approaches is uncertain under site specific conditions and would require additional data and testing. Due to the highly-reducing conditions observed on the Site, generating oxic conditions with an oxidant and maintaining the long-term stability of immobilized arsenic

generated via oxidant may not be achievable. Approaches that rely on reducing conditions are more compatible with groundwater geochemistry and, therefore, are more viable.

Reliability: Reliability for arsenic attenuation via in situ injections is considered moderate because:

(i) amendment distribution is dependent on the properties (reactivity, particle size, etc.) of the selected reagents and the permeability and heterogeneity of the subsurface; and (ii) effectiveness of reagent chemistries for arsenic immobilization varies with site-specific conditions. This would be considered a reliable technology if injected reagents can be evenly and sufficiently distributed throughout the selected treatment zone and reagents are effective for site-specific conditions. Bench-scale treatability studies and/or field-scale pilot testing programs are needed to understand the biogeochemical processes that would effectively treat arsenic in Site groundwater as well as the achievable Site-specific reagent distribution. Stability of the precipitated phase may vary based on conditions of precipitation versus ambient conditions. Immobilization under similar conditions to ambient, reducing in this case, would promote long-term stability of the immobilized arsenic. Potential rebound under ambient conditions should be evaluated during the testing program referenced above. Ongoing monitoring after implementation would be needed.

Ease of Implementation: The ease of implementation for in situ injection is moderate. The installation of an injection well network or placement of reagents via other injection methods would be required. Injection of reagents along the existing northern dike is likely feasible, although the workspace is narrow. The ability and scale over which reagents can be distributed depends on reagent properties, such as reactivity and, in the case of solid reagents, particle size. The feasibility of implementation will vary with scale. The injection wells and/or the aquifer matrix (especially where there is low permeability) have a potential for clogging, particularly with solid phase reagents. Evaluation of the amendment distribution during injections (i.e., radius of influence) is needed to support full-scale design.

Potential Impacts: Low impacts are expected if the remedy works as designed based on a thorough predesign investigation, geochemical modeling, and bench/pilot study results. Consideration of groundwater flow to nearby sensitive environments may be needed. This remedial alternative may unintentionally alter the geochemistry within the aquifer, which may result in the mobilization of other constituents that require treatment. Short-term risks during remedial activities such as drilling and operating pressurized injection equipment can be mitigated through appropriate planning and health and safety (H&S) measures.

Duration: A thorough pre-design investigation, geochemical modeling, and/or bench scale treatability study and/or field-scale pilot testing may take up to 24 months to obtain design parameters prior to design and construction of the corrective measure. Once designed, installation of the injection network can be accomplished relatively quickly (in 1 to 2 months; potentially longer depending on the scale of the remedy). Once installed, the time for an injection event and distribution of the injected materials throughout the treatment area can be variable. Following injections, the time required to achieve GWPS for arsenic is dependent on the attenuation process kinetics of the constituent as well as amendment longevity, injection layout, and arsenic transport properties. Additional injection events may be needed to maintain redox conditions and/or address additional flux of impacted groundwater into the treatment area.

Institutional Requirements: Deed restrictions may be necessary until in situ treatment has achieved the GWPS. An Underground Injection Control Permit would be required to implement this corrective measure. No other institutional requirements are expected at this time.

4.2.2 In Situ Stabilization/Solidification

ISS uses amendments such as cement to reduce the bioavailability and mobility of contaminants through either physical encapsulation (solidification) or a reduction in solubility/mobility (stabilization). It is a mature technology and has been in used to address both organic and inorganic contaminants including arsenic and other CCR constituents (Carillo-Sheridan et al. 2017).

Common additives for ISS include Portland cement, cement kiln dust, lime, and lime kiln dust (Interstate Technology and Regulatory Council [ITRC] 2011). These additives are incorporated in soil or CCR by mixing with rotary mixers, excavators, augers, or jet grouting. Selection of mixing strategy and additive is dependent on physical factors (e.g., particle size, hydraulic conductivity), chemical factors (e.g., redox potential, pH, sorption, leachability), Site conditions, leachate considerations, and environmental attack and cracking (ITRC 2011).

ISS can be implemented at sites within a discrete source area, or along the boundaries of a CCR impoundment to reduce the contact between the groundwater and any impacted coal/ash. Treatable depth depends on the chosen mixing strategy. Prior to implementation, treatability studies would need to be completed to design a proper stabilization mixture and application methodology.

Criteria Evaluation

Performance: ISS is a proven technology for reducing the leachability and mobility of both organic and inorganic constituents and can be used above and below the water table. Treatability depth limitations vary with application method. Within the context of former AP-1, ISS may be used either as a spottreatment or as an impermeable barrier along the boundary of the former impoundment. Due to the size of the potential treatment area, and anticipated diffuse nature of residual arsenic, the performance of ISS is expected to be moderate. It may be used in conjunction with other treatment methods to achieve standards.

Reliability: ISS, if properly implemented, has a moderate to high degree of stability, especially if implemented within a source zone. However, monitoring is typically needed to confirm effectiveness. Reagents such as Portland cement can cause pH changes, which may cause a release of secondary contaminants and, therefore, should be monitored during implementation.

Ease of Implementation: The implementation is considered difficult, and the difficulty of implementation increases with scale. If ISS is applied over a small area in the vicinity of MCM-06, the technology could be viable, whereas application over a greater scale would become difficult and impractical. Implementation along the narrow dike would be difficult and likely require widening. Implementation beyond the dike would be difficult due to the presence of surface water.

Potential Impacts: Overall, potential impacts related to this remedial option are considered low. Short-term impacts during remedy construction can be mitigated through appropriate planning and health and safety measures. Changes to groundwater flow patterns due to stabilized media can occur, which can affect other aspects of the groundwater corrective action. Application of ISS mixture can also

alter the geochemistry and may result in the mobilization of other constituents that require treatment. In addition, bulk mixing with reagents can occur.

Duration: Design phase and additional compatibility testing may be required, which may take up to 18 months. Completion of ISS may take an additional 12 to 18 months, depending on the final design and mixing method. Since this approach would likely not be applied to all of the impacted groundwater but rather applied to a specific source area to prevent migration, it may take an extended period of time to complete the remedy.

Institutional Requirements: Deed restrictions may be necessary until groundwater concentrations are below the GWPS. No other institutional requirements that may limit application of this technology are expected at this time.

4.2.3 Hydraulic Containment (Pump and Treat)

Hydraulic control/containment (P&T) uses groundwater extraction to establish a hydraulic gradient to capture and control the migration of groundwater that is impacted by a constituent of concern. P&T uses extraction wells or trenches to capture groundwater, and typically requires a degree of above-ground treatment before water can discharge to a receiving water body or sewer system. Groundwater P&T can often take an extended period of continuous operations to restore groundwater quality.

P&T can be used as a stand-alone remedy, although it is also compatible with the other groundwater corrective actions that are potentially viable for the former AP-1. The fact that treatment occurs ex-situ allows for a wider control on design components including mixing and contact time with reagents. Space for a treatment building and conveyance need to be considered.

Criteria Evaluation

Performance: P&T is an effective, demonstrated technology for hydraulic control. The design of the P&T system requires groundwater modeling for the well network and potentially, design of an above-ground treatment system. P&T performance is anticipated to be high with effective implementation. However, this remedy typically is not immediately effective for the treatment of trace level metals. There is also a possibility of rebounding when operations cease.

Reliability: Hydraulic containment technologies are moderate to highly reliable. Reliability may also depend on the operation and performance of an ex-situ treatment system, if needed. System downtime for maintenance may impact reliability.

Ease of Implementation: P&T is a longstanding, proven approach that requires installation of extraction wells/trenches, which is relatively straightforward. A variety of treatment technologies exist for ex-situ treatment of arsenic. However, the level of effort for construction and operations and maintenance (O&M) is relatively high compared to other options and the ease of implementation is anticipated to be difficult. O&M requirements are expected to include upkeep of infrastructure components (pumps, pipes, tanks, instrumentation and controls, above-ground treatment system) and handling of treatment residuals.

Potential Impacts: Potential impacts are anticipated to be low. Short-term impacts during the construction of the remedy and long-term impacts during O&M can be mitigated through appropriate

planning and H&S measures. Groundwater extraction may unintentionally alter the geochemistry within the hydraulic capture zone.

Duration: A thorough pre-design investigation, flow modeling, bench-scale treatability studies, and/or field-scale pilot testing (e.g., for update of the ex-situ treatment system, if needed) would be required. These activities may take 12 to 24 months prior to design, permitting, and construction of the corrective measure. Once designed, installation of extraction wells and/or trenches can be accomplished relatively quickly. The initiation of the approach would be contingent on the startup of the ex-situ treatment infrastructure. Hydraulic containment can be achieved relatively quickly after startup of the extraction system. However, uncertainty exists with respect to the time to achieve and maintain the GWPS and to complete operations; additional data collection is needed to better understand the mobility and attenuation mechanisms for arsenic.

Institutional Requirements: A revision to the current permit may be required to withdraw water (e.g., water or consumptive use permit). Depending on the effluent management strategy, modifications to the existing National Pollutant Discharge Elimination System permit may be required for surface water discharge. In addition, deed restrictions may be necessary until groundwater concentrations are below the GWPS.

4.2.4 Monitored Natural Attenuation

MNA is defined as the reliance on natural attenuation processes (within the context of a carefully controlled and monitored site cleanup approach) to achieve site-specific remediation objectives within a timeframe that is reasonable compared to that offered by other more active methods (USEPA 2007). The processes by which MNA can occur include physical, chemical, or biological processes that can act without human intervention to reduce the mass, toxicity, mobility, volume, or concentration of contaminants in soil or groundwater. Examples of in situ MNA processes for inorganics such as arsenic include sorption, dispersion, dilution, redox transformation, and precipitation (USEPA 2015). MNA can be applied both as a stand-alone strategy or as a polishing step coupled with other technologies.

According to USEPA guidance (2015), a four-tiered approach should be used to establish whether MNA can be successfully implemented at a given site. The tiers include the following (USEPA 1999, 2007):

- 1. Demonstrate that the extent of groundwater impacts is stable.
- 2. Determine the mechanisms and rates of attenuation.
- 3. Determine whether the capacity of the aquifer is sufficient to attenuate the mass of constituents in groundwater such that the immobilized constituents are stable and will not remobilize.
- 4. Design a performance monitoring program based on the mechanisms of attenuation and establish contingency remedies (tailored to site-specific conditions) should MNA not perform adequately.

Criteria Evaluation

Performance: Moderate. Under the conditions of Site groundwater, potential arsenic attenuation mechanisms include sorption, precipitation, oxidation-reduction reactions, dilution and dispersion. Under the reducing conditions present at MCM-06, sorption of arsenic species, including arsenite, are likely occurring, as well as potential precipitation in reduced iron and sulfide minerals. Downgradient

of MCM-06, there are likely redox gradients where anaerobic conditions promote oxidation of arsenic, enhanced sorption, and potential for co-precipitation with iron oxides. The slow groundwater velocity and tidal gradient fluctuations further promote attenuation of arsenic concentrations with distance from MCM-06. Additional characterization would be needed to fully understand the attenuation processes and performance.

Reliability: The reliability of MNA is moderate to high as long as aquifer attenuation capacity is present and aquifer conditions that result in attenuation remain favorable and/or are being enhanced. Monitoring well rehabilitation, replacement, or repair may be needed long-term. Due to its location along the coast, large weather events such as hurricanes may cause fluctuations in groundwater conditions that affect attenuation processes (Northrup et al. 2017).

Ease of Implementation: Implementation of MNA at the former AP-1 is relatively easy with respect to infrastructure since the well network for MNA is already in place, although additional wells are typically needed to monitor progress in select areas. Additional data would be needed to show that the existing aquifer attenuation capacity is sufficient to meet to achieve the GWPS within a reasonable timeframe.

Potential Impacts: Potential impacts of the remedy will be negligible because MNA relies on natural processes active in the aquifer matrix without significant disturbance to the surface or subsurface.

Duration: Implementation of the MNA remedy would require time for additional data collection and documentation, even though an existing monitoring network is already in place. The additional data collection activities may take up to 24 months to complete. The additional data would be needed for statistical analysis and to evaluate whether additional monitoring wells need to be installed to supplement the existing monitoring network.

Institutional Requirements: Deed restrictions may be necessary until natural attenuation processes have achieved the GWPS. No other institutional requirements that may limit application of MNA are expected at this time.

4.2.5 Permeable Reactive Barriers

PRBs are defined as in situ permeable treatment zones, designed to intercept and remediate a contaminant plume (ITRC 2011). These permeable zones contain reactive media that can address contaminants through manipulating redox conditions (e.g. zero-valent iron, organic substrates) or promoting ionic exchange/sorption (e.g. clays, zeolites, peat moss). One major advantage with PRBs is that they can be a passive strategy. It has been used successfully in the past to treat arsenic-containing water and other constituents associated with CCR sites (ITRC 2011; Ludwig et al. 2006). Depending on water chemistry and hydrogeologic conditions at the Site, early breakthrough of constituents can occur. Thorough Site geochemistry characterization, in addition to bench-scale and pilot testing, is required to confirm that effective media are identified prior to implementation.

PRB installation can be completed using either conventional excavation methods, one-pass trenching method, or trenchless injected emplacement. For trenching methods, the trench must be deep enough in order to intercept the water table and dissolved-plume contaminants and is typically keyed into a deeper low permeable unit such as clay or bedrock. Depth of implementation varies with construction method. After excavation, the trenches are then filled with the specified reactive media mixture. Replaceable

media cartridges may be considered if replacements are anticipated to be frequent due to fouling. Contaminated water is treated by passively flowing through the reactive media based on the natural hydraulic gradient. PRBs can be combined with impermeable slurry walls to direct groundwater through permeable treatment zones, which can save on construction and long-term maintenance. Subsurface investigations, reactive media, and compatibility testing would be needed prior to implementation.

Criteria Evaluation

PRBs can serve as stand-alone technologies but are also compatible with the other groundwater corrective actions that are potentially viable for the former CCR Unit.

Performance: The performance of a PRB is anticipated to be moderate to high. PRBs have been shown to effectively address arsenic in groundwater. Due to the elevated salts and alkalinity in groundwater at MCM-06, there is a risk for scaling and fouling of the reactive media, which will need to be considered during design. Performance may be affected by tidal cycles. Finally, delineation data will need to be collected to design an effective placement of a PRB.

Reliability: Moderate to high. A PRB is a reliable groundwater corrective measure with proper implementation and has been demonstrated effective for arsenic. However, loss of reactivity over time may require media replacement depending on the duration of the remedy. The brackish nature of Site groundwater may exacerbate this issue. Additional data collection, including conducting a laboratory treatability test and/or field pilot study, would be needed to better characterize current attenuation mechanisms and/or select the appropriate reactive media mix for a PRB wall.

Ease of Implementation: Implementation of a PRB is considered moderate to difficult. The practical location for the PRB is along the northern dike. Construction using trenching methods would be difficult on the narrow dike and would potentially require widening the dike. A relatively low permeability unit at 37 to 45 feet bgs in the vicinity of MCM-06 is present to key the PRB into (see Appendix C), but continuity must be confirmed. The presence of flowing sands may complicate the trenching process. Injection-style emplacements would likely be more feasible along the dike. Once installed, treatment would be passive and O&M requirements would be minimal, with the exception of media replacement.

Potential Impacts: Low impacts are expected if the remedy works as designed, based on a thorough pre-design investigation, geochemical modeling, and geophysical testing. Short-term impacts during the construction of the remedy can be mitigated through appropriate planning and H&S measures. Consideration of groundwater flow to nearby sensitive environments may be needed. This remedial alternative may unintentionally alter the geochemistry within the wall, which may result in the mobilization of other constituents that require treatment.

Duration: Installation of a PRB can be accomplished relatively quickly (in 6 to 12 months), depending on the final location and configuration. However, bench-scale treatability studies and/or compatibility testing would be required to obtain design parameters prior to design and construction of the remedy. These processes may take up to 24 months. Media may need to be replaced periodically to maintain reactive conditions and/or address additional flux of impacted groundwater into the PRB.

Institutional Requirements: Deed restrictions may be necessary until groundwater concentrations are below GWPS. No other institutional requirements that may limit installation of a PRB are expected at this time.

4.2.6 **Phytoremediation**

Phytoremediation is a remedial alternative that uses plants to remove, transfer, or immobilize inorganic contaminants in environmental media. This technique is often more effective when contaminants are at relatively low to moderate concentrations over a large area and at shallow depths that are accessible by plant roots. However, the TreeWell® system, which is a proprietary system developed by Applied Natural Science, allows implementation at depth by utilizing a specialized lined planting unit constructed with optimum planting media to promote downward growth to focus extraction on the target depth interval. For arsenic, phytoremediation can work through both phytosequestration of arsenic as well as through hydraulic control through the ability of the plants to capture and evaporate water. The effectiveness of groundwater remediation using traditional phytoremediation approaches can be limited by the soil conditions on Site, the target depth of treatment, the climate and ambient water quality, and the availability of appropriate vegetation for remediation. Effectiveness may also be limited to the growing season.

Phytoremediation has the advantages of minimal long-term O&M requirements and no above-ground water management infrastructure. It also has relatively low capital costs. Phytoremediation requires space and time to reach remediation goals. Because of the limitations, a thorough site assessment and pilot testing must be completed to confirm that such a treatment will reach remedial goals and objectives (Hettiarachchi et al. 2012).

Criteria Evaluation

Performance: The performance of a phytoremediation is anticipated to be low. While phytoremediation has been shown to have a degree of success treating deep contamination, the site features may prove challenging for implementation of these deeper phytoremediation technologies. Additionally, the brackish groundwater quality may limit the types of hyper-accumulative plants that are able to grow. In addition, although the occurrence of tropical storms and hurricanes is infrequent, a phytoremediation system would be susceptible to damage and disruption by high winds.

Reliability: Phytoremediation is anticipated to have low to moderate reliability as a groundwater corrective measure due to the depth of the contamination and challenges for implementation at depth at the site. The well where SSLs for arsenic were identified (MCM-06) is screened approximately 25 feet bgs, which is outside of the typical rooting depth for common arsenic hyperaccumulators.

Ease of Implementation: Implementation of phytoremediation is considered difficult. The practical location for use of phytoremediation to capture arsenic and reduce concentrations at the compliance boundary is along the northern dike. Given the depths of the impacts, a TreeWell® system would be required. TreeWells® are installed in 3- to 5-foot-diameter boreholes extending to the target depth. Drilling borings within the narrow width of the dike may be challenging and require widening the dike. Depending on the number of TreeWells® and borings required, the construction could impact the stability of the dike. The presence of flowing sands and brackish water chemistry may complicate the installation process and viability of plants.

Potential Impacts: Phytoremediation typically has low expected impacts. Depending on the phytoremediation strategy, disposal methods for vegetation with bioaccumulated arsenic may need to be considered. Short-term impacts during the construction of the remedy can be mitigated through appropriate planning and H&S measures.

Duration: Installation of a phytoremediation system can be accomplished relatively quickly (in 6 to 12 months), depending on the final location and configuration. However, treatability studies and pilot testing would be required to design an effective treatment. These studies may take up to 24 months. Once installed, the time to achieve the GWPS downgradient of the phytoremediation system is anticipated to be long and can take multiple years before system is treating at design capacity.

Institutional Requirements: Deed restrictions may be necessary until groundwater concentrations are below the GWPS. No other institutional requirements that may limit installation of a phytoremediation are expected at this time.

4.2.7 Subsurface Vertical Barrier Walls

Subsurface vertical barrier walls have been used for seep control and groundwater cutoff at impoundments and waste disposal units for more than three decades. In general, barrier walls are designed to provide containment; localized treatment achieved through the sorption or chemical precipitation reactions from construction of the walls are incidental to the design objective.

This approach involves placing a barrier to groundwater flow in the subsurface, frequently around the source area (or the downgradient limits of the source area), to prevent future migration of dissolved constituents in groundwater from beneath the source to downgradient areas. Barrier walls are typically keyed into a lower confining unit. Barrier walls can also be used in downgradient applications to limit discharge to surface water or to reduce aquifer recharge from adjacent surface water features when groundwater extraction wells are placed near a surface water feature. Barrier walls can also be used to direct flow toward remedial components such as PRBs through what is called a "funnel and gate" system.

A variety of barrier materials can be used, including cement and/or bentonite slurries or various mixtures of soil with cement or bentonite, geomembrane composite materials, or driven materials such as steel or vinyl sheet pile. Slurry walls are typically constructed with a soil, bentonite, and water mixture which forms a low permeability and high chemical resistant barrier. Other wall compositions can exist (e.g., cement/bentonite, slurry/geomembrane composites), depending on chemical compatibilities with Site contaminants (ITRC 2011).

The installation of these low-permeability walls is similar to the methods described for PRBs in Section 4.2.5. In general, the applicability of slurry walls is limited by the depth of installation, which is approximately 90 feet bgs. However, Site-specific geologic and technology-specific considerations may limit this depth to shallower installations. Groundwater pumping is required upgradient of the barrier wall to maintain an inward hydraulic gradient. The extracted groundwater would likely require treatment in an above-ground treatment system.

Criteria Evaluation

Performance: Moderate. Barrier walls are a proven technology for seepage control and/or groundwater cutoff at impoundments. Sheet pile walls are limited by the depth of installation, which is typically

approximately 60 to 65 feet bgs with a single sheet. Within the context of former AP-1, a barrier wall as the sole remedial measure would likely be moderately effective. An alternative use of this strategy is in a "funnel and gate" system with a PRB. As such, groundwater with arsenic above the GWPS could be directed to "treatment gates" for passive treatment (in a PRB). Additional subsurface investigations and compatibility testing with groundwater from former AP-1 would be needed prior to selection and implementation. Performance may be affected by the fluctuating groundwater flow directions during tidal cycles.

Reliability: Subsurface barrier walls are highly reliable as a barrier to groundwater flow with proper installation. O&M requirements can range significantly, depending on whether groundwater extraction and subsequent treatment from inside the wall is required.

Ease of Implementation: The implementation is considered moderate to difficult due to the limited space for construction activities along the dike. Widening of the dike would likely be necessary prior to implementation. A relatively low permeability unit at 37 to 45 feet bgs in the vicinity of MCM-06 is present to key the barrier into, but continuity needs to be confirmed. The presence of flowing sands may complicate the trenching process. Jet-grouting is another alternative but is typically more difficult as compared to other barrier wall installation methods. Depending on design, groundwater extraction may be needed, because of the inflow of water from the mainland and island.

Potential Impacts: Low impacts are expected following the construction of the remedy. Short-term impacts during remedy construction can be mitigated through appropriate planning and health and safety measures. Changes to groundwater flow patterns due to installation of the barrier wall are expected and may require dewatering.

Duration: Design phase and additional compatibility testing may be required, which may take up to 24 months. Installation of a barrier wall can be accomplished relatively quickly (in 6 to 12 months), depending on the final location and configuration. Once installed, preventing migration of constituents in groundwater is anticipated to be similar to a companion technology (e.g., PRBs or P&T). Since this approach does not treat the downgradient area of impacted groundwater but rather prevents migration from a source area, it will likely have to be maintained long-term and coupled with other approaches.

Institutional Requirements: Deed restrictions may be necessary until groundwater concentrations are below the GWPS. No other institutional requirements that may limit application of this technology are expected at this time.

5 REMEDY SELECTION PROCESS

The purpose of this ACM is to begin the process of selecting corrective measure(s) for groundwater using the criteria outlined in § 257.96 and Georgia Rule 391-3-4-.10(6)(a). The below sections present the pond closure and site management strategy, additional data gathering, schedule, reporting, and next steps.

5.1 Pond Closure and Site Management Strategy

Pond closure at Plant McManus is considered complete because Georgia Power closed former AP-1 at Plant McManus in 2019 via CCR removal and disposal at an offsite permitted landfill (Section 1.3). The

current conceptual model may need to be refined and/or updated as more data are collected and analyzed.

Georgia Power plans to proactively utilize adaptive management for Plant McManus to support the remedial strategy and to address changes in former CCR Unit conditions (e.g., successful reduction of constituent concentrations or changing trends) as appropriate. Under an adaptive management strategy:

- A corrective measure will be installed or implemented to address current conditions.
- The performance of the corrective measure will be monitored, evaluated, and reported at least semiannually.
- The conceptual model will be updated as more data are collected.
- Adjustments and augmentations will be made to the corrective measure(s), as needed, to promote
 meeting performance criteria and remedial goals.

5.2 Additional Data Gathering

Additional data collection, analysis and Site-specific evaluations are necessary to refine the conceptual site model and to evaluate the feasibility of each corrective measure presented within this ACM with the goal of selecting an appropriate groundwater corrective measure. Some of the data needed to refine the conceptual site model may be collected concurrent with routine groundwater monitoring events under the assessment monitoring program or during supplementary sampling, if required. However, additional data collection that includes geochemical studies of the groundwater and aquifer media, geochemical and/or groundwater flow or fate and transport modeling, material compatibility testing, bench scale studies, and pilot tests may require approximately 18 to 24 months to complete. Once sufficient data are available to arrive at a focused number of corrective measures or a combination of corrective measures that would provide an effective groundwater remedy, necessary steps will be taken to implement a remedy at the Site in accordance with 40 CFR § 257.98.

Corrective Action Groundwater Monitoring Program

Concurrent with design of a groundwater remedy, a corrective action groundwater monitoring program will be developed in accordance with 40 CFR § 257.98(a)(1). The design of the monitoring program will consider the following: (i) meeting the assessment monitoring requirements of the CCR rules; (ii) documenting the effectiveness of the corrective action remedy; and (iii) demonstrating compliance with the GWPS established for the former AP-1. In addition, the groundwater monitoring program will include adaptive monitoring thresholds that will be used to evaluate whether changes to the remedy system should be considered based on changing conditions.

5.3 Schedule, Reporting, and Next Steps

Georgia Power is preparing semi-annual progress reports to document groundwater conditions at Plant McManus, results associated with additional data collection, and the progress in selecting and designing the remedy in accordance with 40 CFR § 257.97(a). An addendum to this report will be submitted in February 2021 with the semi-annual report to align schedules and will be reported semi-annually thereafter.

At least 30 days prior to the selection of remedy or remedies, a public meeting to discuss the results of the corrective measures assessment will be held pursuant to 40 CFR § 257.96(e). The final remedy selection report will be developed as outlined in § 257.97(a). Once the remedy has been selected, the implementation of the remedy will be initiated in accordance with 40 CFR § 257.98.

6 REFERENCES

- Arcadis. 2020. Lithium Alternative Source Demonstration. Plant McManus Former Ash Pond 1. Prepared for Georgia Power Company. October.
- ATC Associates, Inc. 1997. Compliance Status Report, McManus Steam Electric Generating Plant, Brunswick, Georgia.
- Carillo-Sheridan, M., B. Gallagher, J. Redwine, D. Vlassopoulos, and T. Moran. 2017. In situ solidification and stabilization of coal combustion residuals: potential applications and cost analysis. 2017 World of Coal Ash Conference, 9-11 May, Lexington, Kentucky.
- Hettiarachchi, G., S. Agudelo-Arbalaez, N. Nelson, Y. Mulisa, and J. Lemunyon. 2012. Phytoremediation Protecting the Environment with Plants. Kansas State University. Available online at: https://bookstore.ksre.ksu.edu/pubs/mf3067.pdf. Accessed September 23, 2020.
- Huddleston, P.F. 1988. A Revision of the Lithostratigraphic Units of the Coastal Plain of Georgia, The Miocene Through Holocene. Georgia Geologic Survey Bulletin 104.
- ITRC. 2011. Permeable Reactive Barrier: Technology Update. Interstate Technology and Regulatory Council. June. Available online at: https://clu-in.org/download/techfocus/prb/PRB-5-ITRC.pdf. Accessed October 8, 2020.
- Ludwig, R., D. Jewett, A. Azadpour-Keely, S. Acree, F. Beck., P. Clarck., D. Blowes, L. Spink, and D. Smyth. 2006. Ground water arsenic and metals treatment using a combination compost-ZVI PRB.
 Presented at Battelle's Fifth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, 22-25 May, Monterey, California.
- Northrup, K., M. Capooci, and A. Seyfferth. 2017. Effects of Extreme Events on Arsenic Cycling in Salt Marshes. *Journal of Geophysical Research: Biogeosciences*. 123, 1086-1100. https://doi.org/10.1002/2017JG004259.
- Resolute. 2020a. 2020 Annual Groundwater Monitoring and Corrective Action Report. Plant McManus Inactive Ash Pond AP-1. Prepared for Georgia Power Company. July 31.
- Resolute. 2020b. Hydrogeologic Assessment Report (REV 4). Plant McManus Former Ash Pond 1 Glynn County, Georgia. Prepared for Georgia Power Company. June 2020.
- Resolute. 2020c. September 2020 Well Installation Addendum. Plant McManus Former Ash Pond 1, Glynn County, Georgia. September.
- USEPA. 1999. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites. Office of Solid Waste and Emergency Response. Directive Number 9200.4-17P. April 21.

arcadis.com

- USEPA. 2007. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water. Vol. 2. assessment for non-radionuclides including arsenic, cadmium, chromium, copper, lead, nickel, nitrate, perchlorate, and selenium. National Risk Management Research Laboratory. October.
- USEPA. 2015. Use of Monitored Natural Attenuation for Inorganic Contaminants in Groundwater at Superfund Sites. Office of Solid Waste and Emergency Response. August.
- Vu, K., M. Kaminski, and L. Nunez. 2003. Review of Arsenic Removal Technologies for Contaminated Groundwaters. Argonne National Laboratory. ANL-CMT-03/2.
- Weems, R.E., and L.E. Edwards. 2001. Geology of Oligocene, Miocene, and Younger Deposits in the Coastal Area of Georgia. Georgia Geologic Survey Bulletin 131.
- Wood Environment & Infrastructure Solutions, Inc. (Wood), 2020. Risk Evaluation Report. Plant McManus Inactive Ash Pond AP-1, Glynn County, Georgia. December.

arcadis.com

TABLES

Well ID	Well Function	Northing (ft) ¹	Easting (ft) ¹	Top of Casing Elevation ² (ft NAVD 88)	Ground Surface Elevation ^{2,3}	Total Depth⁴ (ft BTOC)	Top of Screen Elevation ² (ft NAVD 88)	Bottom of Screen Elevation ² (ft NAVD 88)
Monitoring Well Network								
MCM-01	Upgradient Monitoring	443727.31	852732.08	8.63	5.70	27.32	-7.93	-17.93
MCM-02	Upgradient Monitoring	444496.53	852663.64	11.25	8.25	27.35	-5.22	-15.22
MCM-04	Downgradient Monitoring	444804.73	851695.27	12.39	9.50	28.57	-5.18	-15.18
MCM-05	Downgradient Monitoring	444716.63	851309.91	10.04	7.80	28.05	-7.25	-17.25
MCM-06	Downgradient Monitoring	444407.22	850782.11	10.15	7.87	27.20	-6.27	-16.27
MCM-07	Downgradient Monitoring	444059.38	850195.96	10.20	7.52	23.75	-2.76	-12.76
MCM-11	Upgradient Monitoring	442429.80	851072.91	10.23	7.52	24.00	-3.34	-13.34
MCM-12	Downgradient Monitoring	442821.17	851312.45	11.87	8.99	29.00	-6.12	-16.12
MCM-14	Downgradient Monitoring	443358.82	852317.59	11.50	8.66	28.11	-6.23	-16.23
MCM-15	Upgradient Monitoring	444825.53	851949.02	12.84	10.18	26.60	-4.53	-14.53
MCM-16	Upgradient Monitoring	444551.32	852716.60	16.02	13.04	28.39	-1.72	-11.72
MCM-17	Downgradient Monitoring	443074.41	851899.68	11.49	9.09	27.44	-4.81	-14.81
MCM-18	Upgradient Monitoring	442067.07	851698.41	9.00	6.01	27.86	-8.76	-18.76
MCM-19	Upgradient Monitoring	441157.82	852338.86	8.71	5.77	28.32	-9.53	-19.53
MCM-20	Upgradient Monitoring	440944.40	852185.15	10.07	7.07	23.05	-2.98	-12.98
DPZ-02	Vertical Delineation	444391.02	850757.94	9.54	7.34	43.46	-28.84	-33.84

- 1. Georgia State Plane East Coordinates.
- 2. NAVD 88 North American Vertical Datum of 1988
- 3. Ground Surface measured at the mag nail in the concrete pad
- 4. ft BTOC feet below top of casing

Data source: Resolute 2020a

Well ID	Well Function	Northing (ft) ¹	Easting (ft) ¹	Top of Casing Elevation ² (ft NAVD 88)	Ground Surface Elevation ^{2,3}	Total Depth ⁴ (ft BTOC)	Top of Screen Elevation ² (ft NAVD 88)	Bottom of Screen Elevation ² (ft NAVD 88)
Ionitoring Well Netwo	ork							
MW-01R	Piezometer	443632.5586	852715.1308	12.61	NA	27.44	0.17	-14.83
MW-02	Piezometer	443354.3859	852304.1959	11.10	NA	26.80	-0.70	-15.70
MW-03	Piezometer	443081.3356	851904.8549	11.26	NA	27.00	-0.60	-15.60
MW-04	Piezometer	442854.6307	851408.1446	9.20	NA	27.40	-3.00	-18.00
MW-05	Piezometer	442578.1982	850752.3477	13.24	NA	27.60	0.90	-14.10
MW-06R	Piezometer	442378.5335	850499.0375	13.25	NA	20.00	3.25	-6.75
MW-07	Piezometer	442792.9894	850224.3520	9.94	NA	21.50	3.40	-11.60
MW-08	Piezometer	443310.0596	849977.9965	8.95	NA	27.70	-3.70	-18.70
MW-09	Piezometer	443736.7716	849920.8976	10.10	NA	24.20	0.80	-14.20
MW-10	Piezometer	444045.1224	850181.4059	10.24	NA	27.10	-2.80	-17.80
MW-11	Piezometer	444359.5263	850709.3205	10.42	NA	32.20	-8.20	-23.20
MW-12	Piezometer	444667.3620	851186.9003	10.08	NA	32.30	-8.60	-23.60
MCM-03	Piezometer	444414.88	851984.67	9.97	7.10	27.70	-7.73	-17.73
MCM-08	Piezometer	443758.80	849716.96	9.42	6.55	28.29	-8.39	-18.39
MCM-09	Piezometer	443252.16	850147.75			Abandoned		
MCM-10	Piezometer	442791.88	850453.05	11.75	8.61	23.96	-1.25	-11.25
MCM-13	Piezometer	443030.23	851826.19	12.56	9.79	27.46	-4.90	-14.90
PZ-01	Piezometer for Dewatering	444127.6813	850308.3200			Abandoned		
PZ-02	Piezometer for Dewatering	444196.6588	850423.4598			Abandoned		
PZ-03	Piezometer for Dewatering	444264.8108	850540.0935			Abandoned		
PZ-04	Piezometer for Dewatering	444335.4506	850656.4801			Abandoned		
PZ-05	Piezometer for Dewatering	444471.1060	850888.7994			Abandoned		
PZ-06	Piezometer for Dewatering	444538.4862	851005.4620			Abandoned		
PZ-07	Piezometer for Dewatering	444605.9569	851121.6527	Abandoned				
PZ-08	Piezometer for Dewatering	444674.4265	851238.6722	Abandoned				
PZ-09	Piezometer	444082.13	849471.64	9.41	6.57	24.05	-4.56	-14.56
PZ-10	Piezometer	444949.09	851673.98	12.17	9.74	22.91	-0.66	-10.66
PZ-11	Piezometer	443222.86	849280.51	9.37	6.57	19.08	-4.63	-9.63
PZ-12	Piezometer	443593.34	849396.87	7.90	5.02	18.70	-5.72	-10.72

Well ID	Well Function	Northing (ft) ¹	Easting (ft) ¹	Top of Casing Elevation ² (ft NAVD 88)	Ground Surface Elevation ^{2,3}	Total Depth⁴ (ft BTOC)	Top of Screen Elevation ² (ft NAVD 88)	Bottom of Screen Elevation ² (ft NAVD 88)
Deep Piezometers				·				
DPZ-01	Piezometer	444695.71	851277.40	9.71	7.36	40.78	-25.99	-30.99
DPZ-03	Piezometer	444073.16	850218.83	9.46	7.34	47.57	-33.03	-38.03
DPZ-04	Piezometer	443062.60	851881.94	11.45	7.04	51.23	-34.70	-39.70
DPZ-05	Piezometer	443376.32	852342.11	11.00	8.96	51.20	-35.12	-40.12
DPZ-06	Piezometer	444614.79	851846.27	12.04	8.60	40.50	-23.38	-28.38
Dewatering Wells								
RW-1	Dewatering for Construction	444094.0012	850251.1636	9.39	9.59	26.42	-2.61	-12.61
RW-2	Dewatering for Construction	444161.8377	850367.2034	9.96	NA	27.27	-2.83	-12.83
RW-3	Dewatering for Construction	444228.4307	850479.7659	9.89	NA	32.29	-3.07	-13.07
RW-4	Dewatering for Construction	444299.3305	850599.2604	9.49	NA	26.88	-2.97	-12.97
RW-5	Dewatering for Construction	444369.6765	850714.2378	10.11	NA	37.22	-2.92	-22.92
RW-6	Dewatering for Construction	444436.3732	850831.7225	10.25	NA	36.58	-2.67	-22.67
RW-7	Dewatering for Construction	444504.5857	850949.3512	10.19	NA	38.17	-7.69	-22.69
RW-8	Dewatering for Construction	444572.9068	851064.4671	10.22	NA	31.62	-2.80	-17.80
RW-9	Dewatering for Construction	444641.6045	851181.2956	10.26	NA	37.71	-7.66	-22.66
RW-10	Dewatering for Construction	444706.8701	851295.5011	10.56	NA	37.80	-7.54	-22.54

- 1. Georgia State Plane East Coordinates.
- 2. NAVD 88 North American Vertical Datum of 1988
- 3. Ground Surface measured at the mag nail in the concrete pad
- 4. ft BTOC feet below top of casing

PZ-01 through PZ-09 abandoned 2019, MCM-09 abandoned 2020

Data source: Resolute 2020a

Constituent Name	Units	Background Limit	Federal GWPS	State GWPS
Antimony	mg/L	0.003	0.006	0.006
Arsenic	mg/L	0.031	0.031	0.031
Barium	mg/L	0.22	2	2
Beryllium	mg/L	0.021	0.021	0.021
Cadmium	mg/L	0.0025	0.005	0.005
Chromium	mg/L	0.011	0.1	0.1
Cobalt	mg/L	0.036	0.036	0.036
Combined Radium - 226/228	pCi/L	55.8	55.8	55.8
Fluoride	mg/L	1.5	4	4
Lead	mg/L	0.005	0.015	0.005
Lithium	mg/L	0.03	0.04	0.03
Mercury	mg/L	0.0007	0.002	0.002
Molybdenum	mg/L	0.01	0.1	0.01
Selenium	mg/L	0.15	0.15	0.15
Thallium	mg/L	0.001	0.002	0.002

GWPS = Groundwater Protection Standard

mg/L = milligrams per liter

pCi/L = picoCuries per liter

Well ID	Slug In (cm/sec)	Slug Out (cm/sec)	Average K (cm/sec)
MCM-01	not reported	1.82E-03	1.82E-03
MCM-02	9.82E-04	1.08E-03	1.03E-03
MCM-04	4.65E-04	5.89E-04	5.27E-04
MCM-05	2.47E-03	2.92E-03	2.70E-03
MCM-06	not reported	1.86E-03	1.86E-03
MCM-07	not reported	1.85E-04	1.85E-04
MCM-08	2.44E-04	2.55E-04	2.49E-04
MCM-09	9.31E-05	8.04E-05	8.67E-05
MCM-10	1.89E-04	1.51E-04	1.70E-04
MCM-12	9.19E-05	9.89E-05	9.54E-05
MCM-13	not reported	9.59E-04	9.59E-04
MCM-14	not reported	2.88E-03	2.88E-03
MCM-15	1.61E-03	1.81E-03	1.71E-03
MCM-16	2.35E-03	2.56E-03	2.46E-03
MCM-17	2.35E-03	3.45E-03	2.90E-03
MCM-18	1.12E-03	1.07E-03	1.09E-03
MCM-19	9.73E-04	1.07E-03	1.02E-03
MCM-20	4.45E-04	2.81E-04	3.63E-04

Hydraulic conductivity (K) is shown in units of centimeter per second (cm/sec).

Slug tests conducted in July and August of 2018.

Source:

Resolute Environmental & Water Resources Consulting. 2020. Hydrogeologic Assessment Report - Plant McManus Former Ash Pond 1. Prepared for Georgia Power. April 2020.

Analysis	Units	DPZ-2	MCM-06	MCM-07
Analyte	Units	6/16/2020	6/16/2020	6/16/2020
Boron	mg/L	2.1	2	1.7
Calcium	mg/L	245	234	254
Chloride	mg/L	7780	7760	7580
Sulfate	mg/L	970	663	961
Sulfide	mg/L	37.9	0.41	33.9
Total Dissolved Solids (TDS)	mg/L	20100	17800	17900
Lithium	mg/L	0.096	0.12	0.047
Arsenic	mg/L		0.51	
Total Organic Carbon (TOC)	mg/L	6.7	9.6	14.5
Biological Oxygen Demand (BOD)	mg/L	13.4	77.6	3.2
Iron (total)	mg/L	<0.042	0.046	0.088
Iron (dissolved)	mg/L	< 0.05	< 0.05	< 0.05
Ferrous Iron	mg/L	<0.084	<0.084	<0.084
Ferric Iron	mg/L	<0.25	<0.25	<0.25
Magnesium (total)	mg/L	578	624	640
Manganese (total)	mg/L	0.28	0.29	0.20
Manganese (dissolved)	mg/L	0.26	0.26	0.19
Potassium (total)	mg/L	162	157	156
Sodium (total)	mg/L	4840	4840	4680
Alkalinity (bicarbonate)	mg/L	391	725	276
Alkalinity (carbonate)	mg/L	<5.0	<5.0	<5.0
Alkalinity (total as calcium carbonate [CaCO ₃])	mg/L	391	725	276
Field Parameters				
рН	SU	7.22	6.87	6.33
Temperature	°C	22.11	22.19	22.29
Specific conductivity	μS/cm	20150	25679	21850
Dissolved Oxygen	mg/L	0.11	0.14	0.17
Turbidity	NTU	0.58	0.88	1.73
Oxygen Reduction Potential (ORP)	mV	-163.2	-310.5	-198.9
Depth to water	feet	7.38	8.03	8.82
Salinity	PSU	12.18	15.87	13.31

-- = not sampled

< = analyte not detected in sample. Laboratory reporting limit provided.

Abbreviations:

°C = degrees Celsius mg/L = milligram per liter

mV = millivolt

PSU = practical salinity unit

 μ S/cm = microSiemens per centimeter NTU = nephelometric turbidity unit

SU = standard unit

		Evaluation Criteria					
Technology	Description	Performance 40 CFR 257.96(c)(1)	Reliability 40 CFR 257.96(c)(1)	Ease of Implementation 40 CFR 257.96(c)(1)			
Geochemical Manipulation (In Situ Injection)	Injection of a chemical or organic substrate to alter geochemical conditions to those more favorable for immobilization of arsenic.	Moderate: Effective immobilization of arsenic has been demonstrated under aerobic and anaerobic conditions; however, the effectiveness of both aerobic and anaerobic approaches is uncertain under site-specific conditions and would require additional data and testing. Remedial approaches to reducing constituents are typically more compatible with groundwater geochemistry and, therefore, are more viable than oxic remedial approaches.	Moderate: Reliability depends on: (i) the amendment distribution as a function of properties (reactivity, particle size, etc.) of the selected reagents and the permeability and heterogeneity of the subsurface; and (ii) the effectiveness of reagent chemistries for arsenic immobilization, which vary according to site-specific conditions. The approach has not been extensively used in field applications, and the most applicable methodology would require bench- and/or pilot-scale treatability testing. Stability of the precipitated phase may vary based on conditions of precipitation versus ambient conditions. Immobilization under similar conditions to ambient, reducing in this case, would promote long-term stability of the immobilized arsenic.	Moderate: The installation of an injection well network or placement of reagents via other injection methods would be required. Injection of reagents along the existing northern dike is likely feasible, although the workspace is narrow. The ability and scale over which reagents can be distributed depends on reagent properties, such as reactivity and, in the case of solid reagents, particle size. The feasibility of implementation will vary with scale. There is potential for clogging. An evaluation of the amendment distribution during injections (i.e., radius of influence) is needed to support full-scale design.			
In Situ Stabilization/ Solidification (ISS)	Use of amendments such as cement to reduce the bioavailability and mobility of contaminants through either physical encapsulation (solidification) or a reduction in solubility/mobility (stabilization).	Moderate: ISS is a proven technology for reducing the leachability and mobility of inorganic constituents above and below the water table but may be limited due to the potential size of the treatment area. Treatability depth limitations vary with application method. Within the context of former AP-1, ISS may be used either as a spot-treatment or as an impermeable barrier along the boundary of the former impoundment. Due to the size of the potential treatment area, and anticipated diffuse nature of residual arsenic, the performance of ISS is expected to be moderate. It may be used in conjunction with other treatment methods to achieve standards	Moderate to High: Monitoring is typically needed to confirm ISS effectiveness. Reagents such as Portland cement can cause pH changes, which may cause a release of secondary contaminants, which should also be monitored during implementation.	Difficult: The difficulty of ISS implementation increases with scale. If ISS is applied over a small area in the vicinity of MCM-06, the technology could be viable, whereas application over a greater scale would become difficult and impractical. ISS implementation along the narrow dike would be difficult and likely require widening.			
Hydraulic Containment	Use of a groundwater extraction system with a surface treatment system to remove target analytes from the subsurface and/or to control/prevent constituent migration.	High: Pump and treat (P&T) is an effective, demonstrated technology for hydraulic control. The design of the P&T system requires groundwater modeling for the well network and, potentially, design of an above-ground treatment system. However, this remedy typically is not immediately effective for the treatment of trace level metals. There is also a possibility of rebounding when operations cease.	Moderate to High: Reliability may also depend on the operation and performance of an ex-situ treatment system, if needed. System downtime for maintenance may impact reliability.	Difficult: P&T is a longstanding, proven approach that requires installation of extraction wells/trenches. A variety of treatment technologies exist for ex-situ treatment of arsenic. The level of effort for construction and operations and maintenance (O&M) is relatively high compared to other options and requires onsite staff.			
Monitored Natural Attenuation (MNA)	A remedial solution that takes advantage of natural attenuation processes to reduce constituents in soil and groundwater.	Moderate: Under the conditions of site groundwater, potential arsenic attenuation mechanisms include sorption, precipitation, oxidation-reduction reactions, dilution, and dispersion. Under the reducing conditions present at MCM-06, sorption of arsenic species, including arsenite, are likely occurring, as well as potential precipitation in reduced iron and sulfide minerals. Downgradient of MCM-06, there are likely redox gradients where aerobic conditions promote oxidation of arsenic, enhanced sorption, and potential for co-precipitation with iron oxides. The slow groundwater velocity and tidal gradient fluctuations further promote attenuation of arsenic concentrations with distance from MCM-06. Additional characterization would be needed to fully understand the attenuation processes and performance.	Moderate to High: The reliability of MNA is moderate to high as long as aquifer attenuation capacity is present and aquifer conditions that result in attenuation remain favorable and/or are being enhanced. Long-term monitoring well rehabilitation, replacement, or repair may be needed. Due to its location along the coast, large weather events such as hurricanes may cause fluctuations in groundwater conditions that affect attenuation processes (Northrup et al. 2017). ¹	Easy: A well network for MNA is already in place. Additional wells may be needed to monitor progress in select areas. Additional data would be needed to show that the existing aquifer attenuation capacity is sufficient to achieve the Groundwater Protection Standard (GWPS) within a reasonable timeframe.			
Permeable Reactive Barrier (PRB)	Use of reactive material that extends below the water table to intercept and treat groundwater.	Moderate to High: PRBs have been shown to effectively address arsenic in groundwater. Performance may be affected by tidal cycles. Due to the elevated salts and alkalinity in groundwater at MCM-06, there is a risk for scaling and fouling of the reactive media, which will need to be considered during design. Delineation data will need to be collected to design an effective placement of a PRB.	Moderate to High: A PRB has been demonstrated effective for arsenic. Loss of reactivity over time, potentially exacerbated by brackish groundwater at the site, may require media replacement depending on the duration of the remedy. Additional data collection, including conducting a laboratory treatability test and/or field pilot study, would be needed to select the appropriate reactive media for a PRB.	Moderate to difficult: The practical location for the PRB is along the northern dike. Construction using trenching methods would be difficult on the narrow dike and would potentially require widening the dike. The PRB can be keyed into a relatively low permeability unit at 37 to 45 feet below ground surface (bgs) in the vicinity of MCM-06 (refer to Appendix B), but continuity must be confirmed. The presence of flowing sands may complicate the trenching process. Injection-style emplacements would likely be more feasible along the dike. Once installed, treatment would be passive and O&M requirements would be minimal, with the exception of media replacement.			

¹ Northrup, K., M. Capooci, and A. Seyfferth. 2017. Effects of Extreme Events on Arsenic Cycling in Salt Marshes. *Journal of Geophysical Research: Biogeosciences*. 123, 1086-1100. https://doi.org/10.1002/2017JG004259.

1

Table 5
Remedy Evaluation Summary
Assessment of Corrective Measures Report
Georgia Power Company
Plant McManus Former Ash Pond 1, Brunswick, Georgia

			Evaluation Criteria	
Technology	Description	Performance 40 CFR 257.96(c)(1)	Reliability 40 CFR 257.96(c)(1)	Ease of Implementation 40 CFR 257.96(c)(1)
Phytoremediation	Use of plants to remove, transfer, or stabilize constituents in soil or groundwater.	Low: While phytoremediation has been shown to have a degree of success treating deep contamination, site features may prove challenging for implementation of these deeper phytoremediation technologies. Brackish groundwater quality may limit the types of hyper-accumulative plants that are able to grow. A phytoremediation system may also be susceptible to damage and disruption by high winds associated with hurricanes.	Low to Moderate: The depth of the contamination and challenges for implementation at depth at the site make this option low to moderate in reliability. The well where Statistically Significant Levels for arsenic were identified (MCM-06) is screened at approximately 25 feet bgs, which is outside the typical rooting depth for common arsenic hyperaccumulators.	Difficult: The practical location for use of phytoremediation to capture arsenic and reduce concentrations at the compliance boundary is along the northern dike. Given the depths of the impacts, a TreeWell® system would be required. TreeWells® are installed in 3- to 5-foot-diameter boreholes extending to the target depth. Drilling borings within the narrow width of the dike may be challenging and require widening the dike. Depending on the number of TreeWells® and borings required, the construction could impact the stability of the dike. The presence of flowing sands and brackish water chemistry may complicate the installation process and viability of plants.
Subsurface Barrier Walls	Use of barriers to physically control the migration of impacted groundwater either directly or through manipulation of groundwater flow.	Moderate: Barrier walls are a proven technology for seepage control and/or groundwater cutoff at impoundments. Sheet pile walls are limited by the depth of installation, which is typically approximately 60 to 65 feet bgs with a single sheet. Within the context of former AP-1, a barrier wall as the sole remedial measure would likely be moderately effective. An alternative use of this strategy is in a "funnel and gate" system with a PRB. As such, groundwater with arsenic above the GWPS could be directed to "treatment gates" for passive treatment (in a PRB). Additional subsurface investigations and compatibility testing with groundwater from former AP-1 would be needed prior to selection and implementation. Performance may be affected by the fluctuating groundwater flow directions during tidal cycles.	High – With proper installation: O&M requirements can range significantly, depending on whether groundwater extraction and subsequent treatment from inside the wall is required.	Moderate to difficult: Limited space for construction activities along the dike makes implementation moderate to difficult. Widening the dike would likely be necessary prior to implementation. A relatively low permeability unit at 37 to 45 feet bgs in the vicinity of MCM-06 is present to key the barrier into (refer to Appendix B), but continuity needs to be confirmed. The presence of flowing sands may complicate the trenching process. Jet-grouting is another alternative, but is typically more difficult compared to other barrier wall installation methods. Depending on design, groundwater extraction may be needed because of the inflow of water from the mainland and island.

Technology		Evaluation Criteria		
	Potential Impact 40 CFR 257.96(c)(1)	Estimated Time to Begin/Complete Remedy 40 CFR 257.96(c)(2)	Institutional Requirements 40 CFR 257.96(c)(3)	Relative Costs
Geochemical Manipulation (In Situ Injection)	Low: Low impacts are expected if the remedy works as designed, based on a thorough pre-design investigation, geochemical modeling, and bench/pilot study results. Consideration of groundwater flow to nearby sensitive environments may be needed. This remedial alternative may unintentionally alter the geochemistry within the aquifer, which may result in the mobilization of other constituents that require treatment. Short-term risks during remedial activities such as drilling and operating pressurized injection equipment can be mitigated through appropriate planning and health and safety (H&S) measures.	A thorough pre-design investigation, geochemical modeling, and/or bench scale treatability study and/or field-scale pilot testing may take up to 24 months to obtain the design parameters needed for design and construction of the corrective measure. Well construction is relatively quick (i.e., 1 to 2 months; potentially longer depending on the scale of the remedy) and time for an injection event is variable. Time to achieve the GWPS for arsenic is dependent on the attenuation process kinetics of the constituent as well as amendment longevity, injection layout, and arsenic transport properties. Additional injection events may be needed to maintain redox conditions and/or address additional flux of impacted groundwater into the treatment area.	Deed restrictions may be necessary until in situ treatment has achieved the GWPS. An Underground Injection Control Permit would be required to implement this corrective measure. No other institutional expected.	Medium
In Situ Stabilization/ Solidification (ISS)	Low: Short-term impacts during remedy construction can be mitigated through appropriate planning and H&S measures. Changes to groundwater flow patterns due to stabilized media can occur, which can affect other aspects of the groundwater corrective action. Application of ISS mixture can also alter the geochemistry and may result in the mobilization of other constituents that require treatment. In addition, bulk mixing with reagents can occur.	Design phase and additional compatibility testing may be required, which may take up to 18 months. Completion of ISS may take an additional 12 to 18 months, depending on the final design, mixing method, and scale. Since this approach would likely not be applied to all of the impacted groundwater but rather applied to a specific source area to prevent migration, it may take an extended period of time to complete the remedy.	Deed restrictions may be necessary until groundwater concentrations are below the GWPS. No other institutional requirements expected.	Medium to high (depending on area stabilized)
Hydraulic Containment	Low: Potential impacts are anticipated to be low. Short-term impacts during the construction of the remedy and long-term impacts during O&M can be mitigated through appropriate planning and H&S measures. Groundwater extraction may unintentionally alter the geochemistry within the hydraulic capture zone.	A thorough pre-design investigation, flow modeling, bench-scale treatability studies, and/or field-scale pilot testing may be needed. These activities may take 12 to 24 months prior to design, permitting, and construction of the corrective measure. Installation of extraction wells and/or trenches can be accomplished relatively quickly, while the time until startup is contingent on exsitu treatment infrastructure. Hydraulic containment can be achieved relatively quickly after startup of the extraction system. However, uncertainty exists with respect to the time to achieve and maintain the GWPS and complete operations; additional data collection may be needed to better understand site mobility and attenuation mechanisms for arsenic.	A revision to the current permit may be required to withdraw water (e.g., water or consumptive use permit). Depending on the effluent management strategy, modifications to the existing National Pollutant Discharge Elimination System permit may be required for surface water discharge. In addition, deed restrictions may be necessary until groundwater concentrations are below the GWPS.	Medium to high (depending on remedy duration and complexity of above-ground treatment system)
Monitored Natural Attenuation (MNA)	Negligible: Potential impacts of the remedy will be negligible because MNA relies on natural processes active in the aquifer matrix without significant disturbance to the surface or subsurface.	Implementation of the MNA remedy would require time for additional data collection and documentation, even though an existing monitoring network is already in place. Additional data collection activities may take up to 24 months to complete. The additional data would be needed for statistical analysis and to evaluate whether additional monitoring wells need to be installed to supplement the existing monitoring network. MNA timeframes range from a few years to a few decades.	Deed restrictions may be necessary until natural attenuation processes have achieved the GWPS. No other institutional requirements expected.	Low
Permeable Reactive Barrier (PRB)	Low: Impacts are expected to be low if the remedy works as designed, based on a thorough pre-design investigation, geochemical modeling, and geophysical testing. Short-term impacts during construction of the remedy can be mitigated through appropriate planning and H&S measures. Consideration of groundwater flow to nearby sensitive environments may be needed. This remedial alternative may unintentionally alter the geochemistry within the wall, which may result in the mobilization of other constituents that require treatment.	Installation of a PRB can be accomplished relatively quickly (6 to 12 months), depending on the final location and configuration. However, bench-scale treatability studies and/or compatibility testing would be required to obtain design parameters prior to design and construction of the remedy. These processes may take up to 24 months. Media may need to be replaced periodically to maintain reactive conditions and/or address additional flux of impacted groundwater into the PRB.	Deed restrictions may be necessary until groundwater concentrations are below the GWPS. No other institutional requirements expected.	Medium (for installation) with minimal O&M requirements
Phytoremediation	Low: Phytoremediation typically has low expected impacts. Depending on the phytoremediation strategy, disposal methods for vegetation with bioaccumulated arsenic may need to be considered. Short-term impacts during the construction of the remedy can be mitigated through appropriate planning and H&S measures.	Installation of a phytoremediation system can be accomplished relatively quickly (within 6 to 12 months), depending on the final location and configuration. However, treatability studies and pilot testing would be required to ensure effective treatment. These studies may take up to 24 months. Once installed, the time to achieve the GWPS downgradient of the phytoremediation system is anticipated to be long and can take multiple years before system is treating at design capacity	Deed restrictions may be necessary until groundwater concentrations are below the GWPS. No other institutional requirements expected.	Medium (for installation) with minimal O&M requirements
Subsurface Barrier Walls	Low: Impacts are expected to be low following construction of the remedy. Short-term impacts during remedy construction can be mitigated through appropriate planning and H&S measures. Changes to	Design phase and additional compatibility testing may be required, which may take up to 24 months. Installation of a barrier wall can be accomplished relatively quickly (i.e., 6 to 12 months), depending on the final location and configuration. Once installed, preventing migration of constituents in groundwater is anticipated to be similar to a companion technology	Deed restrictions may be necessary until groundwater concentrations are below the GWPS. No other institutional requirements expected.	Medium (for installation) with minimal O&M requirements

Technology	Evaluation Criteria				
	Potential Impact 40 CFR 257.96(c)(1)	Estimated Time to Begin/Complete Remedy 40 CFR 257.96(c)(2)	Institutional Requirements 40 CFR 257.96(c)(3)	Relative Costs	
	groundwater flow patterns due to installation of the barrier wall are expected and may require dewatering.	(e.g., PRBs or P&T). Since this approach does not treat the downgradient area of impacted groundwater but rather prevents migration from a source area, it will likely have to be maintained long-term and coupled with other approaches.			

Acronyms and Abbreviations:

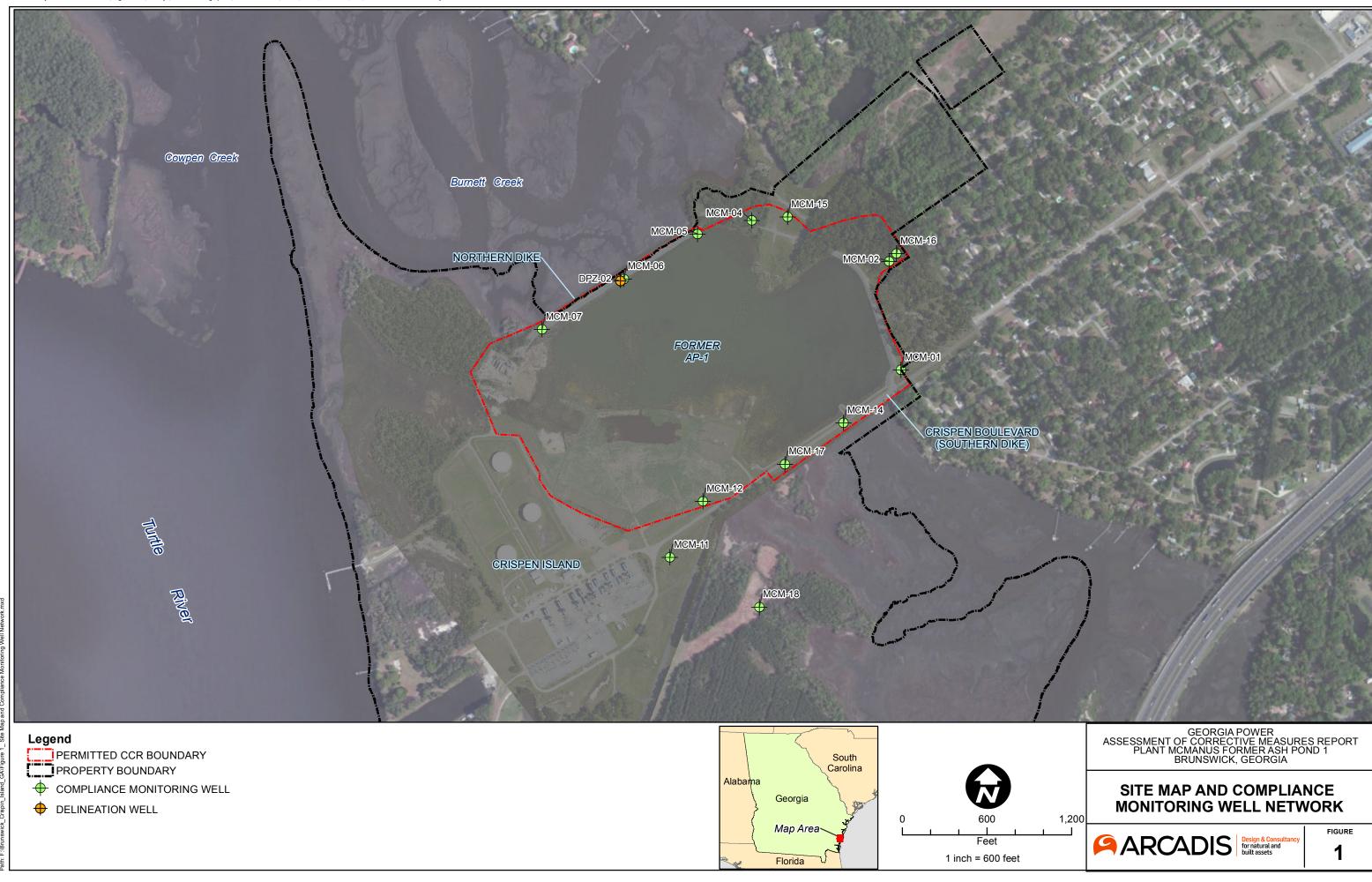
CFR = Code of Federal Regulations

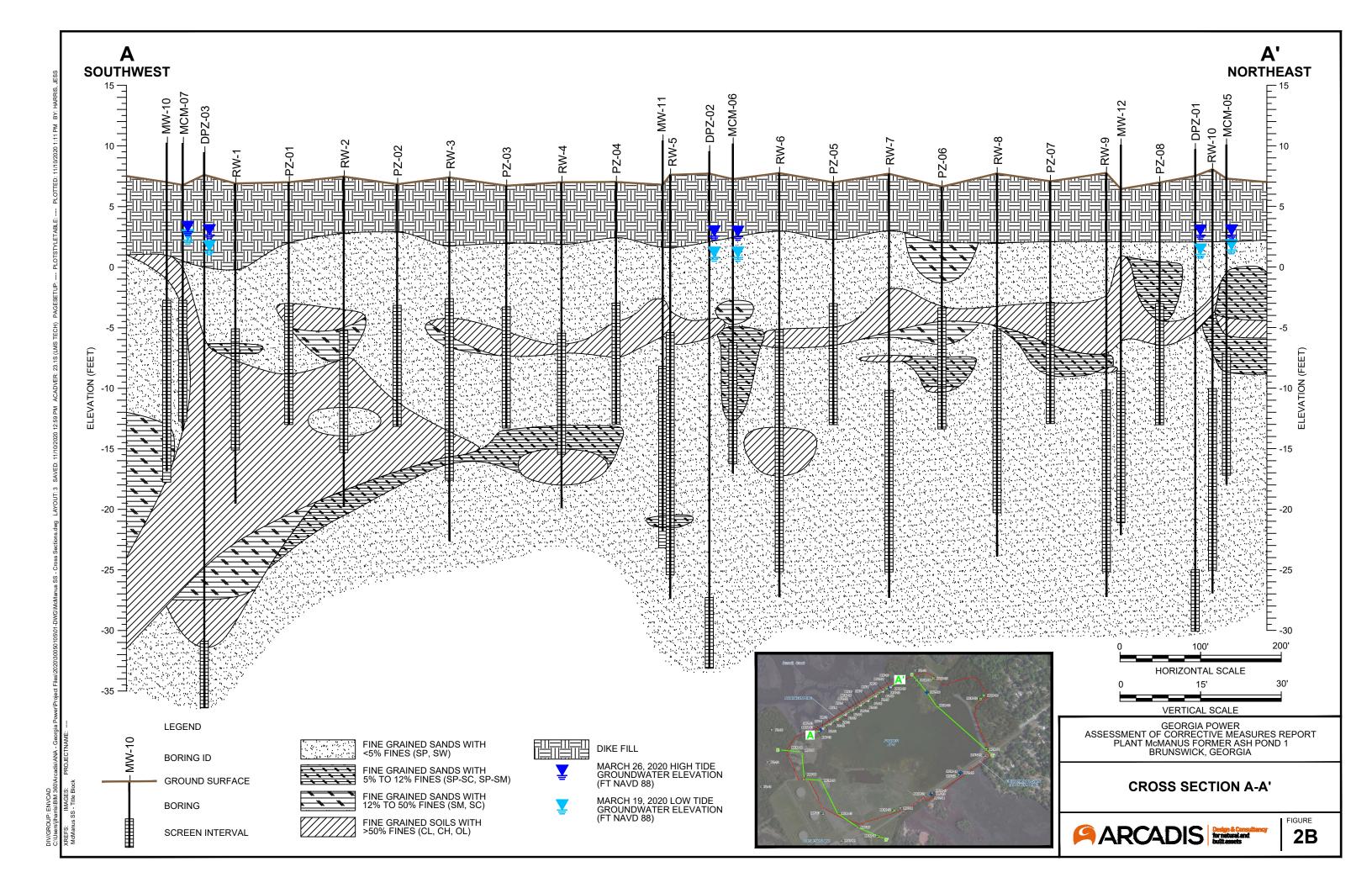
bgs = below ground surface

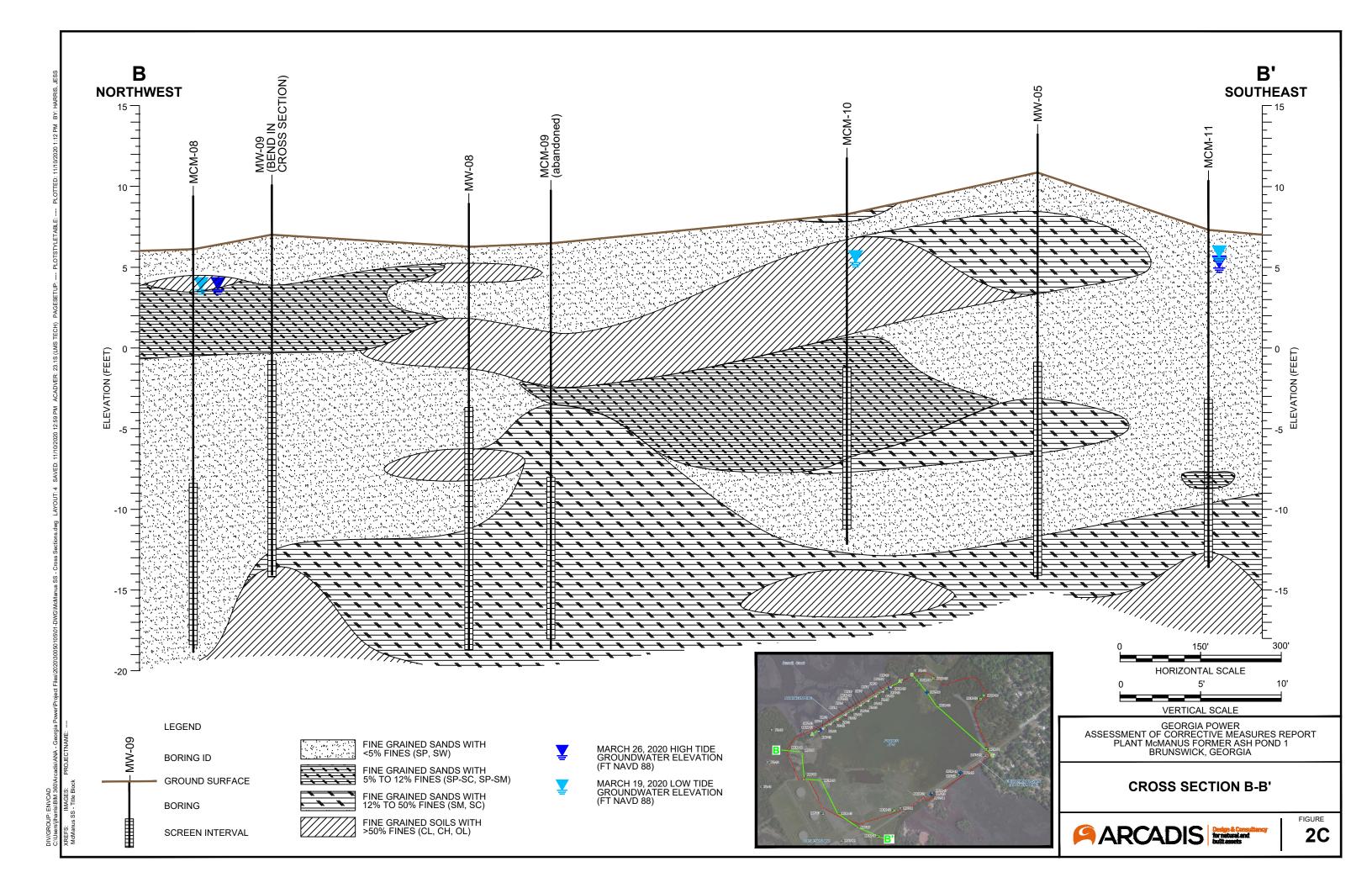
GWPS = Groundwater Protection Standard

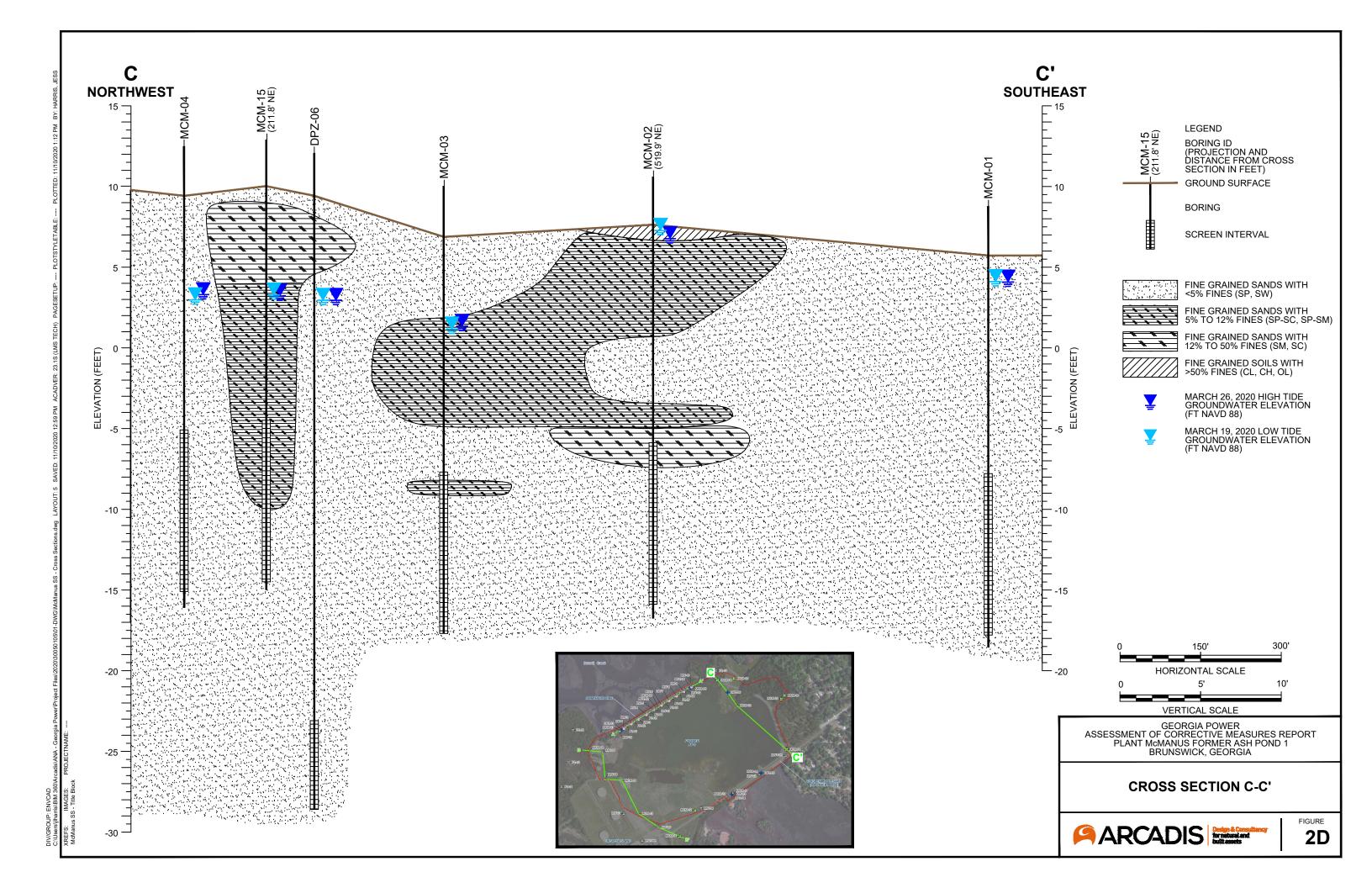
H&S = health and safety

ISS = in situ stabilization/solidification


MNA = monitored natural attenuation


O&M = operation and maintenance


P&T = pump and treat


PRB = permeable reactive barrier

FIGURES

APPENDIX A

Risk Evaluation Report

wood.

RISK EVALUATION REPORT PLANT MCMANUS FORMER ASH POND 1 GLYNN COUNTY, GEORGIA

Prepared for

Georgia Power 241 Ralph McGill Boulevard Atlanta, Georgia 30308

Prepared by

Wood Environment & Infrastructure Solutions, Inc.

1075 Big Shanty Road NW, #100 Kennesaw, Georgia 30144

Project Number 6123-20-1474

December 2020

TABLE OF CONTENTS

EXEC	UTIV	E SUM	MARY	. v		
1	Intro	troduction1				
2	Basis And Background For The Development Of The Conceptual Exposure Model					
	2.1		scription			
		2.1.1	Topography and Surface Hydrology			
		2.1.2	Geology and Hydrogeology			
	2.2	Potentia	al Transport Pathways			
		2.2.1	Groundwater	. 7		
		2.2.2	Surface Water	. 7		
	2.3	Potentia	al Exposure Pathways and Receptors	. 8		
3	Risk Evaluation Screening					
	3.1	Data Us	sed in Risk Evaluation Screening	11		
		3.1.1	Groundwater Data	11		
		3.1.2	Background Groundwater Quality	12		
	3.2	On-Site	Potable Water Screening Evaluation	13		
	3.3	.3 Groundwater Screening Evaluation				
	3.4	Alternate Source Demonstration				
4	Refined Risk Evaluation					
	4.1	Refined	l Groundwater Risk Evaluation	17		
		4.1.1	Groundwater Exposure Point Calculation	17		
		4.1.2	COPI Concentration Trend Analysis	18		
		4.1.3	Refined Groundwater Risk Evaluation Results	19		
	4.2	Surface	Water Risk Evaluation	20		
		4.2.1	Surface Water Data	21		
		4.2.2	Human Health Screening	22		
		4.2.3	Ecological Screening	23		
		4.2.4	Refined Surface Water Risk Evaluation	24		
	4.3		Groundwater and Surface Water Risk Evaluation Summary and	25		

TABLE OF CONTENTS (Continued)

5	Uncertainty Assessment					
6	Conclusions					
7	References					
	LIST OF TABLES					
Table	On-site Potable Well Groundwater Screening					
Table 2	SSL-related Constituent Groundwater Screening					
Table 3	Groundwater Exposure Point Concentration Summary					
Table 4	Downgradient Groundwater Refined Screening					
Table :	Human Health Surface Water Screening – Burnett Creek					
Table (Ecological Health Saltwater Surface Water Screening – Burnett Creek					
Table '	Ecological Health Freshwater Surface Water Screening – Burnett Creek					
Table	Surface Water Exposure Point Concentration Summary – Burnett Creek					
Table 9	Surface Water Human Health Refined Evaluation – Burnett Creek					
	LIST OF FIGURES					
Figure	Site Location Map					
Figure	Site Layout and Monitoring Well Network					
Figure	Potentiometric Surface Map – Low Tide (March 2020)					
Figure	Potentiometric Surface Map – High Tide (March 2020)					
Figure	Conceptual Exposure Model					
Figure	Off-Site Well Survey Results					
Figure	Groundwater Risk Screening Approach					
Figure	Approach for Refined Groundwater Risk Evaluation					
Figure	Surface Water Risk Screening Approach					
Figure	Approach for Refined Surface Water Risk Evaluation					

TABLE OF CONTENTS (Continued)

Figure 11 Surface Water Sampling Locations

LIST OF APPENDICES

Appendix A	Plant McManus Well Survey (Off-Site)		
Appendix B	Data Us	sed in Risk Evaluation	
Appendix	B-1	Potable Well Data	
Appendix	B-2	Downgradient Groundwater Data	
Appendix	B-3	Surface Water Data	
Appendix C	USEPA	RSL Calculator Generated Industrial Worker Screening Levels	
Appendix D	USEPA	RSL Calculator Generated Residential Screening Levels	
Appendix E	Support	for Refined Groundwater Risk Evaluation	
Appendix	E-1	Exposure Point Concentration Calculation Results	
Appendix	E-2	Groundwater Exposure Point Concentration Figures	
Appendix	E-3	Groundwater ProUCL Input/Output Files	
Appendix	E-4	Groundwater Trend Graphs	
Appendix F	Support	for Refined Surface Water Risk Evaluation	
Appendix	F-1	Exposure Point Concentration Calculation Results	
Appendix	F-2	Surface Water Exposure Point Concentration Figure	
Appendix	F-3	Surface Water ProUCL Input/Output Files	

LIST OF ACRONYMS AND ABBREVIATIONS

AP Ash Pond

ASD Alternate Source Demonstration

below ground surface bgs

Coal Combustion Residual CCR Conceptual Exposure Model **CEM CFR** Code of Federal Regulations

Constituent of Interest COI

COPI Constituent of Potential Interest **EPC Exposure Point Concentration**

EPD [Georgia] Environmental Protection Division

GWPS Groundwater Protection Standard **HSRA** Hazardous Site Response Act

HUC Hydrologic Unit Code

ISWQC Instream Water Quality Criteria **MCL** Maximum Contaminant Level

mg/LMilligrams per liter

PQL practical quantitation limit **ProUCL** ProUCL software version 5.1 **RME** Reasonable Maximum Exposure

RRS Risk Reduction Standards RSL Regional Screening Level SSL Statistically Significant Level

UCL 95 Percent Upper Confidence Limit of the Arithmetic Mean

iv

USEPA United States Environmental Protection Agency

VRP Voluntary Remediation Program

EXECUTIVE SUMMARY

Georgia Power's Plant McManus (site) is an electric-generating facility approximately 5.37 miles northwest of Brunswick, Georgia in Glynn County that began operations in 1952. The two former steam units were retired and demolished as of 2017, and the facility currently has nine oil-fired combustion turbines on site. In compliance with applicable regulations, coal combustion residual (CCR) material resulting from historical power generation were transferred and stored at the site in the form of a surface impoundment: Ash Pond 1 (AP-1). AP-1 has not received ash since the early 1970's.

Georgia Power is currently in the permitting process for AP-1. Closure of AP-1 commenced in 2016. During closure, Georgia Power removed all CCR material in the inactive surface impoundment and transported it to an off-site permitted landfill. The CCR excavation and removal were completed in October 2019. AP-1 is subject to the Federal CCR Rule, 40 Code of Federal Regulations (CFR) Part 257 Subpart D - Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments and the State CCR Rule, Georgia Environmental Protection Division (EPD) Coal Combustion Residuals, Rule 391-3-4-.10. Per CCR rules, semi-annual groundwater monitoring and reporting is required to conclude the closure process for at least 5 years following removal completion.

This report presents the results of a human health and ecological risk evaluation for CCR constituents² that exhibit statistically significant levels (SSLs) in groundwater at the site (arsenic and lithium) and the supporting human health and ecological risk evaluation for the adjacent downgradient surface water body, Burnett Creek. A conservative, health-protective approach for groundwater and surface water concentrations with consideration for background was used that is consistent with United States Environmental Protection Agency (USEPA) risk assessment guidance, Georgia EPD regulations and guidance, and standard practice for risk assessment in the State of Georgia. Using the groundwater protection standards (GWPS) established for AP-1 in accordance with the Federal and State CCR Rules, arsenic and lithium were previously defined as both federal and state SSL-related constituents (Resolute, 2020a). The risk evaluation relies on groundwater

McManus Former AP-1 Risk Evaluation Report

¹ The full citation for the Federal CCR Rule is: 40 C.F.R. § 257, Subpart D – Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments. The rule was finalized with an effective date of October 14, 2015 and last amended August 28, 2020 with an effective date of September 28, 2020 (USEPA, 2020a).

² The constituents included in the risk evaluation also occur naturally in the site geologic setting.

data collected by Georgia Power from 2015 through March 2020 in compliance with the Federal and State CCR Rules.

Consistent with USEPA guidance, this risk evaluation used a tiered approach to evaluate potential risks, which included the following steps:

- 1. Development of a conceptual exposure model (CEM) for former AP-1.
- 2. Initial groundwater risk screening: Comparison of groundwater concentrations for SSL-related constituents to conservative, health-protective criteria and/or background concentrations to assess whether constituents pose a risk to human health.
- 3. Refined groundwater risk evaluation: Performance of a more refined analysis for Constituents of Potential Interest (COPIs) that were retained in the initial risk screening in order to evaluate the potential risks to human health due to groundwater exposure.
- 4. Surface water screening: Comparison of surface water concentrations for those constituents identified as groundwater constituents of interest (COIs) to conservative, health-protective criteria to assess whether those constituents pose a risk to human health and/or the environment as an additional line of evidence.
- 5. Refined surface water risk evaluation: Performance of a more refined surface water analysis for those constituents that were retained in the initial surface water risk screening in order to further evaluate the potential risks to human health and the environment as an additional line of evidence.
- 6. Development of risk conclusions and identification of associated uncertainties.

Using this approach that includes multiple conservative assumptions, concentrations of the only two SSL-related constituents, arsenic and lithium, are not expected to pose a risk to human health or the environment. In addition, all CCR has been removed from the pond and an alternative source demonstration (ASD) has been submitted for lithium as this constituent is naturally occurring at the site and in the brackish water.

Therefore, no further risk evaluation of groundwater and surface water is warranted. Compliance monitoring for the former AP-1 under the Federal and State CCR Rules will continue. Georgia Power will proactively evaluate the data and update this evaluation, if necessary.

1 INTRODUCTION

This report summarizes a risk evaluation of the former AP-1, located at the Georgia Power Plant McManus located in Glynn County, Georgia (**Figure 1**). Georgia Power is currently in the permitting process for AP-1 in accordance with the Federal CCR Rule (USEPA, 2020a) and the State CCR Rule (EPD, 2018a). CCR excavation and removal at AP-1 were completed in October 2019 (Arcadis, 2019) and acknowledged as complete by EPD in a letter dated January 10, 2020.

This risk evaluation provides additional technical review of the human health and environmental protectiveness associated with the closure of AP-1 with respect to CCR constituent concentrations in groundwater identified as SSLs above GWPS. The evaluation relies on a conservative, health-protective approach that is consistent with the risk evaluation approaches outlined in Voluntary Remediation Program (VRP) (Georgia Voluntary Remediation Act, OCGA §12-8-100; EPD, 2009) and USEPA Regional Screening Levels (RSLs) User's Guide (USEPA, 2020b). This evaluation also incorporates principles and assumptions consistent with the Federal and State CCR Rules.

The risk evaluation includes the development of a site-specific CEM and a stepwise risk screening process for the identified SSL-related constituents for the former AP-1. Arsenic and lithium were previously identified as both state and federal SSL-related constituents³ in monitoring well MCM-06 using the GWPS established for AP-1 according to the Federal and State CCR Rules (Resolute, 2020a). Based on the results of the risk evaluation for the SSL-related constituents, a site-specific recommended path forward is provided.

The remainder of the report is organized as follows:

• Section 2, Basis and Background for the Development of the Conceptual Exposure Model – Presents site-specific information related to the site history, monitoring network, topography and surface hydrology, geology and hydrogeology, potential transport pathways, and receptors that could potentially be exposed to SSL-related constituents.

1

McManus Former AP-1 Risk Evaluation Report

³ A state SSL-related constituent is determined by comparing the confidence intervals developed to either the constituent's MCL, if available, or the calculated background interwell prediction limit. A federal SSL-related constituent is determined by comparing the confidence intervals developed to either the constituent's MCL, if available, the USEPA RSL, if no MCL is available, or the calculated background interwell prediction limit.

- **Section 3, Risk Evaluation Screening** Describes the process for the initial risk-based screening of SSL-related constituents to identify COPIs in groundwater.
- Section 4, Refined Risk Evaluation Describes the risk screening process for the groundwater COPIs, including calculation of exposure point concentrations (EPCs) and analysis of concentration trends over time for groundwater COPIs, as well as the risk screening process for those constituents evaluated in surface water in the adjacent downgradient surface water body.
- **Section 5, Uncertainty Assessment** Describes the uncertainties associated with the risk screening process.
- **Section 6, Conclusions** Presents the conclusions of the risk evaluation.
- **Section 7, References** Provides reference information for the sources cited in this document.

2 BASIS AND BACKGROUND FOR THE DEVELOPMENT OF THE CONCEPTUAL EXPOSURE MODEL

This section provides a brief overview of the site location and operational history, site regulatory status, and geology/hydrogeology.

A CEM representing the site-specific processes and conditions that are relevant to the potential migration of groundwater containing SSL-related constituents and potential exposure to SSL-related constituents has been developed based on a review and compilation of information previously presented in Plant McManus AP-1 documents, including the *Hydrogeologic Assessment Report (rev. 3) – Plant McManus Former Ash Pond 1* (Resolute, 2020b) and the 2020 Annual Groundwater Monitoring & Corrective Action Report (Resolute, 2020c). The CEM includes a conservative evaluation of potential transport pathways, potential exposure pathways, and potential human and ecological receptors.

2.1 Site Description

Plant McManus is located approximately 5.37 miles northwest of the city of Brunswick. The site occupies approximately 2,400 acres and is bordered by Turtle River on the west, Burnett Creek to the north, and Gibson Creek to the south (**Figure 2**). Plant McManus was once a two-unit power generation facility. Construction of Unit 1 began in 1951 and the initial startup and commercial operation began in November 1952. Unit 1 was originally designed to operate as an oil-fired generator and was converted to coal in 1960. Construction on Unit 2 began in 1957 and was declared commercial in 1959 with coal as the primary fuel. In 1971, both Units 1 and 2 were converted to oil-fired and the use of coal ceased after 1972. In 1972, nine diesel-fired simple cycle combustion turbines were installed and are currently operating. Units 1 and 2 have been retired and demolished as of 2017. AP-1 was designed to receive and store CCR and process water produced by Units 1 and 2 during the electric power generating process at Plant McManus. AP-1 has not received ash since the early 1970's.

In 2016, Georgia Power began closure of the inactive AP-1 by removal of CCR materials. Former AP-1 encompassess approximately 80 acres and is bounded by the mainland to the northeast, Crispen Island to the southwest, an elevated road (Crispen Island Drive) dike to the southeast, and the former AP-1 northern dike to the northwest (Resolute, 2019).

Semi-annual groundwater monitoring and reporting for Plant McManus former AP-1 is performed in accordance with the monitoring program requirements of the Federal and State CCR Rule. In accordance with 40 CFR § 257.91, a groundwater monitoring network was installed to monitor groundwater quality both upgradient and downgradient of the former AP-1. The former AP-1 certified monitoring well network consists of 8 upgradient monitoring wells and 7 downgradient monitoring wells. There are 14 piezometers that may be utilized for water level measurements or assessing groundwater conditions. An additional piezometer, MCM-09, was abandoned in December 2019. The locations of the certified compliance well network and piezometers included in the risk evaluation are provided on **Figure 2**.

2.1.1 Topography and Surface Hydrology

The site was originally a cluster of one large and several small islands in a tidal marsh between Burnett Creek, Cowpen Creek, Gibson Creek (collectively, the tidal creeks) and Turtle River (**Figure 1**). The River, the salt marsh, and the tidal creeks in the marsh are subject to tidal fluctuations of surface water. A road (Crispen Island Drive) and a railroad were constructed from the mainland to the largest island, and two or more of the islands were joined to the largest island during construction of the plant. The former AP-1 was constructed over the marsh and tidal creek between the largest island and the mainland in the 1950s, with a northern dike and the southern dike formed by Crispen Island Drive. The northeastern extent of the former AP-1 is the mainland, and the southwestern extent is the island.

The site is located within the Turtle River – South Brunswick River hydrologogic unit code (HUC) 12 watershed, which has a total area of 51,891 acres, and, in turn, is part of the larger Cumberland-St. Simons HUC 8 watershed, which has an area of 609,980 acres.

The surface of the marsh is covered by silt and vegetation, except where it is scoured by tidal creek action. In addition to current and historically recent (pre-ash pond construction) tidal channels, the marsh is also likely to have paleo (pre-historic) tidal channels present throughout the upper portion of the aquifer in the marsh area.

The topography, as suggested by the tidal nature of the surroundings, is quite flat and at relatively low elevations compared to sea level. For example, top of casing elevations for monitoring wells and piezometers at the facility have a maximum elevation of 15.81 feet above mean sea level (Resolute, 2019).

2.1.2 Geology and Hydrogeology

The geologic and hydrogeologic characteristics of the site have been extensively evaluated and compiled in previous reports. The following presents a brief summary of this information from the former AP-1 2020 Annual Groundwater Monitoring & Corrective Action Report (Resolute, 2020c):

Based on information collected during subsurface investigations, Plant McManus is underlain by very fine sands and clays from land surface (or beneath a shallow fill layer) to depths ranging from 33 to 43 feet below land surface. Very fine sands are predominant, but discontinuous clay layers of varying thickness were encountered during drilling activities. The clay layers varied from less than one inch to approximately ten feet in thickness. These very fine sands and discontinuous clay layers are interpreted to be the Upper Satilla Formation (ATC Associates, Inc., 1997).

Underlying the Upper Satilla Formation are fine to medium sands with greater silt content that have lower permeabilities than the sands of the Upper Satilla. These siltier sands, which were interpreted to be the Lower Satilla Formation, were encountered at depths greater than 35 feet below ground surface during the Site investigation performed in the 1990s (ATC Associates Inc., 1997). These sands may also correspond to the Cypresshead Formation of Huddleston (1988). Sands and clays below the Cypresshead and above the confining unit of the Brunswick aquifer system have been described by Weems and Edwards (2001) as two pairs of alternating confining units and water-bearing zones of the Ebenezer Formation, extending from approximately 50 feet bgs to 185 feet bgs in the Brunswick area.

Pertinent hydrogeologic information from the former AP-1 2020 Annual Groundwater Monitoring & Corrective Action Report (Resolute, 2020c) is presented below:

The regional surficial aquifer that contains the Upper and Lower Satilla Formations is underlain by approximately 90 feet of lower-permeability portions (Miocene Unit A) of the Hawthorn Formation. This stratum forms the upper confining bed for the Brunswick aquifer system.

The surficial aquifer underlying the mainland, marsh, and island is composed of the very fine to fine grain sand with discontinuous clay layers of the Upper and Lower Satilla Formation. In the marsh, the groundwater elevation at low

tide is below the top of the marsh surface. The upper portion of the aquifer in the marsh has been cut by tidal creeks, which meander through the marsh. In addition to current and historically recent (pre-ash pond construction) tidal channels, the marsh is also likely to have paleo (pre-historic) tidal channels present throughout the upper portion of the aquifer in the marsh area, which may provide zones of higher hydraulic conductivity or isolated pockets of groundwater. Vertically, the Satilla formation fines downward to a silty fine sand of the Lower Satilla Formation. The aquifer is generally unconfined, with localized clay layers. Groundwater flowing within the surficial aquifer is separated from deeper aquifers by approximately 90 feet of lower-permeability portions of the Hawthorn Formation (Miocene Unit A) that form the upper confining bed for the Brunswick aquifer system (Clarke et al, 1990).

Groundwater flows from two directions toward the former AP-1. One groundwater flow component originates on the mainland, northeast of the facility, and flows southwest, while the other flow component originates on Crispen Island and flows north and northeast Groundwater elevations in the monitoring wells on the mainland (MCM-02, -15, and -16) and on the island (MCM-08, and -11) have consistently exhibited higher groundwater elevations than the monitoring wells and piezometers installed along the dikes, with MCM-01 and -04 exhibiting intermediate elevations between the mainland and dike wells. The potentiometric surface of the surficial aquifer and the resultant groundwater flow direction in the vicinity of the former AP-1 is a reflection of the topography of the mainland, Crispen Island, and the tidal marsh surrounding the area.

The potentiometric surface elevation contours for March 2020 are presented in **Figure 3** for low tide and **Figure 4** for high tide. The high and low tide potentiometric surface maps indicate that groundwater flow from both the mainland and the island continues to be toward the former AP-1. During high tide (**Figure 4**), groundwater and surface water elevations inside and outside of the dikes illustrate that the potentiometric head is higher in the marsh outside of the dikes and lower in the former AP-1 (based on the staff gauge installed in the former AP-1), indicating an inward flow direction (toward former AP-1) at high tide. During low tide (**Figure 3**), groundwater and surface water elevations inside and outside of the dikes illustrate that the potentiometric head is higher in the former AP-1 (based on the staff gauge installed in the former AP-1) and lower in the marsh outside of the dikes, indicating an outward flow direction (toward the marsh) at low tide.

2.2 Potential Transport Pathways

A variety of geologic, hydrogeologic, and geochemical mechanisms can occur in the subsurface and serve to attenuate constituent concentrations in groundwater such as soil characteristics, the local geology and hydrogeology, and the distance the groundwater must travel before reaching a potential receptor. Previously identified potential transport pathways are summarized in this section. A summary of the potential transport pathways is shown on the CEM in **Figure 5**.

2.2.1 Groundwater

Pertinent information regarding groundwater transport from the *Hydrogeologic Assessment Report (rev. 3) – Plant McManus Former Ash Pond 1* (Resolute, 2020b) is presented below:

Groundwater flow directions from the mainland and the island are consistent at both low and high tides. These groundwater elevations and flow patterns make the mainland and the island both hydraulically upgradient of the former AP-1. During the 1996-1997 evaluation and evaluations performed prior to the start of excavation, groundwater flow from inside former AP-1 was toward the north. As dewatering and excavation work progressed, the low area extended from the northern dike into the center of the former AP-1. After the completion of excavation, the former AP-1 began to naturally fill with water. With the natural filling of the former AP-1, the groundwater flow direction at high tide remains inward toward former AP-1, while at low tide the groundwater flow direction appears to reverse away from the former AP-1. The net effect of the reversing flow directions is essentially a stagnant system, with a net combined flow slightly inward toward the former AP-1 based on the higher hydraulic gradient at high tide.

2.2.2 Surface Water

Burnett Creek, Gibson Creek, and Turtle River border the site (**Figure 2**). Burnett Creek and Gibson Creek are sampled as part of the site monitoring program as the adjacent downgradient surface water bodies. A conservative assumption for this assessment was made that all the groundwater from the site flows to the adjacent surface water bodies (i.e., Burnett Creek to the north and Gibson Creek to the south) under low tide conditions. In further support of this assumption, the tidal creeks and Turtle River represent a regional hydraulic discharge boundary for groundwater flow in the upper aquifer from the area.

2.3 Potential Exposure Pathways and Receptors

The exposure pathways for groundwater assumed to be complete based on site-specific information used to identify potential receptors and estimate potential risk. The CEM (**Figure 5**) depicts the conservative potential exposure pathways and receptors included in the risk evaluation.

The following potential exposure pathways and receptors were considered:

- On-site industrial worker: The groundwater exposure pathway for the on-site industrial worker was considered complete due to the presence of a single on-site potable well (MCMPW-01/Well #1 Plant). The on-site potable well is located southwest of the plant as shown on **Figure 2**. Water from this well is used for the sanitary facilities and for the central water supply at Plant McManus. The risk evaluation screening conservatively assumed that plant workers may have daily exposure to the maximum concentrations of detected constituents in the on-site potable well through potable water use, including ingestion and dermal contact.
- On-site construction worker: While there is a potential for limited exposure to groundwater by a future construction worker through dermal contact with on-site shallow groundwater during subsurface activities, future construction workers would be expected to have little to no direct contact with on-site groundwater due to safety procedures outlined in their site-specific health and safety plans.
- On-site resident: The groundwater exposure pathway for the on-site resident was considered incomplete because there is no residential use on-site under current site conditions and future residential use of the site is considered unlikely. Land use surrounding the site is zoned for Conservation and Preservation with the exception of an area zoned Single Family Residential to the east and northeast of the site (Glynn County, 2017). West of Turtle River, land use is also predominantly zoned for Conservation and Preservation (Glynn County, 2017).
- Off-site industrial/construction worker: The potential for off-site worker exposure through direct contact with groundwater was addressed qualitatively through the evaluation of hypothetical off-site residential receptors. Health-protective screening levels for residential receptors would be more conservative than industrial and construction worker screening levels. Note that there is no downgradient groundwater receptor for industrial/construction worker exposure as the downgradient receptor is the tidal marsh.

• Off-site resident: The groundwater exposure pathway for hypothetical off-site residential receptors was assumed potentially complete. Note that there is no downgradient groundwater receptor for residential exposure as the downgradient receptor is the tidal marsh; however, potential risk for hypothetical off-site residential receptors was quantified as a conservative measure. A well survey of potential groundwater wells within a three-mile radius of the former AP-1 was conducted and consisted of reviewing Federal, State, and County records and online sources, in addition to conducting a windshield survey of the area (Newfields, 2020). The well survey is included as **Appendix A**. Results of the survey are presented on **Figure 6**.

Combining well information from multiple sources with parcel data, 2,361 total parcels likely to be associated with an active or inactive private well within the three-mile radius were identified. Although water lines near the site were constructed in the mid-1990s, there are likely homes near water lines that may still be on wells. Public water is available to many residences in the area; however, a large number of parcels in the immediate vicinity of the site rely on private wells. The survey identified multiple private wells in the vicinity of the site.

Public water systems are operating wells within a 3-mile radius of the former AP-1. This includes wells for the main water provider in the area, the City of Brunswick, as well as 22 other smaller public water systems. Groundwater flow directions from both the mainland and the island are consistent during both high and low tides, making the mainland and the island both hydraulically upgradient of the former AP-1. Therefore, groundwater is flowing away from the private drinking water wells located to the east of the site, and these private drinking water wells are located upgradient from the former AP-1.

No surface water intakes have been identified for public water supplies within three miles downgradient of the site. Surface water at the site is brackish, and therefore, is unsuitable for use as a potable water source. Use of surface water as a potable water source downgradient of the site is an incomplete exposure pathway; therefore, drinking water exposure assumptions for surface water do not apply.

As a conservative measure, potential off-site residential exposure to SSL-related constituents was evaluated using on-site groundwater wells around the perimeter and downgradient of the former AP-1. This comparison makes the conservative assumption that on-site groundwater may potentially migrate to off-site drinking

water wells, through advective transport in groundwater without any attenuation within the aquifer media through factors such as dilution, dispersion, or adsorption. The risk evaluation screening conservatively assumed that hypothetical off-site residential receptors could be exposed to the concentrations of SSL-related constituents in groundwater through its use as a potable water supply by ingestion and dermal contact with groundwater.

- Off-site recreational surface water receptors: The surface water exposure pathway
 for recreational receptors was assumed potentially complete. Routes of exposure
 include ingestion of aquatic organisms (mainly fish) and potential incidental
 ingestion and dermal contact with surface water by adult and child recreational
 receptors.
- Off-site ecological surface water receptors: The surface water exposure pathway
 for potential off-site ecological receptors was assumed potentially complete.
 Potential routes of exposure include direct contact to surface water by aquatic
 receptors as well as ingestion.

3 RISK EVALUATION SCREENING

The CEM developed in Section 2 was used to identify the potentially completed exposure pathways to human receptors that should be considered in the risk evaluation. The initial step in the risk evaluation is the comparison of SSL-related constituent concentrations in groundwater to health-protective levels for these pathways. The approach used is consistent with the Georgia EPD regulations and guidance, USEPA guidance, and standard practice for risk assessment in the State of Georgia. The Georgia EPD allows for site-specific evaluation of risk in programs such as the Voluntary Remediation Program (EPD, 2009).

The initial risk evaluation screening was performed for the potential groundwater exposure pathway by comparing the concentrations of SSL-related constituents in on-site groundwater to appropriate health-protective screening criteria or background. These criteria included the risk reduction standards (RRS) established in accordance with the Hazardous Site Response Act (HSRA) for drinking water and site-specific background for the protection of human health. If the maximum concentration of a SSL-related constituent exceeded the screening criterion, the constituent was identified as a COPI for further evaluation in the refined risk evaluation. The methodology and screening criteria used were identified in accordance with regulatory guidance and standard risk assessment practices using an approach designed to conservatively overestimate possible exposures and risks, providing an additional level of confidence in the conclusions. The methodology is summarized on **Figure 7** and discussed in more detail below.

3.1 Data Used in Risk Evaluation Screening

This section provides information on the groundwater dataset used in the risk evaluation screening.

3.1.1 Groundwater Data

For the initial risk screening evaluation, groundwater data from samples collected between 2015 and March 2020 from the on-site wells that were identified to have constituents with SSLs were used in the risk screening evaluation for hypothetical off-site residential exposure. Arsenic and lithium were previously identified as SSL-related constituents in monitoring well MCM-06 under the State and Federal CCR Rules. Data from MCM-06 for arsenic and lithium were screened against relevant health-protective screening criteria or background. In addition, for potential on-site groundwater exposure,

the identified SSL-related constituents were also evaluated in the on-site potable water well.

The well with SSL-related constituents and the potable water well are depicted on **Figure 2**. The groundwater datasets used in the risk evaluation are presented in **Appendix B-1** for the on-site potable water well and in **Appendix B-2** for well MCM-06. Method detection limits for the groundwater datasets used in the risk evaluation were reviewed and confirmed to be less than the screening levels.

3.1.2 Background Groundwater Quality

Statistical analysis of groundwater monitoring data is performed at Plant McManus pursuant to §257.93-95 following the professional engineer-certified Statistical Analysis Method Certification (Rev 01, amended January 2020) (Resolute, 2020e) and the Unified Guidance (USEPA, 2009) for the former AP-1; background values are routinely updated under the program. Eight monitoring wells in the certified monitoring well network are designated as upgradient or background locations, including MCM-01, MCM-02, MCM-11, MCM-15, MCM-16, MCM-18, MCM-19, and MCM-20. Statistical analyses were performed on the groundwater data using Sanitas groundwater statistical software, as described in the 2020 Annual Groundwater Monitoring & Corrective Action Report Statistical Summary (Resolute, 2020c) and text from that document is presented below.

Interwell tolerance limits were used to calculate the site-specific background limits from pooled upgradient well data for Appendix IV constituents (Figure F). Parametric tolerance limits are used when data follow a normal or transformed-normal distribution such as for barium and radium. When data contained greater than 50% nondetects or did not follow a normal or transformed-normal distribution, non-parametric tolerance limits were used. The background limits were then used when determining the groundwater protection standard (GWPS) under 40 CFR §257.95(h) and Georgia EPD Rule 391-3-4-.10(6)(a).

Naturally occurring or site-specific background concentrations can exceed health-protective screening criteria. Therefore, site-specific background values were used as the groundwater screening levels if background concentrations were identified as greater than the groundwater screening values (i.e., arsenic), as further described in Sections 3.2 and 3.3.

3.2 On-Site Potable Water Screening Evaluation

The process of screening SSL-related constituents in on-site potable water against human health screening levels for groundwater is discussed below and presented in **Figure 7**. The HSRA RRS evaluated under the VRP approach presented herein included Type 3 and Type 4 standards for on-site industrial worker receptors. The Hazardous Site Response Act, Rule 391-3-19.07(1) notes that "[a]ll risk reduction standards will, when implemented, provide adequate protection of human health and the environment". In addition, Rule 391-3-19.07(3) notes a corrective action, if needed, may be considered complete when "a site meets any or a combination of the applicable risk reduction standards described in Rule 391-3-19-.07".

In accordance with standard practice and methodologies approved by the Georgia EPD, the screening level hierarchy for the SSL-related constituents is as follows:

- The higher of the Type 3 or Type 4 RRS for on-site industrial worker exposure, which are considered protective of human health for those constituents regulated under HSRA (i.e., arsenic).
- Site-specific screening levels were calculated for those chemical constituents like lithium that do not have RRS under HSRA using industrial worker exposure assumptions consistent with the HSRA rules (EPD, 2018b. The screening level for lithium is essentially a Type 4 RRS calculated at a target hazard quotient of 1, consistent with Georgia EPD guidance, and has been adopted by USEPA as the risk-based level for the Federal CCR rule (USEPA, 2020a). Calculations of site-specific and Type 4 RRS values for SSL-related constituents are presented in **Appendix C**. A site-specific screening level was used for lithium.
- If site-specific background concentrations are greater than the criteria described above, then the site-specific background concentration is used as the screening level in accordance with the CCR methodology for development of groundwater protection standards (USEPA, 2020a). The background concentration for arsenic is greater than the criteria described above. Therefore, the background value was used as a screening level for arsenic in this evaluation.

Table 1 presents the maximum detected concentration of each SSL-related constituent (i.e., arsenic and lithium) in the identified on-site potable water well used for comparison to the selected screening levels for on-site industrial workers. As presented in **Table 1**, no constituents were detected in on-site potable groundwater. The laboratory practical

quantitation limit (PQL) for arsenic is one order of magnitude lower than the screening level. Although the maximum laboratory PQL for lithium exceeded the screening criterion, the method detection limit was less than the screening criterion. No COPIs were identified in groundwater from the potable water well. Exposure to on-site potable water is not expected to pose a risk to human health, and therefore, no further evaluation is necessary.

3.3 Groundwater Screening Evaluation

The process of screening SSL-related constituents in downgradient groundwater against human health screening levels for groundwater is discussed below and presented in **Figure 7**. The HSRA RRS evaluated under the VRP approach presented herein included Type 1 and Type 2 standards for off-site residential receptors.

In accordance with standard practice and methodologies approved by the Georgia EPD, the screening level hierarchy for the SSL-related constituents is as follows:

- The higher of the Type 1 or Type 2 RRS for hypothetical off-site residential exposures, which are considered protective of human health for those constituents regulated under HSRA (i.e., arsenic).
- Site-specific screening levels are calculated for those chemical constituents like lithium that do not have RRS under HSRA using residential exposure assumptions consistent with the HSRA rules (EPD, 2018b) and are equivalent to the USEPA tapwater RSLs. The screening level for lithium is essentially a Type 2 RRS calculated at a target hazard quotient of 1, consistent with Georgia EPD guidance, and has been adopted by USEPA as the risk-based level for the Federal CCR Rule (USEPA, 2020a). Calculations of site-specific and Type 2 RRS values for SSL-related constituents are presented in **Appendix D**. A site-specific screening level was used for lithium.
- If site-specific background concentrations are greater than the criteria described above, then the site-specific background concentration is used as the screening level in accordance with the CCR methodology for development of groundwater protection standards (USEPA, 2020a). The background concentration for arsenic is higher at the site than the criteria described above. Therefore, background was used as a screening level for arsenic in this evaluation.

Groundwater data collected from well MCM-06 identified to have SSL-related constituents were compared to residential screening criteria in order to protect hypothetical off-site receptors. Concentrations of arsenic and lithium in MCM-06 were compared to the higher of the HSRA Type 1 RRS, Type 2 RRS (including site-specific screening levels), and background values for groundwater pursuant to standard practice for risk assessment within the State of Georgia.

Table 2 presents the maximum detected concentration of each SSL-related constituent (i.e., arsenic and lithium), which was used to represent potential off-site groundwater quality for comparison to the selected screening levels for hypothetical off-site residential receptors (health- or background-based). As noted in **Table 2**, arsenic and lithium were detected at concentrations (0.50 mg/L for arsenic and 0.13 mg/L for lithium) that exceeded their respective screening levels (0.031 mg/L for arsenic and 0.04 mg/L for lithium) and were retained for further evaluation in the refined risk evaluation. An ASD has been developed for lithium and submitted to Georgia EPD for review and approval (as discussed in more detail in Section 3.4).

3.4 Alternate Source Demonstration

In accordance with 40 CFR §257.95, an ASD was prepared for lithium at the former AP-1 (Arcadis, 2020). There are multiple lines of evidence that support the conclusion that the SSL of lithium present in a compliance monitoring well is attributable to the influx of brackish surface water and is not attributable to CCR storage or a release from the former AP-1. The following lines of evidence support an ASD for concentrations of lithium in groundwater downgradient of the former AP-1:

- Presence of lithium in surface water, with concentrations of 0.1 to 0.2 milligrams per liter (mg/L) common in seawater (Institute of Ocean Energy) and concentrations up to 0.11 mg/L measured in the brackish water at the surface water sampling locations in comparison to groundwater concentrations ranging from 0.064 to 0.13 mg/L at MCM-06 in 2019 and 2020;
- Similarity of geochemical markers in surface water and groundwater wells with elevated concentrations of lithium;
- Variation in hydraulic conductivity and response to tidal fluctuations which demonstrate locations such as MCM-06 are in hydraulic communication with the tidal marsh. The locations which exhibit tidal fluctuations in water levels also exhibit similar geochemistry to surface water; and

• Shifts in groundwater chemistry and an increase in lithium concentrations at MCM-06 that coincided with the establishment of inward gradients during pond dewatering activities.

Review of groundwater quality data since monitoring began at the former AP-1 in 2016 demonstrate a spatial variability in lithium concentrations across the site including upgradient of the former AP-1. The ASD demonstrates that concentrations of lithium in groundwater are naturally occurring. However, for completeness, lithium was carried forward into the refined risk evaluation.

4 REFINED RISK EVALUATION

A refined risk evaluation was conducted for the groundwater COPIs, arsenic and lithium, that were detected in MCM-06 at concentrations that exceeded health-protective screening criteria or background. The ASD for lithium demonstrates that concentrations of lithium in groundwater are naturally occurring downgradient of the former AP-1 and in brackish water. However, for completeness, lithium was still carried forward into the refined risk evaluation. The refined risk evaluation identified EPCs for arsenic and lithium in groundwater for the purposes of characterizing potential risk to human receptors. If the EPC is greater than the respective screening level, then the constituent is identified as having the potential for risk that warrants additional evaluation (e.g., performing a surface water evaluation). Lithium was evaluated in the adjacent downgradient surface water body (i.e., Burnett Creek) because it was identified as a groundwater COI in the refined groundwater risk evaluation.

4.1 Refined Groundwater Risk Evaluation

Potential risk associated with exposure to arsenic and lithium by hypothetical off-site residential receptors was refined using the methodology described in the HSRA and VRP guidance (EPD, 2018b; EPD, 2009) and is presented in the following section and on **Figure 8**.

For the refined risk evaluation, groundwater data from samples collected between 2016 and March 2020 from the only on-site well that was identified to have SSL-related constituents (MCM-06) and the adjacent monitoring well (MCM-05) that represents groundwater flow in the same hydraulically downgradient direction were used for hypothetical off-site residential exposure. The groundwater monitoring wells included in the risk evaluation are depicted with yellow well labels on **Figure 2**.

Groundwater data used in the refined risk evaluation were collected from the uppermost aquifer and are considered to be representative of groundwater conditions at the site. The groundwater dataset used in the refined risk evaluation is presented in **Appendix B-2.**

4.1.1 Groundwater Exposure Point Calculation

The refined risk evaluation of groundwater COPIs (arsenic and lithium) includes the development of EPCs. The EPC is a conservative estimate of potential exposure to a receptor. The EPC is based on the 95 percent upper confidence limit of the arithmetic mean (UCL) and accounts for uncertainty and variability in the dataset (USEPA, 2002). Consistent with USEPA guidance for developing groundwater EPCs (USEPA, 2014),

UCLs were calculated using USEPA ProUCL 5.1 software (ProUCL) (USEPA, 2016) and user's guide (USEPA, 2015a). For the refined risk evaluation, the UCLs for the COPIs in groundwater were calculated for the following specific datasets:

- UCL for the individual well with the SSL-related constituent;
- UCL based on combined data from the well with the SS-related constituent and other well(s) in the general vicinity to include adjacent monitoring well(s) that represent groundwater flow in the same hydraulically downgradient direction during low tide conditions; and
- UCL based on the combined data from the farthest downgradient well(s) that are hydraulically downgradient of the well with the SSL-related constituent during low tide conditions.

Other assumptions made in the calculations of the UCLs include:

- Primary samples (no duplicates) were used to calculate EPCs as duplicate samples were analyzed for quality assurance purposes.
- If the calculated UCL exceeded the maximum detected concentration, then the maximum detected concentration was used as the EPC.

ProUCL software calculates multiple UCLs and provides a recommended UCL that was selected as the EPC. If there were multiple UCLs recommended by ProUCL, the maximum UCL value was selected. **Appendix E-1** provides a detailed summary of the UCLs calculated using the methods described above, and **Appendix E-2** presents figures showing the wells used in the calculation of the EPCs for each groundwater COPI. **Appendix E-3** provides the input and output files associated with the ProUCL software.

Table 3 summarizes the groundwater EPCs selected for arsenic and lithium. This table shows the number of samples, the maximum detected concentration, the UCL recommended by ProUCL software, and the selected EPC.

4.1.2 COPI Concentration Trend Analysis

Concentration trends over time were evaluated as one line of evidence in the refined risk evaluation for arsenic and lithium. The Mann-Kendall trend test with an alpha value equal to 0.05 and the Theil-Sen line test were conducted on the data from MCM-06 for arsenic

and lithium to evaluate the trends in concentrations over time. The tests were conducted using the USEPA ProUCL 5.1 software (USEPA, 2016).

The Mann-Kendall and Theil-Sen test results are presented on time series graphs in **Appendix E-4** and indicated statistically significant increasing trends in arsenic and lithium concentrations over time at MCM-06. However, arsenic and lithium concentrations have decreased in the past two sampling events since dewatering activities ceased on-site (**Appendix E-4**).

4.1.3 Refined Groundwater Risk Evaluation Results

Arsenic and lithium were identified as groundwater COPIs in the initial risk screening. In the refined risk evaluation, comparison of the calculated EPCs to the screening levels was used to identify COIs that may pose a potential risk to hypothetical off-site residential receptors exposed through the use of groundwater as potable water. If the EPC from the farthest downgradient well(s) is greater than the respective screening level, then the constituent is identified as having the potential for risk that warrants additional evaluation (e.g., performing a surface water evaluation).

4.1.3.1 Arsenic

Arsenic was detected in all 15 groundwater samples in well MCM-06 at concentrations that exceeded the groundwater screening level for residential receptors. For the refined risk evaluation, the following EPCs were calculated for arsenic using the monitoring wells shown in **Appendices E-1** and **E-2**:

- Data from MCM-06 were used to determine if the UCL complied with the screening level (EPC Step 1 in **Appendix E-1**).
- Data from MCM-06 and adjacent well MCM-05 were combined to represent groundwater exposure in the same hydraulically downgradient direction of well MCM-06 during low tide conditions (EPC Step 2 in **Appendix E-1**).
- Data from MCM-06 and MCM-05 were combined to represent groundwater exposure using the wells that are the farthest hydraulically downgradient during low tide conditions (EPC Step 3 in **Appendix E-1**).

The UCL for the combined dataset from MCM-06 and MCM-05 (EPC Step3) of 0.41 exceeded the background value of 0.031 mg/L.

Table 4 presents the results of the refined screening comparing the farthest hydraulically downgradient EPC to the screening criterion. Arsenic was identified as a groundwater COI for hypothetical off-site residential receptors to the north, and therefore, arsenic is further evaluated in the surface water risk evaluation (Section 4.2).

4.1.3.2 Lithium

Lithium was detected in 10 out of 12 groundwater samples in well MCM-06 at concentrations that exceeded the groundwater screening level for residential receptors. For the refined risk evaluation, the following EPCs were calculated for lithium using the monitoring wells shown in **Appendices E-1** and **E-2**:

- Data from MCM-06 were used to determine if the UCL complied with the screening level (EPC Step 1 in **Appendix E-1**).
- Data from MCM-06 and the adjacent well MCM-05 were combined to represent groundwater exposure in the same hydraulically downgradient direction of well MCM-06 during low tide conditions (EPC Step 2 in **Appendix E-1**).
- Data from MCM-06 and MCM-05 were combined to represent groundwater exposure using the wells that are the farthest hydraulically downgradient during low tide conditions (EPC Step 3 in **Appendix E-1**).

The UCL for the combined dataset for MCM-06 of 0.093 mg/L and the UCL for the combined dataset from MCM-06 and MCM-05 (EPC Steps 2 and 3) of 0.067 exceeded the screening level of 0.04 mg/L.

Table 4 presents the results of the refined screening comparing the farthest hydraulically downgradient EPC to the screening criterion. Lithium was identified as a groundwater COI for hypothetical off-site residential receptors to the north, and therefore, lithium is further evaluated in the surface water risk evaluation (**Section 4.2**).

4.2 Surface Water Risk Evaluation

A surface water screening evaluation was conducted for Burnett Creek, the surface water body bordering the former AP-1 to the north, for the groundwater COIs (arsenic and lithium) identified in the refined groundwater risk evaluation.

Both human and ecological receptors have the potential to come into contact with surface water. Routes of exposure include ingestion of aquatic organisms (mainly fish) and

potential incidental ingestion and dermal contact with surface water by adult and child recreational receptors. Surface water in the tidal marsh is brackish, and therefore, is unsuitable as a source of potable drinking water. Potential routes of exposure for ecological exposure include direct contact to surface water by aquatic receptors as well as ingestion.

Surface water screening was performed using surface water data for those constituents identified as groundwater COIs. The surface water screening process for the COIs identified in groundwater (arsenic and lithium) is discussed below and presented in Figures 9 and 10.

4.2.1 Surface Water Data

Surface water sampling was conducted in Burnett Creek (north of the former AP-1) and Gibson Creek (south of the former AP-1). Surface water data from Burnett Creek were compiled for the COIs identified in the refined groundwater risk evaluation (arsenic and lithium) as Burnett Creek borders the former AP-1 to the north and is hydraulically downgradient of well MCM-06 during low tide conditions. Surface water data are available from sampling events conducted between 2016 and 2020 for arsenic and lithium. Surface water data used in the evaluation (Resolute, 2020d) were collected during both high tide and low tide conditions and are considered to be representative of surface water conditions.

Two background surface water sampling locations have been sampled in the tidal marsh. The low tide background sample location (BG-1LT⁴) is located in Cowpen Creek, at a point which is hydraulically upgradient of both the junction with Burnett Creek and Crispen Island. At low tide, surface water flow is south from Cowpen Creek, toward the junctions with Burnett Creek and Turtle River. The high tide background sample location (BG-2HT⁵) is located in Turtle River, at a point which is upstream of Crispen Island during the incoming high tide.

The surface water sample locations are shown on **Figure 11**. The surface water datasets, including background, used in the risk evaluation are presented in **Appendix B-3**.

⁴ LT refers to "low tide" and HT refers to "high tide".

4.2.2 Human Health Screening

Due to the brackish surface water surrounding the site, surface water human health screening values for the COIs (applicable to both freshwater and saltwater environments) were selected from the following order of hierarchy:

- Georgia Instream Water Quality Criteria (ISWQC) for human health (EPD, 2015), when available. The Georgia ISWQC was used as the screening level for arsenic in this evaluation.
- National ambient water quality criteria (USEPA, 2015b) for human health protective through ingestion of water and organisms. When there is no numerical value for a constituent in surface water, USEPA (2015b) states that USEPA has issued an Maximum Contaminant Level (MCL) which may be more stringent than the national ambient water quality criteria for these constituents suggesting the use of the MCL for surface water screening. This is a conservative approach.
- In accordance with standard practice using methodologies approved by the Georgia EPD, the higher of the residential groundwater screening levels described in Section 3.2.2 for the remaining constituents that lack human health surface water screening levels, which is a conservative approach.
- If site-specific surface water background concentrations are greater than the criteria described above, then the site-specific surface water background concentration is used as the screening level. The maximum background concentration for lithium is higher than the criteria described above. Therefore, background was used as a screening level for lithium in this evaluation.

The surface water human health screening level was compared to the maximum detected surface water concentrations for arsenic and lithium, as shown in **Table 5**. Arsenic was not detected at concentrations above the surface water human health screening level of 0.05 mg/L. Lithium was detected at concentrations slightly above the surface water background concentration of 0.099 mg/L in 3 out of 32 samples at T2-2HT (0.10 mg/L), T2-3HTS (0.11 mg/L), and T1-2HT (0.11 mg/L). Note that these lithium concentrations were all reported under high tide conditions when surface water is upgradient of the former AP-1. The ASD demonstrates that lithium is naturally occurring downgradient of the former AP-1 and in brackish water. However, lithium was retained as a COI for further evaluation in surface water as a conservative measure and for completeness.

4.2.3 Ecological Screening

Due to the brackish surface water surrounding the site, concentrations in surface water were compared to both saltwater and freshwater surface water screening levels.

4.2.3.1 *Saltwater*

Surface water screening values for aquatic ecological receptors were selected from the following order of hierarchy for the COIs:

- Chronic saltwater Georgia ISWQC (EPD, 2015), when available. The Georgia ISWQC was used as the screening level for arsenic in this evaluation.
- USEPA Region 4 chronic saltwater screening levels (USEPA, 2018).
- USEPA Region 4 chronic freshwater screening levels (USEPA, 2018). The USEPA Region 4 chronic freshwater screening level was used as the screening level for lithium in this evaluation due to the lack of an available chronic saltwater screening level.
- If site-specific surface water background concentrations were greater than the criteria described above, then the site-specific surface water background concentration was used as the screening level.

The ecological surface water screening levels were compared to the maximum detected concentrations for arsenic and lithium in surface water, as shown in **Table 6**. The maximum arsenic and lithium concentrations were below the ecological saltwater screening levels of 0.036 mg/L and 0.44 mg/L, respectively. Therefore, arsenic and lithium were not retained as COIs for further evaluation in surface water and are not expected to pose a risk to ecological receptors.

4.2.3.2 Freshwater

Surface water screening values for aquatic ecological receptors were selected from the following order of hierarchy for the COPIs:

• Chronic freshwater Georgia ISWQC (EPD, 2015), when available. The Georgia ISWQC was used as the screening level for arsenic in this evaluation.

- USEPA Region 4 chronic freshwater screening levels (USEPA, 2018). The USEPA Region 4 chronic freshwater screening level was used as the screening level for lithium in this evaluation.
- If site-specific surface water background concentrations were greater than the criteria described above, then the site-specific surface water background concentration was used as the screening level.

The ecological surface water screening levels were compared to the maximum detected concentrations for arsenic and lithium in surface water, as shown in **Table 7**. The maximum arsenic and lithium concentrations were below the ecological freshwater screening levels of 0.15 mg/L and 0.44 mg/L, respectively. Therefore, arsenic and lithium were not retained as COIs for further evaluation in surface water and are not expected to pose a risk to ecological receptors.

4.2.4 Refined Surface Water Risk Evaluation

Potential risk associated with exposure to lithium in surface water by recreational receptors was refined using the methodology for groundwater, as described in Section 4.1.3 and as presented in the following section and on **Figure 10**.

4.2.4.1 Surface Water Exposure Point Calculation

The refined surface water risk evaluation for lithium included the development of a surface water EPC, using the same methodology that was utilized for the refined groundwater evaluation.

Appendix F-1 provides a detailed summary of the EPC calculation, and **Appendix F-2** presents a figure showing the surface water sampling locations used in the calculation of the EPC for lithium. **Appendix F-3** provides the input and output files associated with the ProUCL software.

Table 8 summarizes the surface water EPC selected for lithium. This table shows the number of samples, the maximum detected concentration, the UCL recommended by ProUCL software, and the selected EPC.

4.2.4.2 Refined Surface Water Risk Evaluation Results

Lithium was identified as a surface water COI in the initial risk screening. In the refined risk evaluation, comparison of the calculated EPC to the screening level was used to

identify whether lithium may pose a potential risk to recreational receptors exposed to surface water.

Lithium was detected in only three out of 32 surface water samples at concentrations that exceeded the background concentration. The surface water UCL of 0.082 mg/L is below the background concentration of 0.099 mg/L. **Table 9** presents the results of the refined screening for surface water comparing the EPC to the screening criterion. Lithium was not identified as a surface water COI for recreational receptors and, therefore, is not expected to pose a risk to human health through exposure to surface water.

4.3 Refined Groundwater and Surface Water Risk Evaluation Summary and Conclusions

Detections of arsenic and lithium were reported at concentrations above the corresponding conservative groundwater screening values. The results of the refined groundwater and surface water risk evaluations indicate the following:

Arsenic

- Arsenic was identified as a groundwater COI for hypothetical off-site residential receptors to the north and was further evaluated in the adjacent downgradient surface water body (Burnett Creek) for potential exposure to human and ecological receptors.
- Surface water arsenic concentrations in Burnett Creek were below healthprotective surface water screening criteria for human and ecological receptors.
 Therefore, arsenic was not retained as a COI in surface water for further
 evaluation and is not expected to pose a risk to human health or ecological
 receptors.

Lithium

- Lithium was identified as a groundwater COI for hypothetical off-site residential receptors to the north and was further evaluated in the adjacent downgradient surface water body (Burnett Creek) for potential exposure to human and ecological receptors.
- Lithium was detected in Burnett Creek surface water above the background concentration in only three out of 32 samples; however, the surface water EPC for lithium was below background. Therefore, lithium was not identified as a COI in

surface water for further evaluation and is not expected to pose a risk to human health.

• Consideration of background lithium levels for brackish/seawater provides an additional line of evidence supporting the conclusion that lithium in surface water does not pose a risk to human health. Lithium in background surface water samples ranged from 0.090 to 0.099 mg/L. Lithium was detected at total concentrations from 0.019 J⁵ to 0.11 mg/L in surface water samples collected from Burnett Creek during low and high tide conditions. Observed lithium concentrations in the background and Burnett Creek surface water samples collected during high tide, when surface water is upgradient of the former AP-1, were generally greater than those observed at low tide. As noted in Resolute (2020d), lithium is a naturally-occurring element in seawater, and concentrations of lithium in seawater are documented to range from 0.1 to 0.2 mg/L⁶, and "the increased concentrations observed at high tide in surface water are likely attributable to natural variability from the influx of seawater at high tide." The ASD demonstrates that lithium is naturally occurring downgradient of the former AP-1 and in brackish water.

Based on the multiple lines of evidence and the various conservative assumptions, further risk evaluation for groundwater and surface water is not warranted. Compliance monitoring under the Federal and State CCR Rules will continue.

⁵ J flag indicates an estimated value less than the reporting limit but greater than the method detection limit.

⁶ "Lithium Occurrence", Institute of Ocean Energy, Saga University, Japan.

5 UNCERTAINTY ASSESSMENT

USEPA guidance stresses the importance of providing an analysis of uncertainties so that risk managers are better informed when evaluating risk assessment conclusions (USEPA, 1989). The uncertainty assessment provides a better understanding of the key uncertainties that are most likely to affect the risk assessment results and conclusions.

The potential uncertainties associated with the risk evaluation are as follows:

Health-Protective Screening Criteria Uncertainties:

- In accordance with standard practice and methodologies approved by the Georgia EPD, the higher of the Type 1 or Type 2 standard were selected for residential screening criteria and the higher of the Type 3 and Type 4 standards were selected as the industrial worker screening criteria. Selection of the screening criteria per standard practice is considered appropriate for risk quantification for the former AP-1. The Hazardous Site Response Act, Rule 391-3-19.07(1) notes that "[a]ll risk reduction standards will, when implemented, provide adequate protection of human health and the environment". Thus, this approach is likely to overestimate risks for on-site and hypothetical off-site receptors.
- Screening criteria based on RRSs represent the reasonable maximum exposure (RME). The RME is defined as "the highest exposure that is reasonably expected to occur at a site but that is still within the range of possible exposures" (USEPA, 1989). USEPA (1989) states that the "intent of the RME is to estimate a conservative exposure case (i.e., well above the average case) that is still within the range of possible exposures." Potential receptors will likely have lower exposures than those presented in this risk evaluation (i.e., a majority of the site concentrations will be less than the UCL), and therefore, potential exposures are likely overestimated. This would apply to the site-specific screening levels for lithium as these values were calculated using the same exposure assumptions used to calculate RRSs.

Exposure Uncertainties:

- The maximum detected concentrations of former AP-1 SSL-related constituents were compared to conservative screening criteria to identify the COPIs. Use of the maximum detected concentration is consistent with standard practice; however, use of the maximum detected concentration for exposure likely overestimates potential risk.
- The constituents included in the risk evaluation occur naturally in the site geologic setting. Although background concentrations were evaluated and used in the screening process, contributions to exposure and risk were assumed to be entirely CCR-related and natural background sources were not quantified. Furthermore, the ASD demonstrates that concentrations of lithium in groundwater are attributable to the influx of brackish surface water and are not attributable to CCR storage or a release from the former AP-1. However, for completeness, lithium was carried forward into the refined risk evaluation. Thus, SSL-related exposures were likely overestimated.
- Hypothetical off-site residential exposure was evaluated using on-site groundwater data from wells around the perimeter and downgradient of the former AP-1. This comparison makes the conservative assumption that on-site groundwater may potentially migrate to off-site drinking water wells through advective transport in groundwater, but without any attenuation within the aquifer media through factors such as dilution, dispersion, or adsorption. This assumption may overestimate exposure and risk to hypothetical off-site receptors.
- EPCs for metals in groundwater were assumed to be 100 percent bioavailable by ingestion and dermal contact. This assumption may tend to overestimate risk.
- A well survey of potential groundwater wells within a three-mile radius of Plant McManus was conducted by NewFields in 2020 and consisted of reviewing publicly available federal, state, and county records as well as a windshield survey of the area (Appendix A). Wood relied on the data collected by NewFields.
- As a conservative measure, on-site potable well data were also screened against
 off-site residential screening criteria. Lithium was non-detect at a method
 detection limit of 0.15 mg/L, which is above the off-site residential screening
 criterion (0.04 mg/L). Residential receptors are not present on-site and

evaluation of this exposure pathway was a conservative measure. As such, the uncertainty associated with the method detection limit is not expected to affect the risk evaluation conclusions.

• This risk evaluation used on-site groundwater data to represent hypothetical off-site exposure, which is a conservative approach that likely results in overestimation of assumed exposure and potential risk. Although off-site potable wells identified in the well survey were not included in the risk evaluation, the presence of these wells do not appear to change the conclusions of the risk evaluation. Groundwater flow directions from both the mainland and the island are consistent during both high and low tides, making the mainland and the island both hydraulically upgradient of the former AP-1. Therefore, groundwater is flowing away from the private drinking water wells located to the east of the site, and these private drinking water wells are located upgradient from the former AP-1.

Toxicity Uncertainties:

Toxicity factors used to calculate health-protective criteria are established at
conservative levels to account for uncertainties and often result in criteria that
are many times lower than the levels observed to cause effects in human or
animal studies. Therefore, a screening level exceedance does not necessarily
equate to an adverse effect.

6 CONCLUSIONS

This human health and ecological risk evaluation for arsenic and lithium in groundwater at the former AP-1 and the adjacent downgradient surface water body, Burnett Creek, was conducted using methods consistent with Georgia EPD and USEPA guidance and included multiple conservative assumptions. Arsenic and lithium were the only CCR constituents identified as SSL-related constituents during compliance groundwater monitoring. Based on this risk evaluation, arsenic and lithium are not expected to pose a risk to human health or the environment.

Accordingly, no further risk evaluation of groundwater and surface water is warranted. Compliance monitoring for the former AP-1 under the Federal and State CCR Rules will continue. Georgia Power will proactively evaluate the data and update this evaluation, if necessary.

7 REFERENCES

- Arcadis, 2019. Final CCR Removal Certification Report, Plant McManus Inactive Ash Pond AP-1. November 20, 2019.
- Arcadis, 2020. Lithium Alternative Source Demonstration, Plant McManus Former Ash Pond 1. November 17, 2020.
- EPD, 2009. Georgia Voluntary Remediation Act, OCGA 12-8-100, June 1, 2009.
- EPD, 2015. Water Use Classification and Water Quality Standards, 391-3-6-.03, effective May 1, 2015. Georgia Instream Water Quality Criteria.

 Available at: https://epd.georgia.gov/watershed-protection-branch/georgia-water-quality-standards
- EPD, 2018a. Coal Combustion Residuals, 391-3-4-.10, effective March 28, 2018.
- EPD, 2018b. Hazardous Site Response Act, Georgia Department of Natural Resources, Environmental Protection Division, Chapter 391-3-19-0.07. Revised September 25, 2018.
- Glynn County, 2017. Official Zoning Map. Glynn County Community Development Department. October 2017. Located at <a href="https://www.glynncounty.org/DocumentCenter/View/43203/zoning_official_24X36?bidId="https://www.glynncounty.org/DocumentCenter/View/43203/zoning_official_24X36?bidId="https://www.glynncounty.org/DocumentCenter/View/43203/zoning_official_24X36?bidId="https://www.glynncounty.org/DocumentCenter/View/43203/zoning_official_24X36?bidId="https://www.glynncounty.org/DocumentCenter/View/43203/zoning_official_24X36?bidId="https://www.glynncounty.org/DocumentCenter/View/43203/zoning_official_24X36?bidId="https://www.glynncounty.org/DocumentCenter/View/43203/zoning_official_24X36?bidId="https://www.glynncounty.org/DocumentCenter/View/43203/zoning_official_24X36?bidId="https://www.glynncounty.org/DocumentCenter/View/43203/zoning_official_24X36?bidId="https://www.glynncounty.org/DocumentCenter/View/43203/zoning_official_24X36?bidId="https://www.glynncounty.org/DocumentCenter/View/43203/zoning_official_24X36?bidId="https://www.glynncounty.org/DocumentCenter/View/43203/zoning_official_24X36?bidId="https://www.glynncounty.org/DocumentCenter/View/43203/zoning_official_24X36?bidId="https://www.glynncounty.org/DocumentCenter/View/43203/zoning_official_24X36."

 https://www.glynncounty.org/DocumentCenter/View/43203/zoning_official_24X36.

 https://www.glynncounty.org/DocumentCenter/View/43203/zoning_official_24X36.

 https://www.glynncounty.org/DocumentCenter/View/43203/zoning_official_24X36.

 https://www.glynncounty.org/DocumentCenter/View/43203/zoning_official_24X36.

 https://www.glynncounty.org/DocumentCenter/View/43203/zoning_official_24X36.

 https://www.glynncounty.org/DocumentCenter/View/43203/zoning_official_24X36.


 https://www.glynncounty.org/DocumentCenter/View/43203/zoning_official_24X36.

 https://www.glynncounty.org/DocumentCenter/View/43203/zoning_official_24X36.

 https://www.glynncounty.org/DocumentCenter/View/43203/zoning_official_24X36.

 https://www.glynncounty.org/DocumentCenter/View/43203/zoning_off
- Newfields, 2020. Well Survey Plant McManus Ash Pond 1 March 2020.
- Resolute, 2019. 2019 Annual Groundwater Monitoring and Corrective Action Report Plant McManus Ash Pond 1 (AP-1). August 2019.
- Resolute, 2020a. 2019 Semi-Annual Groundwater Monitoring and Corrective Action Statistical Summary Plant McManus CCR Site. April 2020.
- Resolute, 2020b. Hydrogeological Assessment Report (REV3) Plant McManus Former Ash Pond 1. April 2020.
- Resolute, 2020c. 2020 Annual Groundwater Monitoring and Corrective Action Report Plant McManus Inactive Ash Pond AP-1. July 2020.
- Resolute, 2020d. Surface Water Sampling Results. Georgia Power Company Plant McManus. May 2020.

- Resolute, 2020e. Statistical Analysis Method Certification (Rev 01), Georgia Rule 391-3-4-.10(6) and 40 CFR §257.93(f), Plant McManus Inactive Surface Impoundment AP-1, Georgia Power Company. January 9.
- USEPA, 1989. Risk Assessment Guidance for Superfund Volume 1 Human Health Evaluation Manual (Part A). EPA/540/1-89/002.
- USEPA, 2002. Supplemental Guidance to Risk Assessment for Superfund: Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites. Publication Number 9285 .6-10. Office of Solid Waste and Emergency Response. December 2002.
- USEPA, 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Resource Conservation and Recovery Program Implementation and Information Division. March.
- USEPA, 2014. Memorandum for Determining Groundwater Exposure Point Concentrations, Supplemental Guidance. OSWER Directive 9283.1-42, February. Available at: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236917.
- USEPA, 2015a. ProUCL Version 5.1 User Guide. Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations, Office of Research and Development, EPA/600/R-07/041, October.
- USEPA, 2015b. National Ambient Water Quality Criteria, June. Available at: https://www.epa.gov/wqc/2015-epa-updated-ambient-water-quality-criteria-protection-human-health
- USEPA, 2016. Statistical Software ProUCL 5.1.00 for Environmental Applications for Data Sets with and without Nondetect Observations, last updated June 20, 2016.
- USEPA, 2018. Region 4 Ecological Risk Assessment Supplemental Guidance. March 2018 update. Available at: https://www.epa.gov/risk/regional-ecological-risk-assessment-era-supplemental-guidance.
- USEPA, 2020a. Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. 40 CFR Part 257. Effective Date October 14, 2015. Last amended August 28, 2020 with a final Effective Date of September 28, 2020.
- USEPA, 2020b. USEPA Regional Screening Levels. Revised May 2020. Available at: www.epa.gov/risk/regional-screening-levels-rsls-generic-tables.

Table 1 On-site Potable Well Groundwater Screening McManus Risk Evaluation Report McManus Former AP-1 Plant McManus, Glynn County, GA

CCR Rule Designation	Constituent	CAS No.	Detection Frequency [1]	Exceedance Frequency ^[2]	Maximum Concentration (mg/L)	Screening Level (mg/L)	Source	Site-Specific Background (mg/L)	COPI? (Y/N)	Rationale ^[3]
Annondiv IV	Arsenic	7440-38-2	0 / 2	0 / 2	ND (0.005)	0.031	Background ^[4]	0.031	N	ND/BSL
Appendix IV	Lithium	7439-93-2	0 / 1	0 / 1	ND (0.15) ^[5]	0.23	Site-Specific	0.03	N	ND/BSL

Notes:

- [1] Evaluation includes 2015 and 2020 groundwater analytical data from the on-site potable well MCMPW-01/Well #1 Plant.
- [2] Exceedance frequency is for the specific constituent that exceeds the first screening value in the hierarchy of screening values.
- [3] Rationale for classification or exclusion of constituent as a COPI:
 - ASL = Above respective screening level
 - BSL = Equal to or below respective screening level
 - ND = Not detected (maximum practical quantitation limit [PQL])
- [4] For sites with site-specific background concentrations greater than applicable screening values, the site-specific background value was used as the screening value.
- [5] The lithium method detection limit is 0.15 mg/L.

Definitions:

CAS = Chemical Abstract Service

CCR = Coal Combustion Residuals

COPI = Constituent of Potential Interest

Prepared by/Date: RRP 08/19/20

mg/L = milligrams per liter

Checked by/Date: IMR 08/27/20

Table 2 SSL-related Constituent Groundwater Screening McManus Risk Evaluation Report McManus Former AP-1 Plant McManus, Glynn County, GA

CCR Rule Designation	Constituent	CAS No.	Detection Frequency ^[1]	Exceedance Frequency ^[2]	Maximum Concentration (mg/L)	Screening Level (mg/L)	Source	Site-Specific Background (mg/L)	COPI? (Y/N)	Rationale ^[3]
Annondiv IV	Arsenic	7440-38-2	15 / 15	15 / 15	0.50	0.031	Background ^[4]	0.031	Υ	ASL
Appendix IV	Lithium	7439-93-2	12 / 12	10 / 12	0.13	0.04	Site-Specific	0.030	Υ	ASL; ASD ^[5]

Notes:

- [1] Evaluation includes 2016 through March 2020 groundwater analytical data from well MCM-06.
- [2] Exceedance frequency is for the specific constituent that exceeds the first screening value in the hierarchy of screening values.
- [3] Rationale for classification of constituent as a COPI or exclusion as a COPI:
 - ASL = Above respective screening level
 - BSL = Equal to or below respective screening level
 - ND = Not detected (maximum practical quantitation limit [PQL])
 - ASD = Alternate Source Demonstration
- [4] For sites with site-specific background concentrations greater than applicable screening values, the site-specific background value was used as the screening value.
- [5] The localized naturally occurring lithium concentrations are attributed to the influx of brackish surface water and is not attributable to CCR storage or a release from the former AP-1 (Alternate Source Demonstration, Arcadis 2020). Although detected concentrations of lithium at the former AP-1 were determined to be unrelated to the CCR unit, lithium was retained as a COPI for further evaluation in the groundwater refined risk evaluation for completeness.

Definitions:

CAS = Chemical Abstract Service CCR = Coal Combustion Residuals COPI = Constituent of Potential Interest mg/L = milligrams per liter

Prepared by/Date: <u>LO 09/10/20</u> Checked by/Date: <u>IMR 09/16/20</u>

Prepared by/Date: LO 09/10/20

Checked by/Date: IMR 09/17/20

Table 3 Groundwater Exposure Point Concentration Summary McManus Risk Evaluation Report McManus Former AP-1 Plant McManus, Glynn County, GA

Ash Pond	CCR Rule Designation	Constituent	Exposure Unit	CAS No.	Detection Frequency	Maximum Concentration (mg/L)	UCL (mg/L)	Recommended UCL Method	Selected EPC ^[1] (mg/L)
AP-1	AD 1 Amoundin IV	Arsenic	North	7440-38-2	28 / 30	0.50	0.41	97.5% KM (Chebyshev) UCL	0.41
AP-1	Appendix IV	Appendix IV Lithium North		7439-93-2	23 / 23	0.13	0.067	95% Adjusted Gamma UCL	0.067

Notes:

[1] EPCs calculated in accordance with USEPA, 2014. Memorandum for Determining Groundwater Exposure Point Concentrations, Supplemental Guidance. OSWER Directive 9283.1-42, February 2014. Located at https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236917.

For further detail on the selected EPC, refer to Appendix E.

Definitions:

CAS = Chemical Abstract Service

CCR = Coal Combustion Residuals

mg/L = milligrams per liter

UCL = upper confidence limit

EPC = Exposure Point Concentration

Prepared by/Date: LO 09/10/20 Checked by/Date: IMR 09/17/20

Table 4 Downgradient Groundwater Refined Screening McManus Risk Evaluation Report McManus Former AP-1 Plant McManus, Glynn County, GA

Ash Pond	CCR Rule Designation	Constituent	Exposure Unit	CAS No.	Detection Frequency	Exceedance Frequency ^[1]	Selected EPC ^[2] (mg/L)	Screening Level (mg/L)	Source	Site-Specific Background (mg/L)	COI? (Y/N)	Rationale ^[3]
AP-1	Ammondiy IV	Arsenic	North	7440-38-2	28 / 30	19 / 30	0.41	0.031	Background ^[4]	0.031	Υ	ASL
AP-1	Appendix IV	Lithium	North	7439-93-2	23 / 23	10 / 23	0.067	0.04	Site-Specific ^[5]	0.03	Υ	ASL; ASD ^[6]

Notes:

- [1] The exceedance frequency is based on the number of samples with detected concentrations that exceed the identified screening level.
- [2] EPCs calculated in accordance with USEPA, 2014. Memorandum for Determining Groundwater Exposure Point Concentrations, Supplemental Guidance. OSWER Directive 9283.1-42, February 2014. Located at https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236917. For further detail on the selected EPC, refer to Appendix E.
- [3] Rationale for classification of constituent as a COI or exclusion as a COI:
 - ASL = Above respective screening level
 - BSL = Equal to or below respective screening level
 - ND = Not detected (maximum practical quantitation limit [PQL])
 - ASD = Alternate Source Demonstration
- [4] For sites with site-specific background concentrations greater than applicable screening values, the site-specific background value was used as the screening value.
- [5] Site-Specific values were calculated by the EPA RSL calculator using residential exposure factor inputs from HSRA Appendix III, Table 3.
- [6]The localized naturally occurring lithium concentrations are attributed to the influx of brackish surface water and is not attributable to CCR storage or a release from the former AP-1 (Alternate Source Demonstration, Arcadis 2020). Although detected concentrations of lithium at the former AP-1 were determined to be unrelated to the CCR unit, lithium was retained as a COPI for further evaluation in the groundwater refined risk evaluation for completeness.

Definitions:

CAS = Chemical Abstract Service

CCR = Coal Combustion Residuals

COI = Constituent of Interest

mg/L = milligrams per liter

EPC = Exposure Point Concentration

Prepared by/Date: RRP 08/20/20 Checked by/Date: IMR 08/25/20

Table 5 Human Health Surface Water Screening - Burnett Creek^[1] McManus Risk Evaluation Report McManus Former AP-1 Plant McManus, Glynn County, GA

CCR Rule Designation	Constituents	Exposure Unit	CAS No.	Detection Frequency	Exceedance Frequency ^[2]	Maximum Concentration (mg/L)	Screening Level (mg/L)	Source	Site-Specific Background ^[3] (mg/L)	COPI? (Y/N)	Rationale ^[4]
Appendix IV	Arsenic	North	7440-38-2	67 / 112	0 / 112	0.0097 J	0.05	GA ISWQC	0.0023	N	BSL
Appendix IV	Lithium	North	7439-93-2	32 / 32	3 / 32	0.11	0.099	Background	0.099	Υ	ASL; ASD ^[5]

Notes:

- [1] Surface water evaluation for north exposure unit and includes upstream and downstream dewatering data (2016-2019), CCR boundary location SWNW (2018), and samples from transects T1-1 through T1-4, T2-1 through T2-4, and T3-1 through T3-4 (2020).
- [2] Exceedance frequency is for the specific constituent that exceeds the first screening value in the hierarchy of screening values.
 - The hierarchy of screening values is GA ISWQC > NRWQC > Selected residential groundwater screening level if no surface water screening level is available.
 - For sites with site-specific background concentrations greater than all applicable screening values, the site-specific background value was used as the screening value.
- [3] Background locations BG-1LT and BG-2HT represent site-specific background.
- [4] Rationale for classification of constituent as a COPI or exclusion as a COPI:
 - ASL = Above respective screening level;
 - BSL = Equal to or below respective screening level
 - ND = Not detected (maximum practical quantitation limit [PQL])
 - ASD = Alternate Source Demonstration
- [5] The localized naturally occurring lithium concentrations are attributed to the influx of brackish surface water and is not attributable to CCR storage or a release from the former AP-1 (Alternate Source Demonstration, Arcadis 2020). Although detected concentrations of lithium at the former AP-1 were determined to be unrelated to the CCR unit, lithium was retained as a COPI for further evaluation in the groundwater refined risk evaluation for completeness.

Lithium exceedances were located at T1-2HT (1/1), T2-2HT (1/1), and T2-3HTS(1/1).

Definitions:

CAS = Chemical Abstract Service
CCR = Coal Combustion Residuals
COPI = Constituent of Potential Interest
GA ISWQC = Georgia Instream Water Quality Criteria
NRWQC = National Recommended Water Quality Criteria

Prepared by/Date: RRP 08/20/20

Checked by/Date: IMR 08/25/20

Table 6 Ecological Health Saltwater Surface Water Screening - Burnett Creek^[1] McManus Risk Evaluation Report McManus Former AP-1 Plant McManus, Glynn County, GA

CCR Rule Designation	Constituents	Exposure Unit	CAS No.	Detection Frequency	Exceedance Frequency ^[2]	Maximum Concentration (mg/L)	Screening Value (mg/L) (Total)	Hardness Dependent? (Y/N)	Source	Site-Specific Background ^[3] (mg/L)	COPI (Y/N)	Rationale ^[4]
	Arsenic	North	7440-38-2	67 / 112	0 / 112	0.0097 J	0.036	N	GA ISWQC	0.0023	N	BSL
Appendix IV	Lithium	North	7439-93-2	32 / 32	0 / 32	0.11	0.44	N	EPA Reg. 4 (freshwater)	0.099	N	BSL

Notes:

[1] Surface water evaluation for north exposure unit and includes upstream and downstream dewatering data (2016-2019), CCR boundary location SWNW (2018), and samples from transects T1-1 through T1-4, T2-1 through T2-4, and T3-1 through T3-4 (2020).

[2] Exceedance frequency is for the specific constituent that exceeds the first screening value in the hierarchy of screening values.

- The hierarchy of values selected as the screening level is GA ISWQC (Saltwater value)> EPA Region 4 (Saltwater value)> GA ISWQC (Freshwater value)> EPA Region 4 (Freshwater value).
- For sites with site-specific background concentrations greater than all applicable screening values, the site-specific background value was used as the screening value.
- [3] Background locations BG-1LT and BG-2HT represents site-specific background.
- [4] Rationale for classification of constituent as a COPI or exclusion as a COPI:

ASL = Above respective screening level;

BSL = Equal to or below respective screening level

ND = Not detected (maximum practical quantitation limit [PQL])

Definitions:

J= Estimated value less than the PQL but greater than the method detection limit

CAS = Chemical Abstract Service

CCR = Coal Combustion Residuals

COPI = Constituent of Potential Interest

EPA = United States Environmental Protection Agency

GA ISWQC = Georgia Instream Water Quality Criteria

Prepared by/Date: RRP 08/21/20

Checked by/Date: IMR 08/25/20

Table 7

Ecological Freshwater Surface Water Screening -Burnett Creek^[1] McManus Risk Evaluation Report McManus Former AP-1 Plant McManus, Glynn County, GA

CCR Rule Designation	Constituents	Exposure Unit	CAS No.	Detection Frequency	Exceedance Frequency ^[2]	Maximum Concentration (mg/L)	Screening Value (mg/L) (Total)	Hardness Dependent? (Y/N)	Source	Site-Specific Background ^[3] (mg/L)	COPI (Y/N)	Rationale ^[4]
Appendix IV	Arsenic	North	7440-38-2	67 / 112	0 / 112	0.0097 J	0.15	N	GA ISWQC	0.0023	N	BSL
Appelluix IV	Lithium	North	7439-93-2	32 / 32	0 / 32	0.11	0.44	N	EPA Reg. 4	0.099	N	BSL

Notes:

- [1] Surface water evaluation for north exposure unit and includes upstream and downstream dewatering data (2016-2019), CCR boundary location SWNW (2018), and samples from transects T1-1 through T1-4, T2-1 through T2-4, and T3-1 through T3-4 (2020).
- [2] Exceedance frequency is for the specific constituent that exceeds the first screening value in the hierarchy of screening values.
 - The hierarchy of screening value sources is GA ISWQC > EPA Region 4
 - For sites with site-specific background concentrations greater than all applicable screening values, the site-specific background value was used as the screening value
- [4] Background locations BG-1LT and BG-2HT represents site-specific background.
- [5] Rationale for classification of constituent as a COPI or exclusion as a COPI:

ASL = Above respective screening level;

BSL = Equal to or below respective screening level

ND = Not detected (maximum practical quantitation limit [PQL])

Definitions:

J= Estimated value less than the reporting limit but greater than the method detection limit

CAS = Chemical Abstract Service

CCR = Coal Combustion Residuals

COPI = Constituent of Potential Interest

EPA = United States Environmental Protection Agency

GA ISWQC = Georgia Instream Water Quality Criteria

Prepared by/Date: RRP 08/21/20

Checked by/Date: IMR 08/26/20

Table 8 Surface Water Exposure Point Concentration Summary - Burnett Creek McManus Risk Evaluation Report McManus Former AP-1 Plant McManus, Glynn County, GA

Ash Pond	CCR Rule Designation	Constituent	Exposure Unit	CAS No.	Detection Frequency	Maximum Concentration (mg/L)	95% UCL (mg/L)	Recommended UCL Method	Selected EPC ^[1] (mg/L)
AP-1	Appendix IV	Lithium	North	7439-93-2	32 / 32	0.11	0.082	95% Student's-t UCL	0.082

Notes:

[1] EPCs calculated in accordance with USEPA, 2014. Memorandum for Determining Groundwater Exposure Point Concentrations, Supplemental Guidance. OSWER Directive 9283.1-42, February 2014. Located at https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236917.

For further detail on the selected EPC, refer to Appendix F.

Definitions:

CAS = Chemical Abstract Service
CCR = Coal Combustion Residuals
mg/L = milligrams per liter
95% UCL = 95 percent upper confidence limit
EPC = Exposure Point Concentration

Prepared by/Date: RRP 08/21/20 Checked by/Date: IMR 08/26/20

Table 9 Surface Water Human Health Refined Evaluation - Burnett Creek McManus Risk Evaluation Report McManus Former AP-1 Plant McManus, Glynn County, GA

CCR Rule Designation	Constituents	Exposure Unit	CAS No.	Detection Frequency	Exceedance Frequency ^[1]	Selected EPC ^[2] (mg/L)	Screening Level (mg/L)	Source	Site-Specific Background (mg/L)	COI? (Y/N)	Rationale ^[3]
Appendix IV	Lithium	North	7439-93-2	32 / 32	3 / 32	0.082	0.099	Background ^[4]	0.099	N	BSL

Notes:

[1] Exceedance frequency is for the specific constituent that exceeds the first screening value in the hierarchy of screening values.

- The hierarchy of screening values is GA ISWQC > NRWQC > The maximum between the Type 1 and Type 2 RRS
- For sites with site-specific background concentrations greater than all applicable screening values, the site-specific background value was used as the screening value.

[2] EPCs calculated in accordance with USEPA, 2014. Memorandum for Determining Groundwater Exposure Point Concentrations, Supplemental Guidance. OSWER Directive 9283.1-42, February 2014. Located at https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236917.

For further detail on the selected EPC, refer to Appendix F.

[3] Rationale for classification of constituent as a COI or exclusion as a COI:

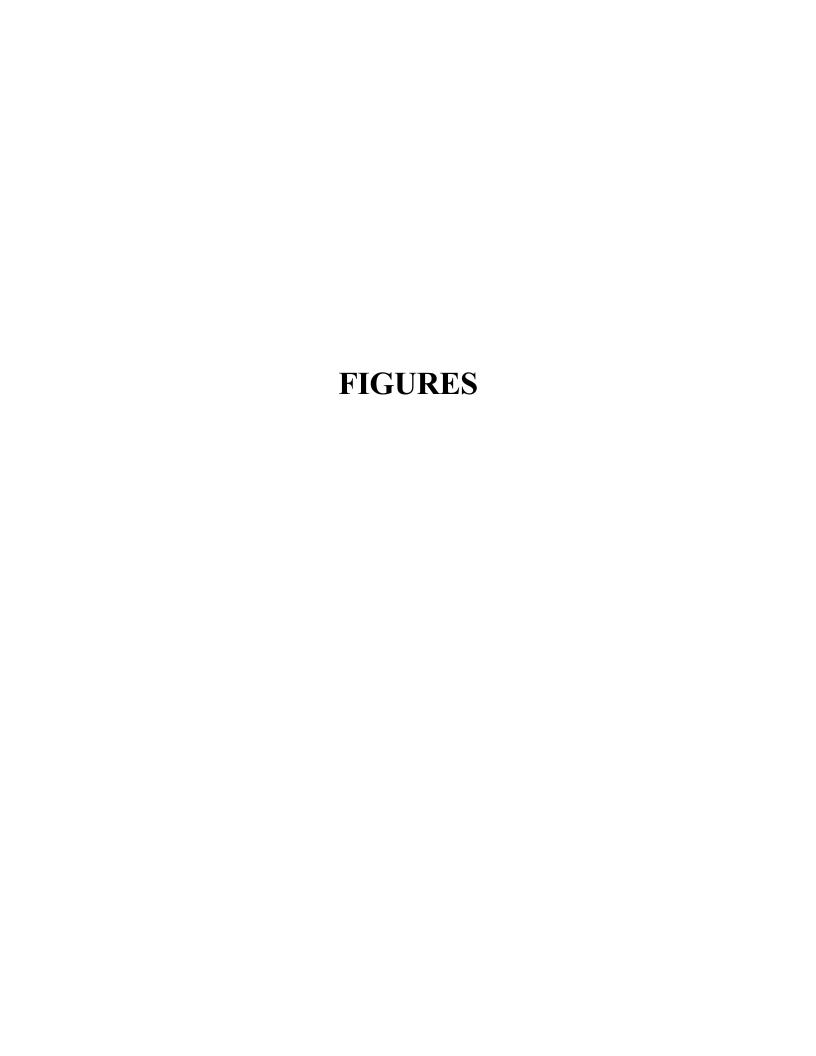
ASL = Above respective screening level

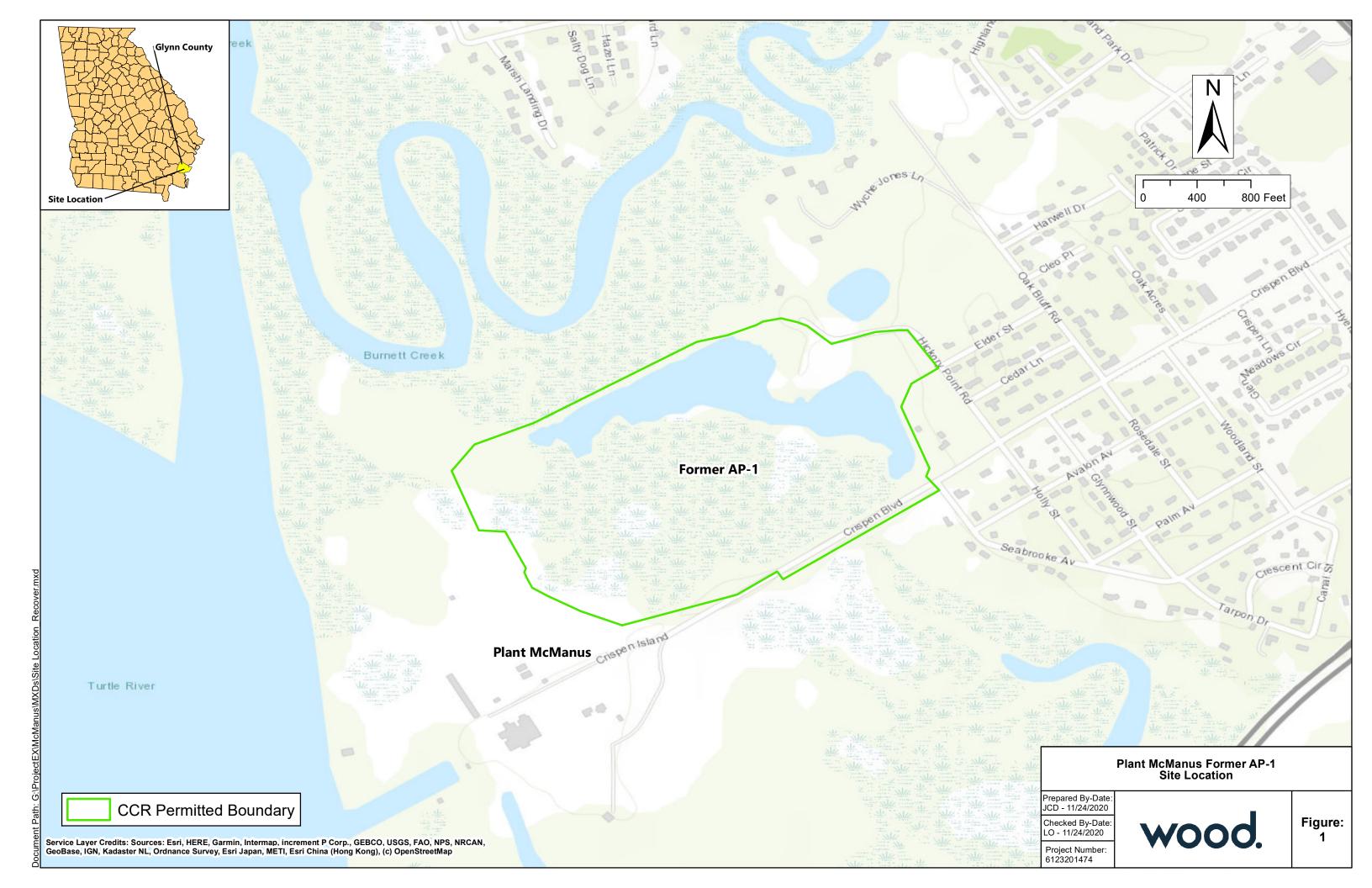
BSL = Equal to or below respective screening level

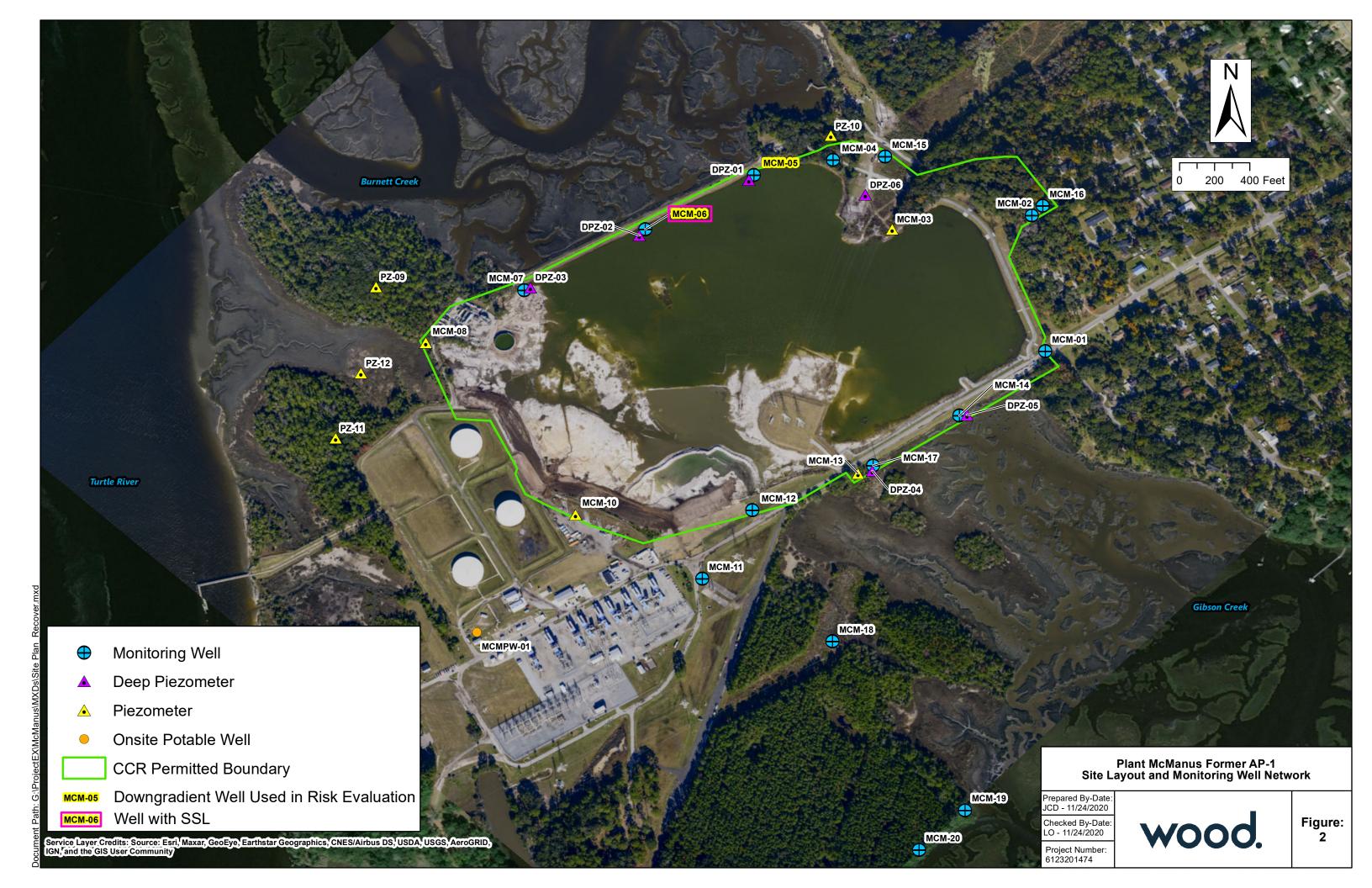
[4] For sites with site-specific background concentrations greater than applicable screening values, the site-specific background value was used as the screening value.

Definitions:

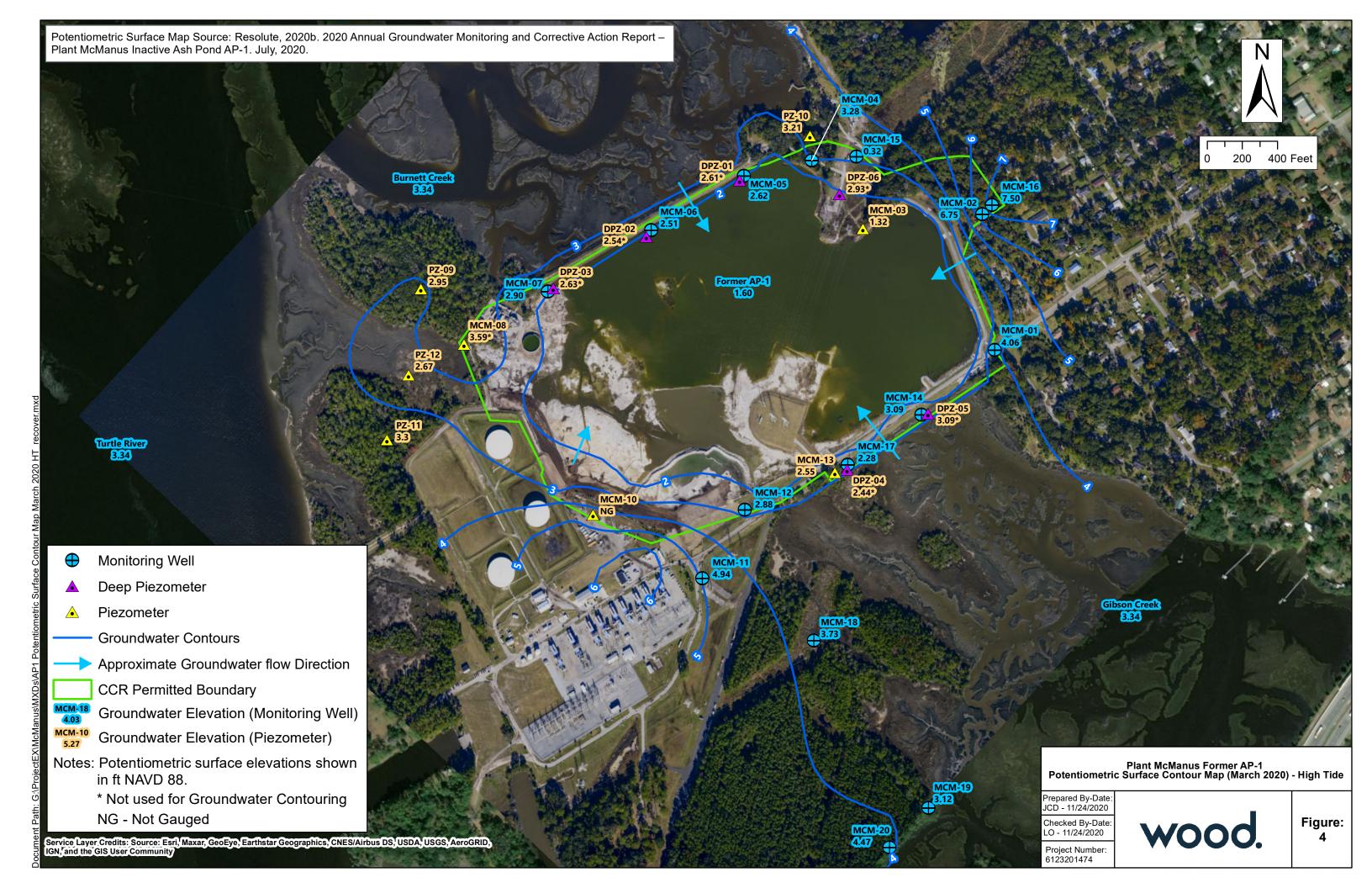
CAS = Chemical Abstract Service

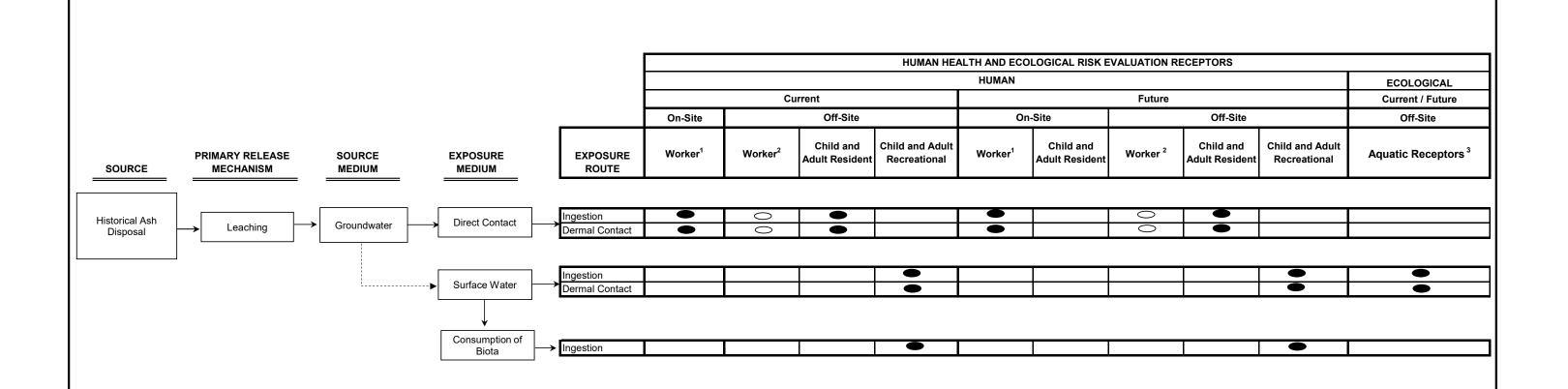

CCR = Coal Combustion Residuals


COI = Constituent of Interest


GA ISWQC = Georgia Instream Water Quality Criteria

NRWQC = National Recommended Water Quality Criteria

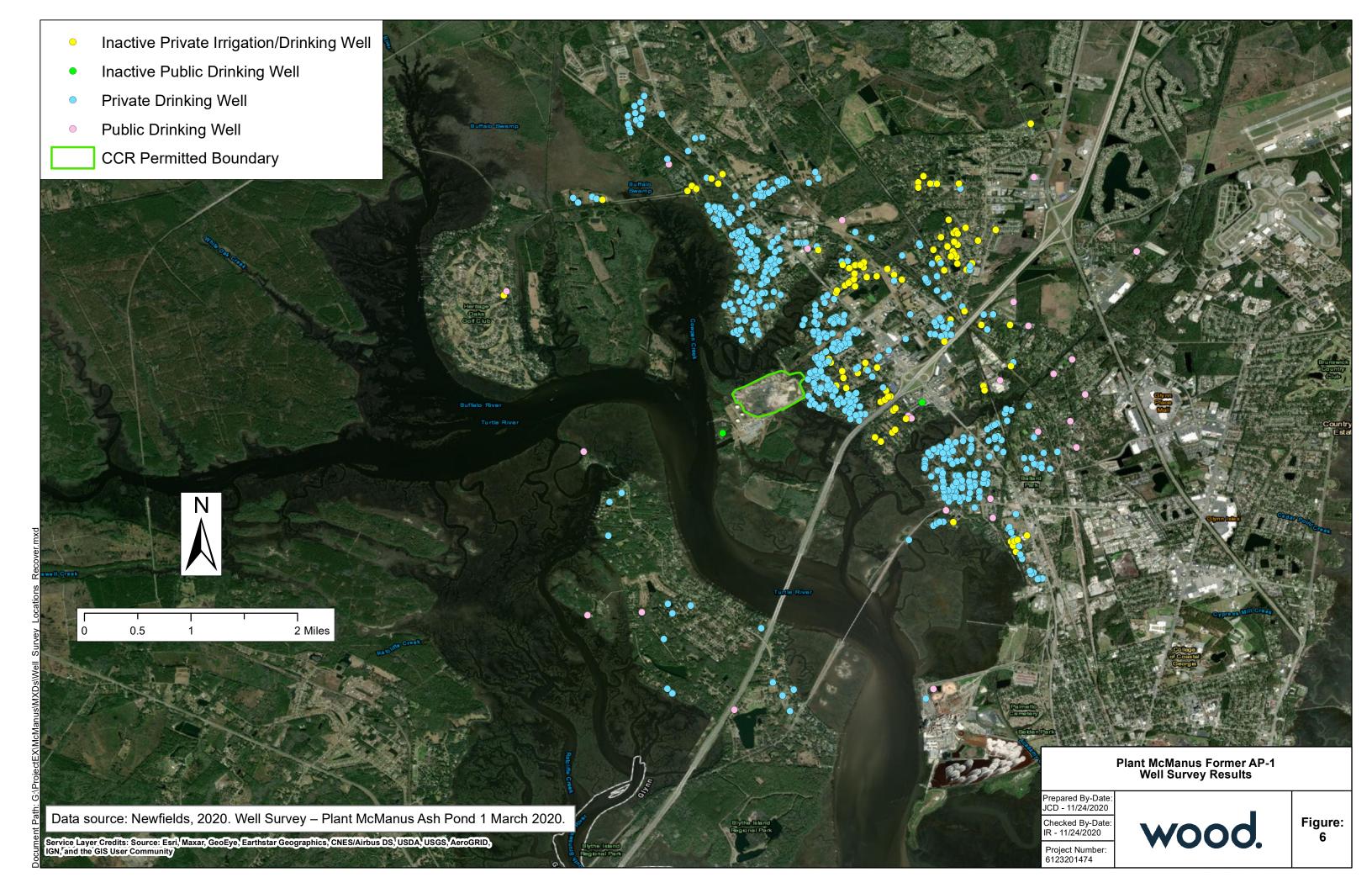

RRS = Risk Reduction Standard

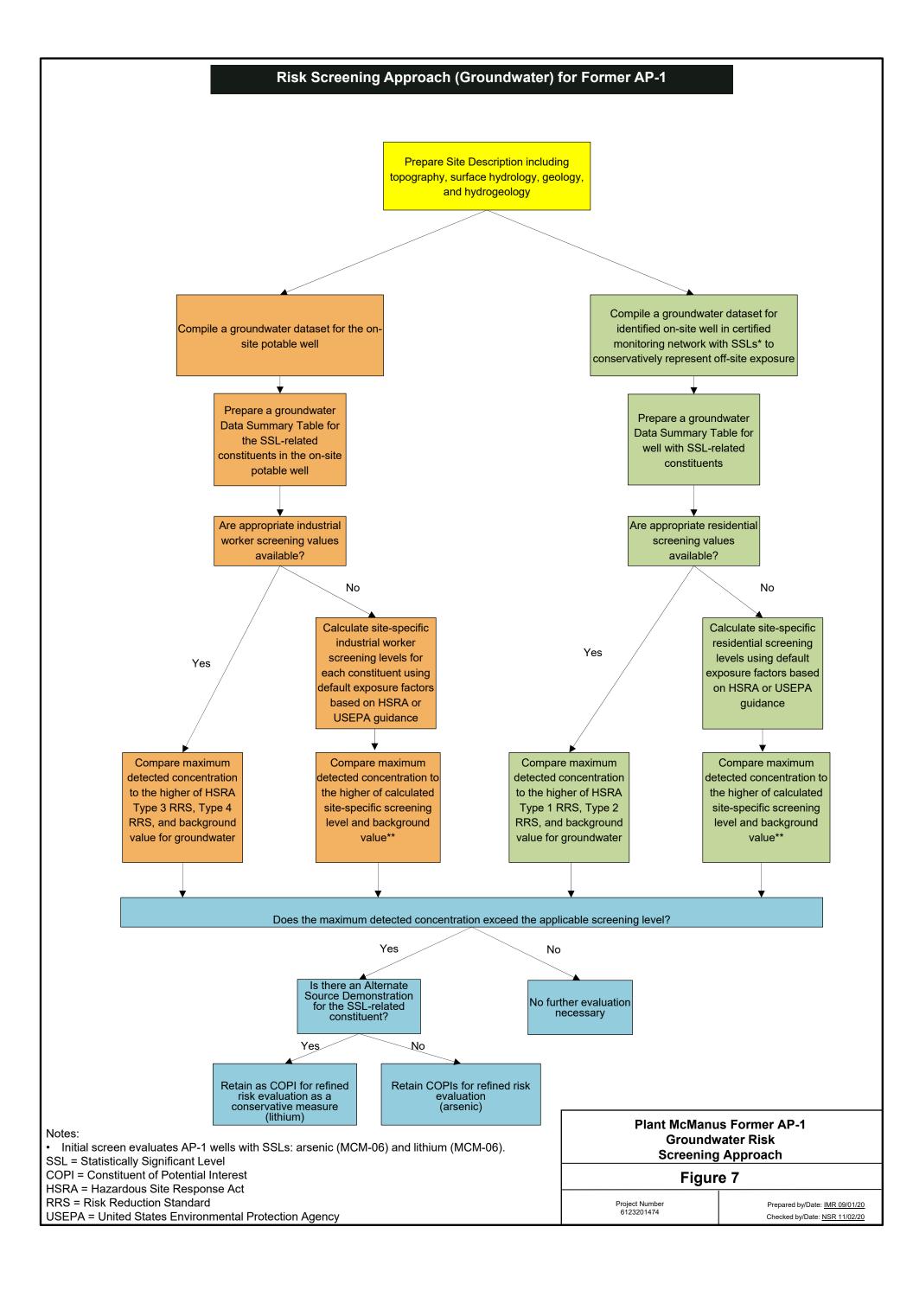


Footnotes

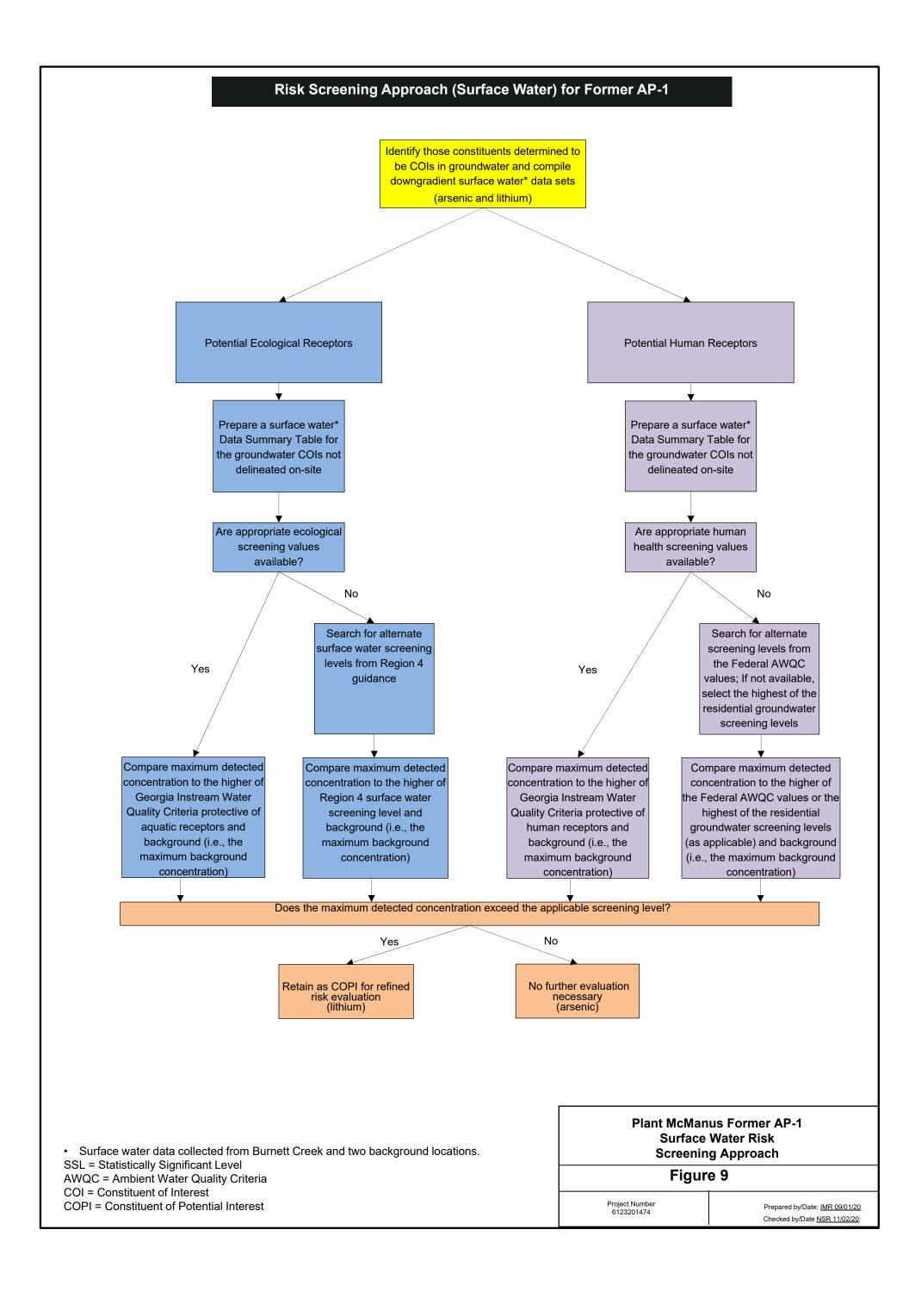
<u>Legend</u>

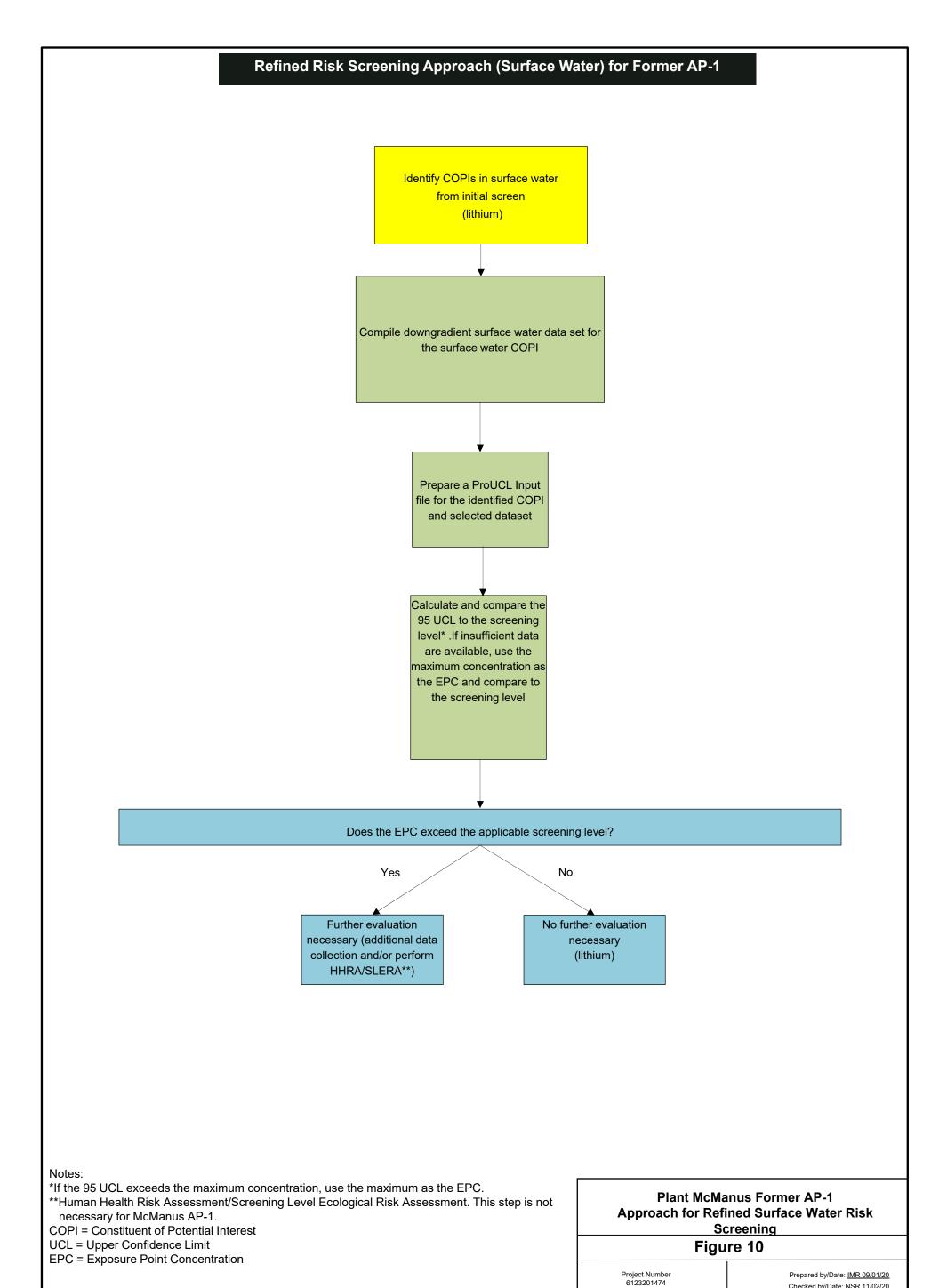
1. Industrial worker quantitatively evaluated. On-site construction workers would be expected to have little to no direct contact with on-site groundwater due to safety procedures outlined in their site-specific health and safety plans.

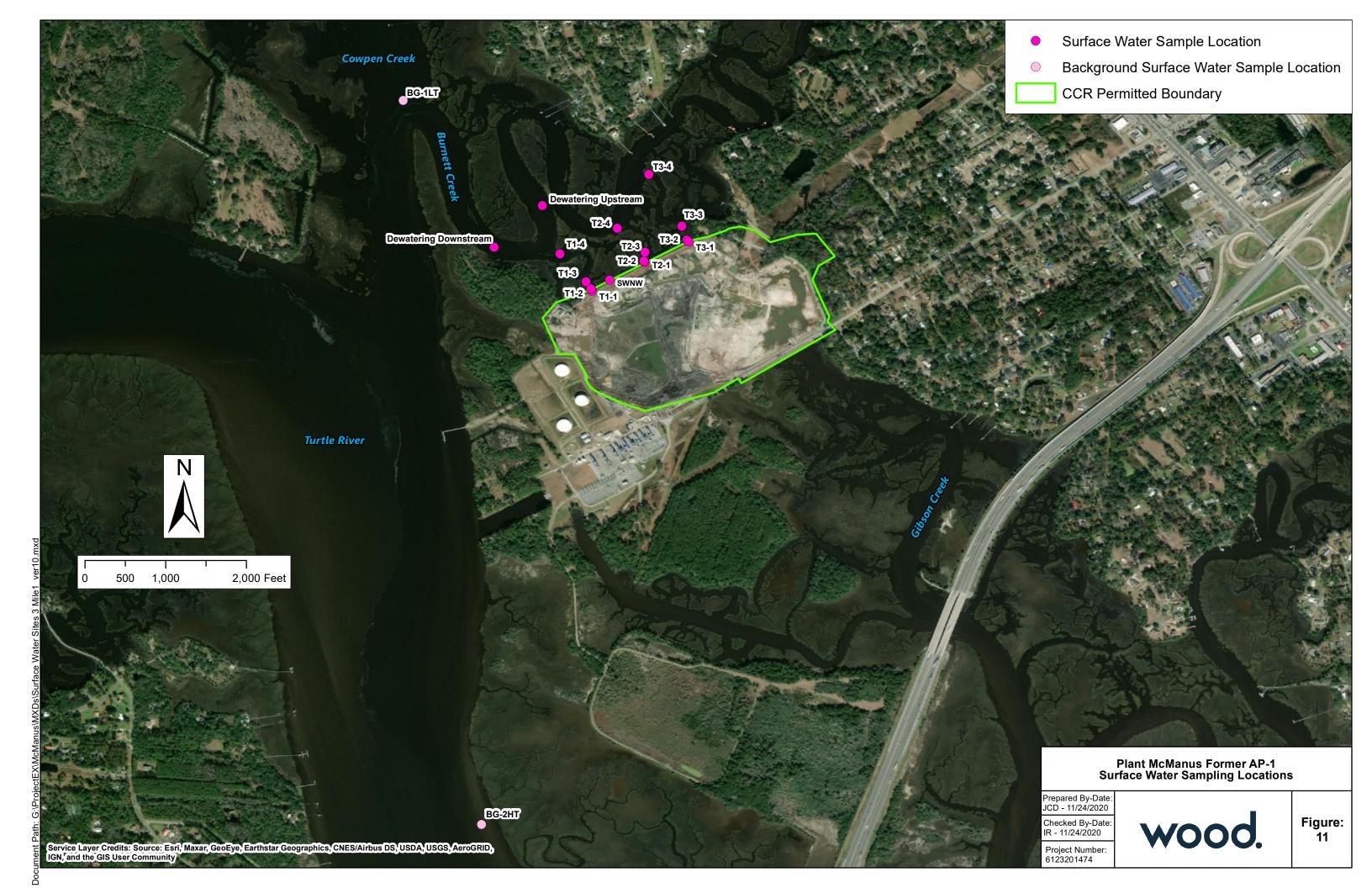

A conservative assumption for this assessment was made that groundwater from the site flows to the downgradient surface water.


- 2. Off-site industrial/construction worker addressed through the evaluation of hypothetical off-site residential receptors as health-protective screening levels for residential receptors would be more conservative than industrial and construction worker screening levels.
- 3. Generalized receptor for ecological health risk evaluation.

Indicates potentially complete pathway, which is evaluated quantitatively.


Indicates potentially complete pathway, which is evaluated qualitatively.


Plant McManus Former AP-1 Conceptual Exposure Model						
Fig	ure 5					
Project Number 6123201474	Prepared by/Date: RMB 04/06/20 Checked by/Date: LMS 04/06/20					



Refined Risk Screening Approach (Groundwater) for Former AP-1 Identify COPIs in groundwater from initial screen of SSL-related constituents (arsenic and lithium) Compile groundwater datasets for each COPI using: 1) the well identified with SSLs; 2) combine SSL well with wells in the same hydrologically downgradient direction; and 3) refine to the farthest hydrologically downgradient wells only Prepare a ProUCL Input file for the identified COPIs and selected datasets Calculate and compare the 95 UCL to the screening level* and generate concentration trend graph for each SSL well and COPI Does the EPC exceed the applicable screening level? Yes No Further evaluation No further evaluation necessary; retain as COI necessary (arsenic and lithium) Potential for migration to off-site receptors (i.e., surface water) No Yes Evaluate the presence of the Recommendations may COI in surface water include additional data (arsenic and lithium) collection (i.e., additional monitoring or well installation**) Notes: *If the 95 UCL exceeds the maximum concentration, use the maximum as the EPC. **Plant McManus Former AP-1** **This step is not necessary for Plant McManus AP-1. **Approach for Refined Groundwater Risk** SSL = Statistically Significant Level Screening COPI = Constituent of Potential Interest Figure 8 EPC = Exposure Point Concentration COI = Constituent of Interest Project Number 6123201474 Prepared by/Date: IMR 09/01/20 UCL = Upper Confidence Limit Checked by/Date: NSR 11/02/20

Checked by/Date: NSR 11/02/20

APPENDIX A Plant McManus Well Survey (Off-Site)

Well Survey

Plant McManus

Ash Pond 1

Brunswick, GA

Prepared for

Georgia Power Company
241 Ralph McGill Blvd., Atlanta, GA 30308

Prepared by

NewFields
1349 W. Peachtree Street, Suite 2000
Atlanta, GA 30309

March 5, 2020

Introduction

Plant McManus is located on Crispin Island in Brunswick, Georgia.

NewFields conducted a well survey of potential drinking water wells within the three-mile radius of Ash Pond 1 (AP-1). This radius is referred to in this report as the Investigated Area, and is shown on Figure 1. AP-1 is currently being closed by removal.

As part of this survey, NewFields accessed and reviewed information from a number of Federal, State, and County records and online sources, as well as a windshield survey of the Investigated Area. Information from each identified well was then compiled into a geographic information system (GIS) database.

Information Collection

This section summarizes the sources utilized for identifying potential drinking water wells within the Investigated Area.

1. Federal Sources

- a. United States Geological Survey (USGS) maintains an inventory database of wells that sampled by a USGS-affiliated program for ground-water levels and/or water quality parameters. Well information and coordinates were downloaded for the state of Georgia and compiled into the GIS database. Wells in this database are labelled 'human drinking water wells' or 'monitoring wells'; however, many of the monitoring wells appear to be colocated with drinking water wells and may in fact be private drinking water wells utilized for monitoring purposes by USGS. Some listings in this database are over 50 years old and may be inactive.
- b. The Safe Drinking Water Information System (SDWIS) has listings of public water systems but does not have well location information. SDWIS information was used to help identify the suppliers of public water in the vicinity of the facility.

2. State Sources

- a. Georgia Environmental Protection Division (EPD)
 - i. EPD maintains records about municipal and industrial wells, whose presence or absence within a radius of a site can be ascertained by contacting the agency. An email was sent to Michael Gillis of EPD on October 23rd, 2019 with the coordinates of Plant McManus. Mr. Gillis confirmed that there were 21 public water systems operating public wells within the Investigated Area. NewFields used a combination of parcel data, information from the Drinking Water Branch online database, and

¹ http://waterdata.usgs.gov/ga/nwis/inventory?introduction

- aerial photography to locate these wells. There is also an inactive public drinking water well located at Plant McManus and an inactive public water system at the I-95 interchange nearly a mile to the northeast of the Ash Pond.
- ii. EPD maintains files for Hazardous Site Inventory (HSI) files for site which are undergoing state-led corrective action. These files usually contain groundwater data and well surveys. There are no HSI sites or associated groundwater data or well surveys within the Investigated Area.
- iii. EPD maintains non-HSI Hazardous Site Response Act notification reports (i.e., notifications submitted after releases of reportable substances). Reports associated with sites in Glynn County well surveys for sites within a 5-mile radius of Plant McManus were reviewed. A large number of wells within the Investigated Area were identified on the well surveys reviewed.
- b. Agricultural and Environmental Services Laboratory (AESL) records. The University of Georgia's AESL Laboratory tests drinking water samples submitted by private individuals to their local county extension service. Maps of these sampling results can viewed online.² Precise coordinates are not available, but NewFields was able to use online images to find approximate locations.

3. County Sources

- a. **Health Department Records.** County health departments (DOH) maintain records of the permits for "on-site sewage management systems" (septic tanks). In the Coastal Health District region, local health departments use an online system with information about local septic permits. NewFields was able to obtain a guest login to the database to search for and examine septic permits in the area.
- b. Water Department. NewFields obtained shapefiles showing the waterlines for the main water provider in the area, the City of Brunswick. NewFields was also able to obtain detailed information about the locations and associated names of water meters connected to the City of Brunswick system. This information allows us to confirm which residences have active service connections and are unlikely to be drinking from a private well (older residences may still have inactive wells or wells used for irrigation).
- c. **Tax Assessor Records.** Parcel data, including improvement data (i.e., information about the structures built on a property), was obtained from the Glynn County Tax Assessor.

² http://aesl.ces.uga.edu/water/map/

4. Windshield Surveys

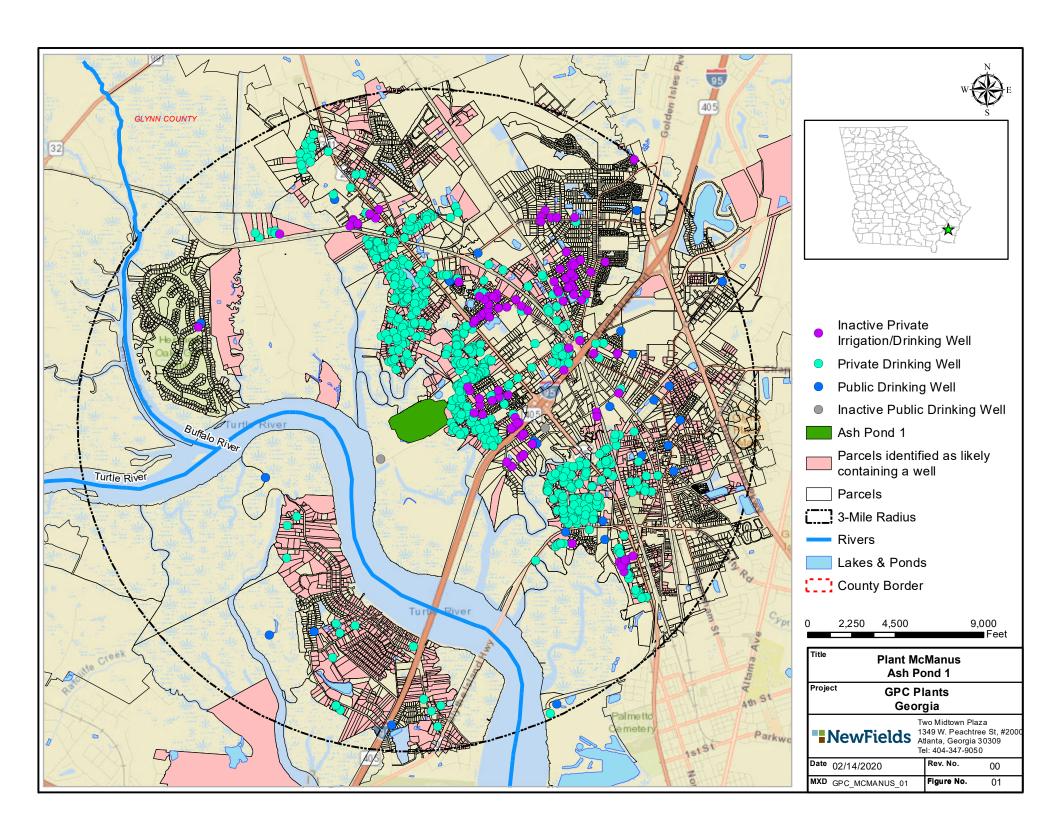
a. A windshield survey of the area was conducted on October 18 – 20, 2019. During the survey wells were visually identified and compiled into the GIS database.

Summary

Public water systems are operating wells throughout the Investigated Area. This includes wells for the main water provider in the area, the City of Brunswick, as well as 22 other smaller public water systems. Two public water systems that formerly had wells in the area are now inactive.

Public water is available to many residences in the area; however, a large number of parcels in the immediate vicinity of the plant rely on private wells.

For areas with no public water availability, NewFields assumed that all parcels containing structures would be associated with a private well. Many of these parcels may be sharing a well.


If a well was seen during the windshield survey or identified through older non-HSI well surveys, the USGS database, or septic system permits, but was also associated with a water meter connection, NewFields labelled the well as inactive or potentially an irrigation well.

USGS monitoring wells located on Georgia Power property were also considered not to be drinking water wells and omitted.

Combining well data from all sources with parcel data, NewFields identified 2361 total parcels likely to be associated with an active or inactive private well within the Investigated Area. 2266 parcels were identified using parcel data. 476 wells were seen during windshield survey, with 90 of those wells determined to be inactive or used only for irrigation because of their proximity to an active water connection. Eighteen (18) private wells were identified using other non-HSI well surveys. Four (4) wells were identified from the UGA Environmental Laboratory testing results, although 3 of these wells were determined to be inactive due to their proximity to an active water connection. Three (3) wells were identified using the USGS database, with one of them determined to be inactive due to the proximity to an active water connection.

Many wells were identified by multiple sources.

Figure 1 shows points for identified wells in the Investigated Area. Parcels identified as likely containing a well are shaded. When viewed as a PDF file, the figure is interactive, and wells identified using different sources can be turned on and off.

APPENDIX B Data Used in Risk Evaluation

APPENDIX B-1 Potable Well Data

Appendix B-1 McManus Risk Evaluation Report Potable Well Data (2015-2020) for Evaluation of SSLs McManus Former AP-1 Plant McManus, Glynn County, GA

Well ^a	Date	CAS	Constituent	Unit	Result	Flag	MDL	PQL
MCMPW-01	01/28/20	7440-38-2	Arsenic	mg/L		ND	0.0005	0.001
Well #1 Plant	04/29/15	7440-38-2	Arsenic	mg/L		ND	n/a	0.005
MCMPW-01	01/28/20	7439-93-2	Lithium	mg/L		ND	0.15	0.5

Notes:

a) Well MCMPW-01 and Well #1 Plant are the same Plant McManus well just different naming for sampling events

MDL - method detection limit

mg/L - milligrams per liter

n/a - not available

ND - not detected above the laboratory PQL

PQL - practical quantitation limit

CAS - Chemical Abstract Service Number

Prepared by/Date: <u>LO 07/10/20</u> Checked by/Date: <u>IMR 07/13/20</u>

APPENDIX B-2 Downgradient Groundwater Data

Appendix B-2 McManus Risk Evaluation Report Downgradient Groundwater Data (2016-2020) for Evaluation of SSLs McManus Former AP-1 Plant McManus, Glynn County, GA

Well	Date	CAS	Constituent	Unit	Result	Flag	MDL	PQL
MCM-05	08/31/16	7440-38-2	Arsenic	mg/L		ND	0.0016	0.005
MCM-05	11/30/16	7440-38-2	Arsenic	mg/L	0.0132		0.0016	0.005
MCM-05	02/16/17	7440-38-2	Arsenic	mg/L	0.0372		0.0016	0.005
MCM-05	06/02/17	7440-38-2	Arsenic	mg/L	0.0335		0.0021	0.025
MCM-05	08/17/17	7440-38-2	Arsenic	mg/L	0.0336		0.00057	0.005
MCM-05	06/20/18	7440-38-2	Arsenic	mg/L	0.019		0.0011	0.01
MCM-05	09/27/18	7440-38-2	Arsenic	mg/L	0.0035	J	0.00057	0.005
MCM-05	11/07/18	7440-38-2	Arsenic	mg/L	0.002	J	0.00057	0.005
MCM-05	11/27/18	7440-38-2	Arsenic	mg/L	0.0016	J	0.00057	0.005
MCM-05	03/26/19	7440-38-2	Arsenic	mg/L	0.0018	J	n/a	n/a
MCM-05	08/28/19	7440-38-2	Arsenic	mg/L	0.0019	J	0.00035	0.005
MCM-05	10/16/19	7440-38-2	Arsenic	mg/L	0.0047	J	0.00035	0.005
MCM-05	03/28/20	7440-38-2	Arsenic	mg/L		ND	0.0012	0.005
MCM-06	08/31/16	7440-38-2	Arsenic	mg/L	0.212		0.0016	0.005
MCM-06	11/30/16	7440-38-2	Arsenic	mg/L	0.129		0.0016	0.005
MCM-06	02/16/17	7440-38-2	Arsenic	mg/L	0.257		0.0016	0.005
MCM-06	06/02/17	7440-38-2	Arsenic	mg/L	0.0559		0.0004	0.005
MCM-06	08/17/17	7440-38-2	Arsenic	mg/L	0.458		0.00057	0.005
MCM-06	06/20/18	7440-38-2	Arsenic	mg/L	0.44		0.0011	0.01
MCM-06	09/27/18	7440-38-2	Arsenic	mg/L	0.27		0.00057	0.005
MCM-06	11/07/18	7440-38-2	Arsenic	mg/L	0.5		0.00057	0.005
MCM-06	11/27/18	7440-38-2	Arsenic	mg/L	0.5		0.00057	0.005
MCM-06	03/06/19	7440-38-2	Arsenic	mg/L	0.49		0.00035	0.005
MCM-06	03/26/19	7440-38-2	Arsenic	mg/L	0.3		n/a	n/a
MCM-06	07/02/19	7440-38-2	Arsenic	mg/L	0.37		n/a	n/a
MCM-06	08/28/19	7440-38-2	Arsenic	mg/L	0.5		0.00035	0.005
MCM-06	10/17/19	7440-38-2	Arsenic	mg/L	0.34		0.00035	0.005
MCM-06	03/28/20	7440-38-2	Arsenic	mg/L	0.3		0.0012	0.005
MCM-6HighTide	09/21/16	7440-38-2	Arsenic	mg/L	0.258		n/a	n/a
MCM-6LowTide	09/21/16	7440-38-2	Arsenic	mg/L	0.0168		n/a	n/a
MCM-05	08/31/16	7439-93-2	Lithium	mg/L	0.0219	J	0.0021	0.05
MCM-05	11/30/16	7439-93-2	Lithium	mg/L	0.0333	J	0.0021	0.05
MCM-05	02/16/17	7439-93-2	Lithium	mg/L	0.0376	J	0.0021	0.05
MCM-05	06/02/17	7439-93-2	Lithium	mg/L	0.0346	J	0.0011	0.05
MCM-05	08/17/17	7439-93-2	Lithium	mg/L	0.0367	J	0.00097	0.05
MCM-05	06/20/18	7439-93-2	Lithium	mg/L	0.034	J	0.00097	0.05
MCM-05	09/27/18	7439-93-2	Lithium	mg/L	0.023	J	0.00097	0.05
MCM-05	11/07/18	7439-93-2	Lithium	mg/L	0.022	J	0.00097	0.05

Appendix B-2 McManus Risk Evaluation Report Downgradient Groundwater Data (2016-2020) for Evaluation of SSLs McManus Former AP-1 Plant McManus, Glynn County, GA

Well	Date	CAS	Constituent	Unit	Result	Flag	MDL	PQL
MCM-05	08/28/19	7439-93-2	Lithium	mg/L	0.023	J	0.00078	0.03
MCM-05	10/16/19	7439-93-2	Lithium	mg/L	0.021	J	0.00078	0.03
MCM-05	03/28/20	7439-93-2	Lithium	mg/L	0.014	J	0.0084	0.03
MCM-06	08/31/16	7439-93-2	Lithium	mg/L	0.0389	J	0.0021	0.05
MCM-06	11/30/16	7439-93-2	Lithium	mg/L	0.0303	J	0.0021	0.05
MCM-06	02/16/17	7439-93-2	Lithium	mg/L	0.05	J	0.0021	0.05
MCM-06	06/02/17	7439-93-2	Lithium	mg/L	0.0477	J	0.0011	0.05
MCM-06	08/17/17	7439-93-2	Lithium	mg/L	0.0645		0.00097	0.05
MCM-06	06/20/18	7439-93-2	Lithium	mg/L	0.066	J	0.0019	0.1
MCM-06	09/27/18	7439-93-2	Lithium	mg/L	0.045	J	0.00097	0.05
MCM-06	11/07/18	7439-93-2	Lithium	mg/L	0.11		0.00097	0.05
MCM-06	03/06/19	7439-93-2	Lithium	mg/L	0.12		0.00078	0.03
MCM-06	08/28/19	7439-93-2	Lithium	mg/L	0.13		0.00078	0.03
MCM-06	10/17/19	7439-93-2	Lithium	mg/L	0.12		0.00078	0.03
MCM-06	03/28/20	7439-93-2	Lithium	mg/L	0.064		0.0084	0.03

Notes:

1) Highlighted rows indicate constituent identified in the well at a statistically significant level (SSL).

J - indicates an estimated value; detected between the laboratory MDL and PQL.

MDL - method detection limit

mg/L - milligrams per liter

n/a - not available

ND - not detected above the laboratory PQL

PQL - practical quantitation limit

CAS - Chemical Abstract Service Number

Prepared by/Date: LO 09/10/20 Checked by/Date: IMR 09/17/20

6123201474 Page 2 of 2

APPENDIX B-3 Surface Water Data

Appendix B-3 Surface Water Data (2016-2020) McManus Risk Evaluation Report McManus Former AP-1 Plant McManus, Glynn County, GA

Cample Leastion	Tido	Comple Designation	Data	CAS	Constituent	Unit	Eraction	Docult	Elan	MDL	- POI
Sample Location BG-1LT	Tide Low	Sample Designation Background	Date 02/02/20	7440-38-2	Constituent Arsenic	mg/L	Fraction T	0.0019	Flag	0.0012	PQL 0.002
BG-2HT	High	Background	02/02/20	7440-38-2	Arsenic	mg/L	T	0.0013	J	0.0012	0.002
Dewatering Downstream	Receding Tide	Downgradient	12/20/16	7440-38-2	Arsenic	mg/L	T	0.0023	ND	0.0012	n/a
Dewatering Downstream	Receding Tide	Downgradient	01/11/17	7440-38-2	Arsenic	mg/L	Ť		ND	0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	02/08/17	7440-38-2	Arsenic	mg/L	T.	0.0011	ND	0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	03/06/17	7440-38-2	Arsenic	mg/L	T.	0.0011		0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	04/11/17	7440-38-2	Arsenic	mg/L	T T	0.0011	ND	0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	05/08/17	7440-38-2	Arsenic	mg/L	T		ND	0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	06/13/17	7440-38-2	Arsenic	mg/L	T		ND	0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	07/10/17	7440-38-2	Arsenic	mg/L	Ť		ND	0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	08/07/17	7440-38-2	Arsenic	mg/L	T	0.0024		0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	09/20/17	7440-38-2	Arsenic	mg/L	T	0.0016		0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	10/09/17	7440-38-2	Arsenic	mg/L	T	0.0013		0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	11/08/17	7440-38-2	Arsenic	mg/L	Т	0.0017		0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	12/05/17	7440-38-2	Arsenic	mg/L	Т		ND	0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	01/25/18	7440-38-2	Arsenic	mg/L	Т		ND	0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	02/14/18	7440-38-2	Arsenic	mg/L	Т	0.0014		0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	03/06/18	7440-38-2	Arsenic	mg/L	Т	0.0013		0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	04/04/18	7440-38-2	Arsenic	mg/L	Т		ND	0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	05/02/18	7440-38-2	Arsenic	mg/L	Т		ND	0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	06/13/18	7440-38-2	Arsenic	mg/L	Т	0.0032		0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	06/26/18	7440-38-2	Arsenic	mg/L	Т	0.0025		0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	07/10/18	7440-38-2	Arsenic	mg/L	Т	0.0036		0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	07/25/18	7440-38-2	Arsenic	mg/L	Т		ND	0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	08/01/18	7440-38-2	Arsenic	mg/L	Т	0.0024		0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	08/09/18	7440-38-2	Arsenic	mg/L	T	0.0031		0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	09/10/18	7440-38-2	Arsenic	mg/L	T	0.0032		0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	09/26/18	7440-38-2	Arsenic	mg/L	T	0.0033		0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	10/09/18	7440-38-2	Arsenic	mg/L	T	0.0036		0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	10/24/18	7440-38-2	Arsenic	mg/L	T	0.0052		0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	11/08/18	7440-38-2	Arsenic	mg/L	T		ND	0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	11/27/18	7440-38-2	Arsenic	mg/L	Т		ND	0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	12/06/18	7440-38-2	Arsenic	mg/L	T		ND	0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	12/13/18	7440-38-2	Arsenic	mg/L	T		ND	0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	01/08/19	7440-38-2	Arsenic	mg/L	Т		ND	0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	01/23/19	7440-38-2	Arsenic	mg/L	T	0.0035		0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	02/05/19	7440-38-2	Arsenic	mg/L	Т	0.0032		0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	02/19/19	7440-38-2	Arsenic	mg/L	T	0.0053		0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	03/07/19	7440-38-2	Arsenic	mg/L	T	0.0051		0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	03/20/19	7440-38-2	Arsenic	mg/L	T		ND	0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	04/09/19	7440-38-2	Arsenic	mg/L	T	0.0032		0.003	n/a
Dewatering Downstream	Receding Tide	Downgradient	04/18/19	7440-38-2	Arsenic	mg/L	T	0.0034		0.003	n/a
Dewatering Upstream	Receding Tide	Downgradient	12/20/16	7440-38-2	Arsenic	mg/L	T		ND	0.003	n/a
Dewatering Upstream	Receding Tide	Downgradient	01/11/17	7440-38-2	Arsenic	mg/L	T	0.0011		0.003	n/a
Dewatering Upstream	Receding Tide	Downgradient	02/08/17	7440-38-2	Arsenic	mg/L	T	0.0011		0.003	n/a
Dewatering Upstream	Receding Tide	Downgradient	03/06/17	7440-38-2	Arsenic	mg/L	T -		ND	0.003	n/a
Dewatering Upstream	Receding Tide	Downgradient	04/11/17	7440-38-2	Arsenic	mg/L	T		ND	0.003	n/a
Dewatering Upstream	Receding Tide	Downgradient	05/08/17	7440-38-2	Arsenic	mg/L	T	0.0040	ND	0.003	n/a
Dewatering Upstream	Receding Tide	Downgradient	06/13/17	7440-38-2	Arsenic	mg/L	T	0.0013		0.003	n/a
Dewatering Upstream	Receding Tide	Downgradient	07/10/17	7440-38-2	Arsenic	mg/L	T	0.0021		0.003	n/a
Dewatering Upstream	Receding Tide	Downgradient	08/07/17	7440-38-2	Arsenic	mg/L	T	0.0023		0.003	n/a
Dewatering Upstream	Receding Tide	Downgradient	09/20/17	7440-38-2	Arsenic	mg/L	T	0.0014		0.003	n/a
Dewatering Upstream	Receding Tide	Downgradient	10/09/17	7440-38-2	Arsenic	mg/L	T T	0.0017	ND	0.003	n/a
Dewatering Upstream	Receding Tide	Downgradient	11/08/17	7440-38-2	Arsenic	mg/L	T		ND	0.003	n/a
Dewatering Upstream	Receding Tide	Downgradient	12/05/17	7440-38-2	Arsenic	mg/L	T		ND	0.003	n/a
Dewatering Upstream	Receding Tide	Downgradient	01/25/18	7440-38-2	Arsenic	mg/L	T T	0.0013	ND	0.003	n/a
Dewatering Upstream	Receding Tide	Downgradient	02/14/18	7440-38-2	Arsenic	mg/L	T T	0.0012		0.003	n/a
Dewatering Upstream	Receding Tide	Downgradient Downgradient	03/06/18	7440-38-2 7440-38-2	Arsenic	mg/L	T T	0.0012	ND	0.003	n/a
Dewatering Upstream Dewatering Upstream	Receding Tide Receding Tide	Downgradient	04/04/18 05/02/18	7440-38-2 7440-38-2	Arsenic Arsenic	mg/L mg/L	T T	0.001	ND	0.003 0.003	n/a n/a
Dewatering Obstream	neceding ride	Downgraulent	03/02/10	7440-30-2	ALISELLIC	IIIg/L	1	0.001		0.003	11/ a

Appendix B-3 Surface Water Data (2016-2020) McManus Risk Evaluation Report McManus Former AP-1 Plant McManus, Glynn County, GA

Devastering Upstream Receding Tide Downgradent 06/13/18 2440-38-2 Arsenic mg/L T	Sample Location	Tide	Sample Designation	Date	CAS	Constituent	Unit Fraction R		Result	Flag	MDL	PQL
Devatering Upstream	•								Result			
Devatering Upstream		_	-						0.0036	ND		
Devate-fring Upstream		-	-				_		0.0030	ND		
Devatering Upstream Receding Tide Downgradient 08/01/18 7440-38-2 Arsenic mg/L T 0.0025 0.003 n/a		-	-				-					
Devatering Upstream Recading Tide Downgradient Og/98/18 7440-38=2 Arsenic mg/L T ND O.003 n/s		-	-				_		0.0025	ND		
Dewatering Upstream Receding Tide Downgradient 09/10/18 7440-38-2 Arsenic mg/L T 0.0033 0.003 n/s			-				_		0.0025	ND		
Dewatering Upstream Recading Tule Downgradient 00/58/18 7440-38-2 Arsenic mg/L T 0.003 0.003 n/s		-	-				-					
Devetating Upstream Receding Tide Downgradient 10/98/18 7440-38-2 Arsenic mg/L T 0.0084 0.003 n/s		_	-				_		0.0022	ND		
Dewatering Upstream Receding Tide Downgradient 10/24/18 7440-38-2 Arsenic mg/L T 0.0048 0.003 n/a		-	-				_					
Dewatering Upstream Receding Tide		-					-					
Dewatering Upstream Receding Title		-	-				_		0.0048	ND		
Dewatering Upstream		-	-				_					
Dewatering Upstream		-	-				-					
Dewatering Upstream Receding Tide Downgradient 01/08/19 7440-38-2 Arsenic mg/L T ND 0.003 n/s		_	-				_					
Dewatering Upstream Receding Tide Downgradient 02/05/19 7440-38-2 Arsenic mg/L T 0.005 0.003 n/a		-	-				_					
Dewatering Upstream Receding Tide Downgradient 02/19/19 7440-38-2 Arsenic mg/l. T 0.0035 0.003 n/a		-	-				_					
Dewatering Upstream Receding Tide Downgradient 02/19/19 7440-38-2 Arsenic mg/l, T 0.0051 0.003 n/s			-				-		0.0025	ND		
Dewatering Upstream Receding Title Downgradient 03/07/19 7440-38-2 Arsenic mg/L T 0.0056 0.003 n/a			-				_					
Dewatering Upstream Receding Tide Downgradient 04/09/19 7440-38-2 Arsenic mg/L T 0.0046 0.003 n/a			-				_					
Dewatering Upstream	• .	-	-				-					
Dewardering Upstream		-	-				_		0.0046			
SWNW		-	-				_			ND		
T1-1HT	• .	Receding Tide	-									
T1-11T			-				_					
T1-2HT		_	-						0.0016			
T1-2HTS High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T ND 0.0012 0.002 11-3HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T ND 0.0012 0.002 11-3HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T ND 0.0012 0.002 11-3HTS High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T ND 0.0012 0.002 11-3HTS High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T ND 0.0012 0.002 11-3HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T ND 0.0012 0.002 11-4HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T ND 0.0012 0.002 11-4HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0014 J 0.0012 0.002 11-4HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0016 J 0.0012 0.002 11-2-1HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0016 J 0.0012 0.002 11-2-1HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0016 J 0.0012 0.002 11-2-1HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0019 0.0012 0.002 11-2-1HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0019 0.0012 0.002 11-2-1HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0019 0.0012 0.002 11-2-1HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0019 0.0010 0.0012 11-2-1HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0018 0.0012 0.002 11-2-1HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0016 J 0.0012 0.002 11-2-1HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0016 J 0.0012 0.002 11-2-1HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0016 J 0.0012 0.002 11-2-1HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0016 J 0.0012 0.002 11-2-1HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0016 J 0.0012 0.002 11-2-1HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0016 J 0.0012 0.002 11-2-1HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0016 J 0.0012 0.002 11-2-1HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0016 J 0.0012 0.002 11-2-1HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0016 J 0.0012 0.002 11-2-1HT High Downgradient 02/01/20 7			-				-					
T1-2LT		High	Downgradient			Arsenic	_					
T1-3HT	T1-2HTS	High	Downgradient	02/01/20	7440-38-2	Arsenic	mg/L			ND	0.0012	0.002
T1-3HTS High Low Downgradient Downgradient Over Downgradient O		Low	Downgradient			Arsenic	-					
T1-3LT		High	Downgradient	02/01/20	7440-38-2	Arsenic	mg/L			ND	0.0012	0.002
T1-4HT	T1-3HTS	High	Downgradient		7440-38-2	Arsenic	mg/L			ND	0.0012	0.002
T1-4HTS High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0014 J 0.0012 0.002 T1-4LT Low Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0014 J 0.0012 0.002 T2-2HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0019 J 0.0012 0.002 T2-2HTS High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0018 0.0012 0.002 T2-2HT Low Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0018 0.0012 0.002 T2-3HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0018 0.0012 0.002 T2-3HT Low Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0012 0.002	T1-3LT	Low	Downgradient	02/01/20	7440-38-2	Arsenic	mg/L			ND	0.0012	0.002
T1-4LT Low Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0016 J 0.0012 0.002 T2-1HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0019 0.0012 0.002 T2-2HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0019 0.0012 0.002 T2-2HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0016 0.0012 0.002 T2-3HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0016 J 0.0012 0.002 T2-3HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0016 J 0.0012 0.002 T2-3HT Low Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0016 J 0.0012 0.002 T2-4HT High Downgradient <	T1-4HT	High	Downgradient	02/01/20	7440-38-2	Arsenic	mg/L	Т		ND	0.0012	0.002
T2-1HT	T1-4HTS	High	Downgradient	02/01/20	7440-38-2	Arsenic	mg/L	T	0.0014	J	0.0012	0.002
T2-2HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0019 0.0012 0.002 T2-2HTS High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0019 0.0006 0.001 T2-2HT Low Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0016 J 0.0012 0.002 T2-3HTS High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0016 J 0.0012 0.002 T2-3HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T2-4HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0015 J 0.0012 0.002 T2-4HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0015 J <t< td=""><td>T1-4LT</td><td>Low</td><td>Downgradient</td><td>02/01/20</td><td>7440-38-2</td><td>Arsenic</td><td>mg/L</td><td>T</td><td>0.0016</td><td>J</td><td>0.0012</td><td>0.002</td></t<>	T1-4LT	Low	Downgradient	02/01/20	7440-38-2	Arsenic	mg/L	T	0.0016	J	0.0012	0.002
T2-2HTS High T2-2LT Downgradient Downgradient O2/01/20 7440-38-2 Arsenic mg/L T mg/L T T 0.0019 0.0006 0.001 T2-2LT Low Downgradient O2/01/20 7440-38-2 Arsenic mg/L T mg/L T 0.0018 0.0012 0.002 T2-3HTS High Downgradient O2/01/20 7440-38-2 Arsenic mg/L T mg/L T 0.0018 J 0.0012 0.002 T2-3HTS High Downgradient O2/01/20 7440-38-2 Arsenic mg/L T mg/L T 0.0018 J 0.0012 0.002 T2-3HT Low Downgradient O2/01/20 7440-38-2 Arsenic mg/L T mg/L T 0.0012 0.002 T2-4HT High Downgradient O2/01/20 7440-38-2 Arsenic mg/L T 0.0015 J 0.0012 0.002 T2-4LT Low Downgradient O2/02/20 7440-38-2 Arsenic mg/L T T 0.0015 J 0.0012 0.002 T3-1HT High Downgradient O2/02/20 7440-38-2 Arsenic mg/L T T 0.0013 J 0.0012 0.002 T3-2HT Low Downgradient O2/02/20 7440-38-2 Arsenic mg/L T T 0.0013 J 0.0012	T2-1HT	High	Downgradient	02/01/20	7440-38-2	Arsenic	mg/L	T	0.0014		0.0012	0.002
T2-2LT Low Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018 0.0012 0.002 T2-3HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0016 J 0.0012 0.002 T2-3HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T2-3HT Low Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0016 J 0.0012 0.002 T2-4HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0015 J 0.0012 0.002 T2-4HT Low Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0015 J 0.0012 0.002 T3-1HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0015 J<	T2-2HT	High	Downgradient	02/01/20	7440-38-2	Arsenic	mg/L	T	0.0019		0.0012	0.002
T2-3HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0016 J 0.0012 0.002 T2-3HTS High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T2-3HT Low Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.001 0.0012 0.002 T2-4HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0015 J 0.0012 0.002 T2-4HT Low Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0015 J 0.0012 0.002 T3-1HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T3-2HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0013 J	T2-2HTS	High	Downgradient	02/01/20	7440-38-2	Arsenic	mg/L	T	0.0019		0.0006	0.001
T2-3HTS High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T2-3LT Low Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.002 0.0012 0.002 T2-4HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0016 J 0.0012 0.002 T2-4HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0015 J 0.0012 0.002 T3-1HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0015 J 0.0012 0.002 T3-2HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0015 J 0.0012 0.002 T3-2HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0013	T2-2LT	Low	Downgradient	02/02/20	7440-38-2	Arsenic	mg/L	T	0.0018		0.0012	0.002
T2-3LT Low Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.002 0.0012 0.002 T2-4HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0016 J 0.0012 0.002 T2-4HTS High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0015 J 0.0012 0.002 T2-4LT Low Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T3-1HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T3-2HTS High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0013 J 0.0012 0.002 T3-3HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0012	T2-3HT	High	Downgradient	02/01/20	7440-38-2	Arsenic	mg/L	Т	0.0016	J	0.0012	0.002
T2-4HT High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0016 J 0.0012 0.002 T2-4HTS High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0015 J 0.0012 0.002 T2-4LT Low Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0015 J 0.0012 0.002 T3-1HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0015 J 0.0012 0.002 T3-2HTS High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0015 J 0.0012 0.002 T3-2HTS High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0013 J 0.0012 0.002 T3-3HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.	T2-3HTS	High	Downgradient	02/01/20	7440-38-2	Arsenic	mg/L	Т	0.0018	J	0.0012	0.002
T2-4HTS High Downgradient 02/01/20 7440-38-2 Arsenic mg/L T 0.0015 J 0.0012 0.002 T2-4LT Low Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0015 J 0.0012 0.002 T3-1HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T3-2HTS High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0013 J 0.0012 0.002 T3-2HTS High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0013 J 0.0012 0.002 T3-3HT Low Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0021 0.0012 0.002 T3-3HTS High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018 <	T2-3LT	Low	Downgradient	02/02/20	7440-38-2	Arsenic	mg/L	Т	0.002		0.0012	0.002
T2-4LT Low Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0015 J 0.0012 0.002 T3-1HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T3-2HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0015 J 0.0012 0.002 T3-2HTS High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0013 J 0.0012 0.002 T3-2HT Low Downgradient 02/03/20 7440-38-2 Arsenic mg/L T 0.0021 0.0012 0.002 T3-3HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T3-3HT Liow Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018	T2-4HT	High	Downgradient	02/01/20	7440-38-2	Arsenic	mg/L	T	0.0016	J	0.0012	0.002
T3-1HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T3-2HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0015 J 0.0012 0.002 T3-2HTS High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0013 J 0.0012 0.002 T3-2HT Low Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0021 0.0012 0.002 T3-3HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0021 0.0012 0.002 T3-3HTS High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T3-4HT High Downgradient 02/03/20 7440-38-2 Arsenic mg/L T 0.0018 J <t< td=""><td>T2-4HTS</td><td>High</td><td>Downgradient</td><td>02/01/20</td><td>7440-38-2</td><td>Arsenic</td><td>mg/L</td><td>Т</td><td>0.0015</td><td>J</td><td>0.0012</td><td>0.002</td></t<>	T2-4HTS	High	Downgradient	02/01/20	7440-38-2	Arsenic	mg/L	Т	0.0015	J	0.0012	0.002
T3-1HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T3-2HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0015 J 0.0012 0.002 T3-2HTS High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0013 J 0.0012 0.002 T3-2LT Low Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0021 0.0012 0.002 T3-3HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0021 0.0012 0.002 T3-3HTS High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T3-4HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018 J <t< td=""><td>T2-4LT</td><td>-</td><td>-</td><td></td><td>7440-38-2</td><td>Arsenic</td><td>_</td><td>Т</td><td>0.0015</td><td>J</td><td>0.0012</td><td>0.002</td></t<>	T2-4LT	-	-		7440-38-2	Arsenic	_	Т	0.0015	J	0.0012	0.002
T3-2HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0015 J 0.0012 0.002 T3-2HTS High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0013 J 0.0012 0.002 T3-2LT Low Downgradient 02/03/20 7440-38-2 Arsenic mg/L T 0.0029 0.0012 0.002 T3-3HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0021 0.0012 0.002 T3-3HTS High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T3-3HT Low Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T3-4HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018 J <td< td=""><td>T3-1HT</td><td>High</td><td>Downgradient</td><td>02/02/20</td><td>7440-38-2</td><td>Arsenic</td><td>-</td><td>Т</td><td>0.0018</td><td>J</td><td>0.0012</td><td>0.002</td></td<>	T3-1HT	High	Downgradient	02/02/20	7440-38-2	Arsenic	-	Т	0.0018	J	0.0012	0.002
T3-2HTS High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0013 J 0.0012 0.002 T3-2LT Low Downgradient 02/03/20 7440-38-2 Arsenic mg/L T 0.0029 0.0012 0.002 T3-3HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0021 0.0012 0.002 T3-3HTS High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T3-3LT Low Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T3-4HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T3-4HTS High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0014 J <t< td=""><td></td><td>-</td><td>-</td><td></td><td>7440-38-2</td><td></td><td>_</td><td>Т</td><td>0.0015</td><td>J</td><td>0.0012</td><td>0.002</td></t<>		-	-		7440-38-2		_	Т	0.0015	J	0.0012	0.002
T3-2LT Low Downgradient 02/03/20 7440-38-2 Arsenic mg/L T 0.0029 0.0012 0.002 T3-3HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0021 0.0012 0.002 T3-3HTS High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T3-3LT Low Downgradient 02/03/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T3-4HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T3-4HTS High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T3-4LT Low Downgradient 02/03/20 7440-38-2 Arsenic mg/L T 0.0012 0.0012		_	-				_			J		
T3-3HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0021 0.0012 0.002 T3-3HTS High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T3-3LT Low Downgradient 02/03/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T3-4HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T3-4HTS High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T3-4LT Low Downgradient 02/03/20 7440-38-2 Arsenic mg/L T 0.0012 J 0.0012 0.002 BG-1LT Low Background 02/02/20 7439-93-2 Lithium mg/L T 0.099 0.0		_	-									
T3-3HTS High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T3-3LT Low Downgradient 02/03/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T3-4HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T3-4HTS High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0014 J 0.0012 0.002 T3-4LT Low Downgradient 02/03/20 7440-38-2 Arsenic mg/L T 0.0012 J 0.0012 0.002 BG-1LT Low Background 02/02/20 7439-93-2 Lithium mg/L T 0.09 0.0084 0.05 BG-2HT High Background 02/02/20 7439-93-2 Lithium mg/L T 0.097 J			-									
T3-3LT Low Downgradient 02/03/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T3-4HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T3-4HTS High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0014 J 0.0012 0.002 T3-4LT Low Downgradient 02/03/20 7440-38-2 Arsenic mg/L T 0.0012 J 0.0012 0.002 BG-1LT Low Background 02/02/20 7439-93-2 Lithium mg/L T 0.09 0.0084 0.05 BG-2HT High Background 02/02/20 7439-93-2 Lithium mg/L T 0.099 0.0084 0.05 SWNW Downgradient 06/29/18 7439-93-2 Lithium mg/L T 0.039 J 0.0084 0.05							mg/L			1		
T3-4HT High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0018 J 0.0012 0.002 T3-4HTS High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0014 J 0.0012 0.002 T3-4LT Low Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0012 J 0.0012 0.002 BG-1LT Low Background 02/02/20 7439-93-2 Lithium mg/L T 0.099 0.0084 0.05 BG-2HT High Background 02/02/20 7439-93-2 Lithium mg/L T 0.099 0.0084 0.05 SWNW Downgradient 06/29/18 7439-93-2 Lithium mg/L T 0.097 J 0.0097 0.5 T1-1HT High Downgradient 02/01/20 7439-93-2 Lithium mg/L T 0.039 J 0.0084 0.05		_										
T3-4HTS High Downgradient 02/02/20 7440-38-2 Arsenic mg/L T 0.0014 J 0.0012 0.002 T3-4LT Low Downgradient 02/03/20 7440-38-2 Arsenic mg/L T 0.0012 J 0.0012 0.002 BG-1LT Low Background 02/02/20 7439-93-2 Lithium mg/L T 0.09 0.0084 0.05 BG-2HT High Background 02/02/20 7439-93-2 Lithium mg/L T 0.099 0.0084 0.05 SWNW Downgradient 06/29/18 7439-93-2 Lithium mg/L T 0.097 J 0.0097 0.5 T1-1HT High Downgradient 02/01/20 7439-93-2 Lithium mg/L T 0.039 J 0.0084 0.05 T1-1LT Low Downgradient 02/01/20 7439-93-2 Lithium mg/L T 0.024 J 0.0084 0.05 </td <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			-									
T3-4LT Low Downgradient 02/03/20 7440-38-2 Arsenic mg/L T 0.0012 J 0.0012 0.002 BG-1LT Low Background 02/02/20 7439-93-2 Lithium mg/L T 0.09 0.0084 0.05 BG-2HT High Background 02/02/20 7439-93-2 Lithium mg/L T 0.099 0.0084 0.05 SWNW Downgradient 06/29/18 7439-93-2 Lithium mg/L T 0.097 J 0.0097 0.5 T1-1HT High Downgradient 02/01/20 7439-93-2 Lithium mg/L T 0.039 J 0.0084 0.05 T1-1LT Low Downgradient 02/01/20 7439-93-2 Lithium mg/L T 0.039 J 0.0084 0.05		_										
BG-1LT Low Background 02/02/20 7439-93-2 Lithium mg/L T 0.09 0.0084 0.05 BG-2HT High Background 02/02/20 7439-93-2 Lithium mg/L T 0.099 0.0084 0.05 SWNW Downgradient 06/29/18 7439-93-2 Lithium mg/L T 0.097 J 0.0097 0.5 T1-1HT High Downgradient 02/01/20 7439-93-2 Lithium mg/L T 0.039 J 0.0084 0.05 T1-1LT Low Downgradient 02/01/20 7439-93-2 Lithium mg/L T 0.024 J 0.0084 0.05		-	•									
BG-2HT High Background 02/02/20 7439-93-2 Lithium mg/L T 0.099 0.0084 0.05 SWNW Downgradient 06/29/18 7439-93-2 Lithium mg/L T 0.097 J 0.0097 0.5 T1-1HT High Downgradient 02/01/20 7439-93-2 Lithium mg/L T 0.039 J 0.0084 0.05 T1-1LT Low Downgradient 02/01/20 7439-93-2 Lithium mg/L T 0.024 J 0.0084 0.05			•							,		
SWNW Downgradient 06/29/18 7439-93-2 Lithium mg/L T 0.097 J 0.0097 0.5 T1-1HT High Downgradient 02/01/20 7439-93-2 Lithium mg/L T 0.039 J 0.0084 0.05 T1-1LT Low Downgradient 02/01/20 7439-93-2 Lithium mg/L T 0.024 J 0.0084 0.05			-				_					
T1-1HT High Downgradient 02/01/20 7439-93-2 Lithium mg/L T 0.039 J 0.0084 0.05 T1-1LT Low Downgradient 02/01/20 7439-93-2 Lithium mg/L T 0.024 J 0.0084 0.05		High	-									
T1-1LT Low Downgradient 02/01/20 7439-93-2 Lithium mg/L T 0.024 J 0.0084 0.05		High	-									
		-	-									
	T1-2HT	High	Downgradient	02/01/20	7439-93-2	Lithium	mg/L	T	0.024	J	0.0084	0.05

6123201474 Page 2 of 3

Appendix B-3 Surface Water Data (2016-2020) McManus Risk Evaluation Report McManus Former AP-1 Plant McManus, Glynn County, GA

Sample Location	Tide	Sample Designation	Date	CAS	Constituent	Unit	Fraction	Result	Flag	MDL	PQL
T1-2HTS	High	Downgradient	02/01/20	7439-93-2	Lithium	mg/L	T	0.055		0.0084	0.05
T1-2LT	Low	Downgradient	02/01/20	7439-93-2	Lithium	mg/L	T	0.022	J	0.0084	0.05
T1-3HT	High	Downgradient	02/01/20	7439-93-2	Lithium	mg/L	Т	0.092		0.0084	0.05
T1-3HTS	High	Downgradient	02/01/20	7439-93-2	Lithium	mg/L	Т	0.067		0.0084	0.05
T1-3LT	Low	Downgradient	02/01/20	7439-93-2	Lithium	mg/L	T	0.022	J	0.0084	0.05
T1-4HT	High	Downgradient	02/01/20	7439-93-2	Lithium	mg/L	T	0.08		0.0084	0.05
T1-4HTS	High	Downgradient	02/01/20	7439-93-2	Lithium	mg/L	Т	0.081		0.0084	0.05
T1-4LT	Low	Downgradient	02/01/20	7439-93-2	Lithium	mg/L	T	0.09		0.0084	0.05
T2-1HT	High	Downgradient	02/01/20	7439-93-2	Lithium	mg/L	T	0.052		0.0042	0.025
T2-2HT	High	Downgradient	02/01/20	7439-93-2	Lithium	mg/L	T	0.1		0.0084	0.05
T2-2HTS	High	Downgradient	02/01/20	7439-93-2	Lithium	mg/L	T	0.073		0.0042	0.025
T2-2LT	Low	Downgradient	02/02/20	7439-93-2	Lithium	mg/L	Т	0.063		0.0042	0.025
T2-3HT	High	Downgradient	02/01/20	7439-93-2	Lithium	mg/L	T	0.099		0.0084	0.05
T2-3HTS	High	Downgradient	02/01/20	7439-93-2	Lithium	mg/L	T	0.11		0.0084	0.05
T2-3LT	Low	Downgradient	02/02/20	7439-93-2	Lithium	mg/L	Т	0.049	J	0.0084	0.05
T2-4HT	High	Downgradient	02/01/20	7439-93-2	Lithium	mg/L	T	0.091		0.0084	0.05
T2-4HTS	High	Downgradient	02/01/20	7439-93-2	Lithium	mg/L	Т	0.085		0.0084	0.05
T2-4LT	Low	Downgradient	02/02/20	7439-93-2	Lithium	mg/L	Т	0.075		0.0084	0.05
T3-1HT	High	Downgradient	02/02/20	7439-93-2	Lithium	mg/L	Т	0.076		0.0084	0.05
T3-2HT	High	Downgradient	02/02/20	7439-93-2	Lithium	mg/L	T	0.097		0.0084	0.05
T3-2HTS	High	Downgradient	02/02/20	7439-93-2	Lithium	mg/L	Т	0.075		0.0084	0.05
T3-2LT	Low	Downgradient	02/03/20	7439-93-2	Lithium	mg/L	Т	0.077		0.0084	0.05
T3-3HT	High	Downgradient	02/02/20	7439-93-2	Lithium	mg/L	T	0.081		0.0084	0.05
T3-3HTS	High	Downgradient	02/02/20	7439-93-2	Lithium	mg/L	Т	0.08		0.0084	0.05
T3-3LT	Low	Downgradient	02/03/20	7439-93-2	Lithium	mg/L	T	0.084		0.0084	0.05
T3-4HT	High	Downgradient	02/02/20	7439-93-2	Lithium	mg/L	T	0.087		0.0084	0.05
T3-4HTS	High	Downgradient	02/02/20	7439-93-2	Lithium	mg/L	T	0.085		0.0084	0.05
T3-4LT	Low	Downgradient	02/03/20	7439-93-2	Lithium	mg/L	T	0.072		0.0084	0.05

Notes:

J - indicates an estimated value; detected between the laboratory MDL and PQL.

MDL - method detection limit mg/L - milligrams per liter

n/a - not available

ND - not detected above the laboratory PQL

PQL - practical quantitation limit

T - Total

CAS - Chemical Abstract Service Number

Prepared by/Date: <u>LO 10/30/20</u> Checked by/Date: <u>IMR 10/30/20</u>

6123201474 Page 3 of 3

APPENDIX C USEPA RSL Calculator Generated Industrial Worker Screening Levels

Appendix D-1 Industrial Worker Equation Inputs for Tap Water

* Inputted values different from Resident defaults are highlighter

Resident Tap Water Default Value Form-input Value BW ₀₋₂ (mutagenic body weight) kg BW ₂₋₆ (mutagenic body weight) kg BW ₆₋₁₆ (mutagenic body weight) kg BW ₆₋₁₆ (mutagenic body weight) kg BW ₆₋₁₆ (mutagenic body weight) kg BW ₁₆₋₂₆ (mutagenic body weight) kg BW ₁₆₋₂₆ (mutagenic body weight) kg BW ₁₆₋₂₆ (mutagenic body weight) kg BU ₁₆₋₂₆ (mutagenic body weight) kg
BW ₂₋₆ (mutagenic body weight) kg BW ₆₋₁₆ (mutagenic body weight) kg BW ₆₋₁₆ (mutagenic body weight) kg BW ₁₆₋₂₆ (mutagenic body weight) kg BW _{res-a} (body weight - adult) kg BW _{res-a} (body weight - adult) kg
BW ₆₋₁₆ (mutagenic body weight) kg BW ₁₆₋₂₆ (mutagenic body weight) kg 80 80 80 BW _{res-a} (body weight - adult) kg 80 80
BW ₁₆₋₂₆ (mutagenic body weight) kg 80 80 BW _{res-a} (body weight - adult) kg 80
BW _{res-a} (body weight - adult) kg
2.1 [65:4 (2004) 110:511 (2004) 115
75. (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
BW _{res-c} (body weight - child) kg
DFW _{res-adj} (age-adjusted dermal factor) cm²-event/kg 2610650 275546.875
DFWM _{res-adj} (mutagenic age-adjusted dermal factor) crf-event/kg 8191633
ED _{res} (exposure duration - resident) years
ED ₀₋₂ (mutagenic exposure duration first phase) years
ED ₂₋₆ (mutagenic exposure duration second phase) years
ED ₆₋₁₆ (mutagenic exposure duration third phase) years
ED ₁₆₋₂₆ (mutagenic exposure duration fourth phase) years
ED _{res-a} (exposure duration - adult) years
ED _{res-c} (exposure duration - child) years
EF _{res} (exposure frequency) days/year 350
EF ₀₋₂ (mutagenic exposure frequency first phase) days/year 350
EF ₂₋₆ (mutagenic exposure frequency second phase) days/year 350
EF ₆₋₁₆ (mutagenic exposure frequency third phase) days/year 350
EF ₁₆₋₂₆ (mutagenic exposure frequency fourth phase) days/year 350
EF _{res-a} (exposure frequency - adult) days/year 350
EF _{res-c} (exposure frequency - child) days/year 350
ET _{res} (exposure time) hours/day 24
ET _{event-res-adi} (age-adjusted exposure time) hours/event 0.67077 0.54
ET _{event-res-madj} (mutagenic age-adjusted exposure time) hours/event 0.67077
ET ₀₋₂ (mutagenic dermal exposure time first phase) hours/event 0.54
ET ₂₋₆ (mutagenic dermal exposure time second phase) hours/event 0.54
ET ₆₋₁₆ (mutagenic dermal exposure time third phase) hours/event 0.71
ET ₁₆₋₂₆ (mutagenic dermal exposure time fourth phase) hours/event 0.71
ET _{res-a} (dermal exposure time - adult) hours/event 0.71 0.54
ET _{res-c} (dermal exposure time - child) hours/event 0.54
ET ₀₋₂ (mutagenic inhalation exposure time first phase) hours/day
ET ₂₋₆ (mutagenic inhalation exposure time second phase) hours/day 24
ET ₆₋₁₆ (mutagenic inhalation exposure time third phase) hours/day
ET ₁₆₋₂₆ (mutagenic inhalation exposure time fourth phase) hours/day 24
ET _{res-a} (inhalation exposure time - adult) hours/day 24 8
ET _{res-c} (inhalation exposure time - child) hours/day 24 0
EV ₀₋₂ (mutagenic events) per day
EV ₂₋₆ (mutagenic events) per day

Appendix D-1 Industrial Worker Equation Inputs for Tap Water

* Inputted values different from Resident defaults are highlighter

Variable	Resident Tap Water Default Value	Form-input Value
EV ₆₋₁₆ (mutagenic events) per day	1	0
EV ₁₆₋₂₆ (mutagenic events) per day	1	1
EV _{res-a} (events - adult) per day	1	1
EV _{res-c} (events - child) per day	1	0
THQ (target hazard quotient) unitless	0.1	1
IFW _{res-adj} (adjusted intake factor) L/kg	327.95	78.125
IFWM _{res-adj} (mutagenic adjusted intake factor) L/kg	1019.9	78.125
IRW ₀₋₂ (mutagenic water intake rate) L/day	0.78	0
IRW ₂₋₆ (mutagenic water intake rate) L/day	0.78	0
IRW ₆₋₁₆ (mutagenic water intake rate) L/day	2.5	0
IRW ₁₆₋₂₆ (mutagenic water intake rate) L/day	2.5	1
IRW _{res-a} (water intake rate - adult) L/day	2.5	1
IRW _{res-c} (water intake rate - child) L/day	0.78	0
K (volatilization factor of Andelman) L/mื	0.5	0.5
LT (lifetime) years	70	70
SA ₀₋₂ (mutagenic skin surface area) cm²	6365	0
SA ₂₋₆ (mutagenic skin surface area) cm²	6365	0
SA ₆₋₁₆ (mutagenic skin surface area) cn f	19652	0
SA ₁₆₋₂₆ (mutagenic skin surface area) cm²	19652	3527
SA _{res-a} (skin surface area - adult) cnf	19652	3527
SA _{res-c} (skin surface area - child) cn f	6365	0
I _{sc} (apparent thickness of stratum corneum) cm	0.001	0.001
TR (target risk) unitless	0.000001	0.00001

6123201474 Page 2 of 2

Appendix C-2 Site-specific

Industrial Worker Regional Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; O = OPP; A = ATSDR; C = Cal EPA; X = PPRTV Screening Level; H = HEAST; D = DWSHA; W = TEF applied; E = RPF applied; G = see user's guide; U = user provided; ca = cancer; nc = noncancer; * = where: nc SL < 100X ca SL; ** = where nc SL < 10X ca SL; SSL values are based on DAF=1; max = ceiling limit exceeded; sat = Csat exceeded.

					SF _o	SF _o	IUR	IUR	RfD	RfD	RfC	RfC	
Chemical	CAS Number	Mutagen?	Volatile?	Chemical Type	(mg/kg-day) ⁻¹	Ref	(ug/m ³) ⁻¹	Ref	(mg/kg-day)	Ref	(mg/m ³)	Ref	GIABS
Lithium	7439-93-2	No	No	Inorganics	-		-		2.00E-03	Р	-		1.00E+00

Appendix C-2 Site-specific Industrial Worker Regional Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; O = OPP; A = ATSDR; C = Cal EPA; X = PPRTV Screening Level; H = HEAST; D = DWSHA; W = TEF applied; E = RPF applied; G = see user's guide; U = user provided; ca = cancer; nc = noncancer; * = where: nc SL < 100X ca SL; ** = where nc SL < 10X ca SL; SSL values are based on DAF=1; max = ceiling limit exceeded; sat = Csat exceeded.

					K _p		В	t*	T _{event}	FA			
Chemical	CAS Number	Mutagen?	Volatile?	Chemical Type	(cm/hr)	MW	(unitless)	(hr)	(hr/event)	(unitless)	In EPD?	DA _{event (ca)}	DA _{event (nc child)}
Lithium	7439-93-2	No	No	Inorganics	1.00E-03	6.94E+00	1.01E-03	2.76E-01	1.15E-01	1.00E+00	Yes	-	-

6123201474 Page 2 of 5

Appendix C-2 Site-specific

Industrial Worker Regional Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; O = OPP; A = ATSDR; C = Cal EPA; X = PPRTV Screening Level; H = HEAST; D = DWSHA; W = TEF applied; E = RPF applied; G = see user's guide; U = user provided; ca = cancer; nc = noncancer; * = where: nc SL < 100X ca SL; ** = where nc SL < 10X ca SL; SSL values are based on DAF=1; max = ceiling limit exceeded; sat = Csat exceeded.

						MCL	Ingestion SL TR=1E-05	Dermal SL TR=1E-05	Inhalation SL TR=1E-05	Carcinogenic SL TR=1E-05
Chemical	CAS Number	Mutagen?	Volatile?	Chemical Type	DA _{event (nc adult)}		(ug/L)	(ug/L)	(ug/L)	(ug/L)
Lithium	7439-93-2	No	No	Inorganics	6.62E-02	-	-	-	-	-

6123201474 Page 3 of 5

Appendix C-2 Site-specific Industrial Worker Regional Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; O = OPP; A = ATSDR; C = Cal EPA; X = PPRTV Screening Level; H = HEAST; D = DWSHA; W = TEF applied; E = RPF applied; G = see user's guide; U = user provided; ca = cancer; nc = noncancer; * = where: nc SL < 100X ca SL; ** = where nc SL < 10X ca SL; SSL values are based on DAF=1; max = ceiling limit exceeded; sat = Csat exceeded.

Chemical	CAS Number	Mutagen?	Volatile?	Chemical Type	Ingestion SL Child THQ=1 (ug/L)	Dermal SL Child THQ=1 (ug/L)	Inhalation SL Child THQ=1 (ug/L)	Noncarcinogenic SL Child THI=1 (ug/L)	Ingestion SL Adult THQ=1 (ug/L)
Lithium	7439-93-2	No	No	Inorganics	-	-	-	-	2.34E+02

6123201474 Page 4 of 5

Appendix C-2 Site-specific

Industrial Worker Regional Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; O = OPP; A = ATSDR; C = Cal EPA; X = PPRTV Screening Level; H = HEAST; D = DWSHA; W = TEF applied; E = RPF applied; G = see user's guide; U = user provided; ca = cancer; nc = noncancer; * = where: nc SL < 100X ca SL; ** = where nc SL < 10X ca SL; SSL values are based on DAF=1; max = ceiling limit exceeded; sat = Csat exceeded.

					Dermal SL Adult THQ=1	Inhalation SL Adult THQ=1	Noncarcinogenic SL Adult THI=1	Screening Level
Chemical	CAS Number	Mutagen?	Volatile?	Chemical Type	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Lithium	7439-93-2	No	No	Inorganics	1.23E+05	-	2.33E+02	2.33E+02 nc

6123201474 Page 5 of 5

APPENDIX D USEPA RSL Calculator Generated Residential Screening Levels

Appendix D-1

McManus Risk Evaluation Report McManus Former AP-1

Plant McManus, Glynn County, GA

Appendix D-1 Residential Equation Inputs for Tap Water

Variable	Value
THQ (target hazard quotient) unitless	1
TR (target risk) unitless	0.00001
LT (lifetime) years	70
K (volatilization factor of Andelman) L/m ³	0.5
I _{sc} (apparent thickness of stratum corneum) cm	0.001
ED _{res} (exposure duration - resident) years	26
ED _{res-c} (exposure duration - child) years	6
ED _{res-a} (exposure duration - adult) years	20
ED ₀₋₂ (mutagenic exposure duration first phase) years	2
ED ₂₋₆ (mutagenic exposure duration second phase) years	4
ED ₆₋₁₆ (mutagenic exposure duration third phase) years	10
ED ₁₆₋₂₆ (mutagenic exposure duration fourth phase) years	10
EF _{res} (exposure frequency) days/year	350
EF _{res-c} (exposure frequency - child) days/year	350
EF _{res-a} (exposure frequency - adult) days/year	350
EF ₀₋₂ (mutagenic exposure frequency first phase) days/year	350
EF ₂₋₆ (mutagenic exposure frequency second phase) days/year	350
EF ₆₋₁₆ (mutagenic exposure frequency third phase) days/year	350
EF ₁₆₋₂₆ (mutagenic exposure frequency fourth phase) days/year	350
ET _{event-res-adj} (age-adjusted exposure time) hours/event	0.67077
ET _{event-res-madj} (mutagenic age-adjusted exposure time) hours/event	0.67077
ET _{res} (exposure time) hours/day	24
ET _{res-c} (dermal exposure time - child) hours/event	0.54
ET _{res-a} (dermal exposure time - adult) hours/event	0.71
ET _{res-c} (inhalation exposure time - child) hours/day	24
ET _{res-a} (inhalation exposure time - adult) hours/day	24
Appendix D-3	24
Scherer AP-1	24
Plant Scherer, Juliette, GA	24
ET ₁₆₋₂₆ (mutagenic inhalation exposure time fourth phase) hours/day	24
ET ₀₋₂ (mutagenic dermal exposure time first phase) hours/event	0.54
ET ₂₋₆ (mutagenic dermal exposure time second phase) hours/event	0.54
ET ₆₋₁₆ (mutagenic dermal exposure time third phase) hours/event	0.71
ET ₁₆₋₂₆ (mutagenic dermal exposure time fourth phase) hours/event	0.71
BW _{res-a} (body weight - adult) kg	80

Appendix D-1

McManus Risk Evaluation Report McManus Former AP-1

Plant McManus, Glynn County, GA

Appendix D-1 Residential Equation Inputs for Tap Water

Variable	Value
BW _{res-c} (body weight - child) kg	15
BW ₀₋₂ (mutagenic body weight) kg	15
BW ₂₋₆ (mutagenic body weight) kg	15
BW ₆₋₁₆ (mutagenic body weight) kg	80
BW ₁₆₋₂₆ (mutagenic body weight) kg	80
IFW _{res-adj} (adjusted intake factor) L/kg	327.95
IFW _{res-adj} (adjusted intake factor) L/kg	327.95
IFWM _{res-adj} (mutagenic adjusted intake factor) L/kg	1019.9
IFWM _{res-adj} (mutagenic adjusted intake factor) L/kg	1019.9
IRW _{res-c} (water intake rate - child) L/day	0.78
IRW _{res-a} (water intake rate - adult) L/day	2.5
IRW ₀₋₂ (mutagenic water intake rate) L/day	0.78
IRW ₂₋₆ (mutagenic water intake rate) L/day	0.78
IRW ₆₋₁₆ (mutagenic water intake rate) L/day	2.5
IRW ₁₆₋₂₆ (mutagenic water intake rate) L/day	2.5
EV _{res-a} (events - adult) per day	1
EV _{res-c} (events - child) per day	1
EV ₀₋₂ (mutagenic events) per day	1
EV ₂₋₆ (mutagenic events) per day	1
EV ₆₋₁₆ (mutagenic events) per day	1
EV ₁₆₋₂₆ (mutagenic events) per day	1
DFW _{res-adj} (age-adjusted dermal factor) cm ² -event/kg	2610650
DFWM _{res-adj} (mutagenic age-adjusted dermal factor) cm ² -event/kg	8191633
SA _{res-c} (skin surface area - child) cm ²	6365
SA _{res-a} (skin surface area - adult) cm ²	19652
SA ₀₋₂ (mutagenic skin surface area) cm ²	6365
SA ₂₋₆ (mutagenic skin surface area) cm ²	6365
SA ₆₋₁₆ (mutagenic skin surface area) cm²	19652
SA ₁₆₋₂₆ (mutagenic skin surface area) cm ²	19652

6123201474 Page 2 of 2

Appendix D-2

Default

Resident Risk-Based Regional Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; O = OPP; A = ATSDR; C = Cal EPA; X = PPRTV Screening Level; H = HEAST; D = DWSHA; W = TEF applied; E = RPF applied; G = see user's guide; U = user provided; ca = cancer; nc = noncancer; * = where: nc SL < 100X ca SL; ** = where nc SL < 10X ca SL; SSL values are based on DAF=1; max = ceiling limit exceeded; sat = Csat exceeded.

					SF _o	SF	IUR	IUR	RfD	RfD	RfC	RfC		K	
Chemical	CAS Number	Mutagen?	Volatile?	Chemical Type	(mg/kg-day) ⁻¹			Ref	מזא (mg/kg-day)	Ref	(mg/m ³)	Ref	GIABS	(cm/hr)	MW
Lithium	7439-93-2	No	No	Inorganics	-		-		2.00E-03	Р	-		1.00E+00	1.00E-03	6.94E+00

Appendix D-2

Default

Resident Risk-Based Regional Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; O = OPP; A = ATSDR; C = Cal EPA; X = PPRTV Screening Level; H = HEAST; D = DWSHA; W = TEF applied; E = RPF applied; G = see user's guide; U = user provided; ca = cancer; nc = noncancer; * = where: nc SL < 100X ca SL; ** = where nc SL < 10X ca SL; SSL values are based on DAF=1; max = ceiling limit exceeded; sat = Csat exceeded.

					В	t [*]	T _{event}	FA					MCL
Chemical	CAS Number	Mutagen?	Volatile?	Chemical Type	(unitless)	(hr)	(hr/event)	(unitless)	In EPD?	DA _{event (ca)}	DA _{event (nc child)}	DA _{event (nc adult)}	(ug/L)
Lithium	7439-93-2	No	No	Inorganics	1.01E-03	2.76E-01	1.15E-01	1.00E+00	Yes	-	4.92E-03	8.49E-03	-

6123201474 Page 2 of 5

Appendix D-2

Default

Resident Risk-Based Regional Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; O = OPP; A = ATSDR; C = Cal EPA; X = PPRTV Screening Level; H = HEAST; D = DWSHA; W = TEF applied; E = RPF applied; G = see user's guide; U = user provided; ca = cancer; nc = noncancer; * = where: nc SL < 100X ca SL; ** = where nc SL < 10X ca SL; SSL values are based on DAF=1; max = ceiling limit exceeded; sat = Csat exceeded.

Chemical	CAS Number	Mutagen?	Volatile?	Chemical Type	Ingestion SL TR=1E-05	Dermal SL TR=1E-05	Inhalation SL TR=1E-05	Carcinogenic SL TR=1E-05	Ingestion SL Child THQ=1	Dermal SL Child THQ=1
Chemical	CAS Nullibel	wutagen?	voiatile:	Chemical Type	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Lithium	7439-93-2	No	No	Inorganics	-	-	-	-	4.01E+01	9.10E+03

6123201474 Page 3 of 5

Appendix D-2

Default

Resident Risk-Based Regional Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; O = OPP; A = ATSDR; C = Cal EPA; X = PPRTV Screening Level; H = HEAST; D = DWSHA; W = TEF applied; E = RPF applied; G = see user's guide; U = user provided; ca = cancer; nc = noncancer; * = where: nc SL < 100X ca SL; ** = where nc SL < 10X ca SL; SSL values are based on DAF=1; max = ceiling limit exceeded; sat = Csat exceeded.

					Inhalation SL Child THQ=1	Noncarcinogenic SL Child THI=1	Ingestion SL Adult THQ=1	Dermal SL Adult THQ=1	Inhalation SL Adult THQ=1
Chemical	CAS Number	Mutagen?	Volatile?	Chemical Type	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Lithium	7439-93-2	No	No	Inorganics	-	3.99E+01	6.67E+01	1.20E+04	-

6123201474 Page 4 of 5

Appendix D-2 Default Resident Risk-Based Regional Screening Levels (RSL) for Tap Water Key: I = IRIS; P = PPRTV; O = OPP; A = ATSDR; C = Cal EPA; X = PPRTV Screening Level; H = HEAST; D = DWSHA; W = TEF applied; E = RPF applied; G = see user's guide; U = user provided; ca = cancer; nc = noncancer; * = where: nc SL < 100X ca SL; ** = where nc SL < 10X ca SL; SSL values are based on DAF=1; ceiling exceeded. max = limit exceeded; sat = Csat Noncarcinogenic SL Screening Adult THI=1 Level CAS Number Mutagen? Volatile? **Chemical Type** Chemical (ug/L) (ug/L) Lithium 7439-93-2 No No Inorganics 6.64E+01 3.99E+01 nc

6123201474 Page 5 of 5

Appendix E-1 Exposure Point Concentration Calculation Results

Appendix E-1

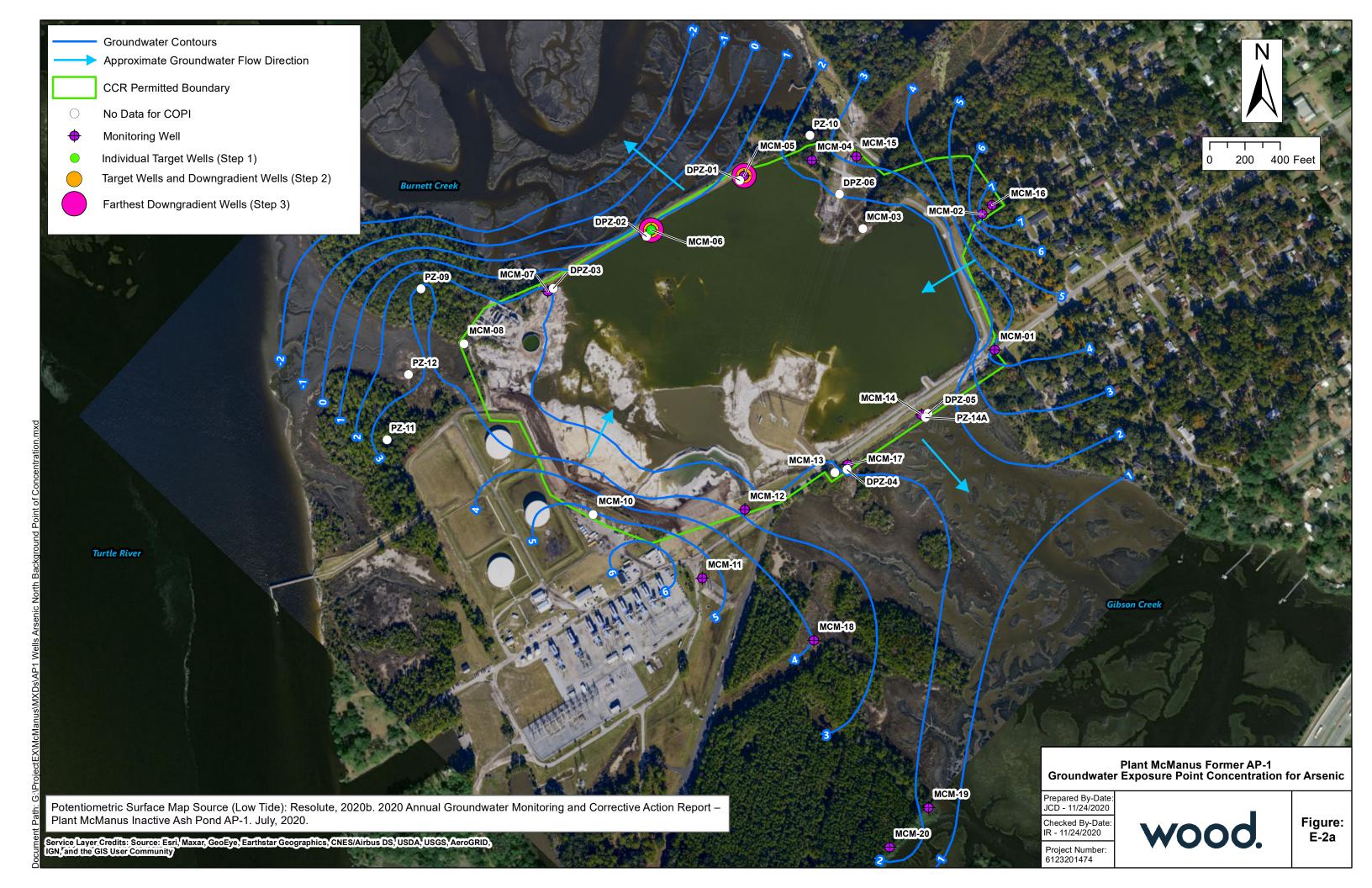
Groundwater Exposure Point Calculation Details¹ McManus Risk Evaluation Report McManus Former AP-1 Plant McManus, Glynn County, GA

							EPC Step 1	EPC Step 2	EPC Step 3
CCR Rule Designation	Constituent	Exposure Unit	Well IDs Included	Maximum Concentration (mg/L)	Detection Frequency	Exceedance Frequency	Individual Target Well(s) 2016-2020 (mg/L)	Target Well(s) & Downgradient / Adjacent Well(s) 2016-2020 (mg/L)	Farthest Downgradient Well(s) 2016-2020 (mg/L)
			MCM-06	0.50	17 / 17	16 / 17	0.38	3	. 5.
	Arsenic	North	MCM-05 MCM-06	0.50	28 / 30	19 / 30		0.41	
Appendix IV			MCM-05 MCM-06	0.50	28 / 30	19 / 30			0.41
Аррепаіх і і			MCM-06	0.13	12 / 12	10 / 12	0.093		
	ithium North	MCM-05 MCM-06	0.13	23 / 23	10 / 23		0.067		
			MCM-05 MCM-06	0.13	23 / 23	10 / 23			0.067

Notes:

Highlighted value is the EPC selected for the refined groundwater screening.

1 - EPCs calculated in accordance with USEPA, 2014. Memorandum for Determining Groundwater Exposure Point Concentrations, Supplemental Guidance. OSWER Directive 9283.1-42, February 2014. Located at https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236917


Definitions:

EPC = Exposure Point Concentration
mg/L = milligrams per liter

CCR = Coal Combustion Residuals

Prepared by/Date: <u>LO 9/10/20</u>
Checked by/Date: <u>IMR 9/16/20</u>

Appendix E-2 Groundwater Exposure Point Concentration Figures

Appendix E-3 Groundwater ProUCL Input/Output Files

Appendix E-3a Groundwater ProUCL Input - Arsenic McManus Risk Evaluation Report McManus Former AP-1 Plant McManus, Glynn County, GA

Step 1			
Well(1)	Date(1)	As1_MCM-6	D_As1_MCM-6
MCM-06	08/31/16	0.212	1
MCM-06	11/30/16	0.129	1
MCM-06	02/16/17	0.257	1
MCM-06	06/02/17	0.0559	1
MCM-06	08/17/17	0.458	1
MCM-06	06/20/18	0.44	1
MCM-06	09/27/18	0.27	1
MCM-06	11/07/18	0.5	1
MCM-06	11/27/18	0.5	1
MCM-06	03/06/19	0.49	1
MCM-06	03/26/19	0.3	1
MCM-06	07/02/19	0.37	1
MCM-06	08/28/19	0.5	1
MCM-06	10/17/19	0.34	1
MCM-06	03/28/20	0.3	1
MCM-6Hig	09/21/16	0.258	1
MCM-6Lov	09/21/16	0.0168	1

Step 2	•				
Well(2)	Date(2)	As2	_MCM-5-6	D_As2_MCM-5-6	
MCM-05	08/31/16		0.005		0
MCM-05	11/30/16		0.0132		1
MCM-05	02/16/17		0.0372		1
MCM-05	06/02/17		0.0335		1
MCM-05	08/17/17		0.0336		1
MCM-05	06/20/18		0.019		1
MCM-05	09/27/18		0.0035		1
MCM-05	11/07/18		0.002		1
MCM-05	11/27/18		0.0016		1
MCM-05	03/26/19		0.0018		1
MCM-05	08/28/19		0.0019		1
MCM-05	10/16/19		0.0047		1
MCM-05	03/28/20		0.005		0
MCM-06	08/31/16		0.212		1
MCM-06	11/30/16		0.129		1
MCM-06	03/28/20		0.3		1
MCM-06	02/16/17		0.257		1
MCM-06	06/02/17		0.0559		1
MCM-06	08/17/17		0.458		1
MCM-06	06/20/18		0.44		1
MCM-06	09/27/18		0.27		1
MCM-06	11/07/18		0.5		1
MCM-06	11/27/18		0.5		1
MCM-06	03/06/19		0.49		1
MCM-06	03/26/19		0.3		1
MCM-06	07/02/19		0.37		1
MCM-06	08/28/19		0.5		1
MCM-06	10/17/19		0.34		1
MCM-6Hig	09/21/16		0.258		1
MCM-6Lov	09/21/16		0.0168		1

Step 3	D. (2)	A - 2 A 4 C N 4 E . C	D 4-2 MCM F 6
Well(3)	Date(3)	As3_MCM-5-6	D_As3_MCM-5-6
MCM-05	08/31/16	0.005	0
MCM-05	11/30/16	0.0132	1
MCM-05	02/16/17	0.0372	1
MCM-05	06/02/17	0.0335	1
MCM-05	08/17/17	0.0336	1
MCM-05	06/20/18	0.019	1
MCM-05	09/27/18	0.0035	1
MCM-05	11/07/18	0.002	1
MCM-05	11/27/18	0.0016	1
MCM-05	03/26/19	0.0018	1
MCM-05	08/28/19	0.0019	1
MCM-05	10/16/19	0.0047	1
MCM-05	03/28/20	0.005	0
MCM-06	08/31/16	0.212	1
MCM-06	11/30/16	0.129	1
MCM-06	03/28/20	0.3	1
MCM-06	02/16/17	0.257	1
MCM-06	06/02/17	0.0559	1
MCM-06	08/17/17	0.458	1
MCM-06	06/20/18	0.44	1
MCM-06	09/27/18	0.27	1
MCM-06	11/07/18	0.5	1
MCM-06	11/27/18	0.5	1
MCM-06	03/06/19	0.49	1
MCM-06	03/26/19	0.3	1
MCM-06	07/02/19	0.37	1
MCM-06	08/28/19	0.5	1
MCM-06	10/17/19	0.34	1
MCM-6Hig		0.258	1
MCM-6Lov	09/21/16	0.0168	1

Notes:

1) Concentrations in units of mg/L.

Prepared by/Date: <u>LO 9/10/20</u> Checked by/Date: <u>IMR 9/16/20</u>

Groundwater ProUCL Output - Arsenic McManus Risk Evaluation Report McManus Former AP-1 Plant McManus, Glynn County, GA

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.19/10/2020 9:29:17 AM

From File WorkSheet.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

As1_MCM-6

General	Statistics

Total Number of Observations	17	Number of Distinct Observations	14
		Number of Missing Observations	0
Minimum	0.0168	Mean	0.317
Maximum	0.5	Median	0.3
SD	0.155	Std. Error of Mean	0.0375
Coefficient of Variation	0.488	Skewness	-0.484

Normal GOF Test

Shapiro Wilk Test Statistic	0.922	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.892	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.139	Lilliefors GOF Test
5% Lilliefors Critical Value	0.207	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	0.383	95% Adjusted-CLT UCL (Chen-1995) 0	.374	
		95% Modified-t UCL (Johnson-1978) 0	.382	

Gamma GOF Test

Anderson-Darling Gamma GOF Test	1.052	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance	0.748	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.231	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance	0.211	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Groundwater ProUCL Output - Arsenic

McManus Risk Evaluation Report

McManus Former AP-1

Plant McManus, Glynn County, GA

	Gamma Statistics		
k hat (MLE)	2.298	k star (bias corrected MLE)	1.932
Theta hat (MLE)	0.138	Theta star (bias corrected MLE)	0.164
nu hat (MLE)	78.14	nu star (bias corrected)	65.69
MLE Mean (bias corrected)	0.317	MLE Sd (bias corrected)	0.228
		Approximate Chi Square Value (0.05)	48.04
Adjusted Level of Significance	0.0346	Adjusted Chi Square Value	46.46
Ass	uming Gamma Distrib	oution	
95% Approximate Gamma UCL (use when n>=50))	0.434	95% Adjusted Gamma UCL (use when n<50)	0.449
	Lognormal GOF Tes	t	
Shapiro Wilk Test Statistic	0.739	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.892	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.274	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.207	Data Not Lognormal at 5% Significance Level	
Data Not Lo	ognormal at 5% Signi	ficance Level	
	Lognormal Statistics	•	
Minimum of Logged Data	-4.086	Mean of logged Data	-1.38
Maximum of Logged Data	-0.693	SD of logged Data	0.898
Assu	ming Lognormal Distr	ibution	
95% H-UCL	0.662	90% Chebyshev (MVUE) UCL	0.624
95% Chebyshev (MVUE) UCL	0.742	97.5% Chebyshev (MVUE) UCL	0.905
99% Chebyshev (MVUE) UCL	1.226		
Nonparame	tric Distribution Free U	JCL Statistics	
Data appear to follow a I	Discernible Distributio	n at 5% Significance Level	
Nonpar	ametric Distribution F	ree UCLs	
95% CLT UCL	0.379	95% Jackknife UCL	0.383
95% Standard Bootstrap UCL	0.377	95% Bootstrap-t UCL	0.381
95% Hall's Bootstrap UCL	0.375	95% Percentile Bootstrap UCL	0.375
95% BCA Bootstrap UCL	0.375		
90% Chebyshev(Mean, Sd) UCL	0.43	95% Chebyshev(Mean, Sd) UCL	0.481
97.5% Chebyshev(Mean, Sd) UCL	0.552	99% Chebyshev(Mean, Sd) UCL	0.691

6123201474 Page 2 of 8

Groundwater ProUCL Output - Arsenic McManus Risk Evaluation Report McManus Former AP-1 Plant McManus, Glynn County, GA

Suggested UCL to Use

95% Student's-t UCL 0.383

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

As2_MCM-5-6

	General Statistics		
Total Number of Observations	30	Number of Distinct Observations	26
Number of Detects	28	Number of Non-Detects	2
Number of Distinct Detects	25	Number of Distinct Non-Detects	1
Minimum Detect	0.0016	Minimum Non-Detect	0.005
Maximum Detect	0.5	Maximum Non-Detect	0.005
Variance Detects	0.0371	Percent Non-Detects	6.667%
Mean Detects	0.198	SD Detects	0.193
Median Detects	0.171	CV Detects	0.972
Skewness Detects	0.395	Kurtosis Detects	-1.47
Mean of Logged Detects	-2.789	SD of Logged Detects	2.071

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.832	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.924	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.234	Lilliefors GOF Test
5% Lilliefors Critical Value	0.164	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.0352	KM Standard Error of Mean	0.185	KM Mean
0.244	95% KM (BCA) UCL	0.189	KM SD
0.241	95% KM (Percentile Bootstrap) UCL	0.245	95% KM (t) UCL
0.247	95% KM Bootstrap t UCL	0.243	95% KM (z) UCL
0.338	95% KM Chebyshev UCL	0.291	90% KM Chebyshev UCL
0.535	99% KM Chebyshey UCL	0.405	97.5% KM Chebyshev UCL

6123201474 Page 3 of 8

Appendix E-3b

Groundwater ProUCL Output - Arsenic

McManus Risk Evaluation Report

McManus Former AP-1

Plant McManus, Glynn County, GA

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	1.303	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.806	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.207	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.174	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.503	k star (bias corrected MLE)	0.537	k hat (MLE)
0.394	Theta star (bias corrected MLE)	0.369	Theta hat (MLE)
28.17	nu star (bias corrected)	30.06	nu hat (MLE)
		0.198	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0016	Mean	0.189
Maximum	0.5	Median	0.0929
SD	0.189	CV	1.005
k hat (MLE)	0.553	k star (bias corrected MLE)	0.52
Theta hat (MLE)	0.341	Theta star (bias corrected MLE)	0.362
nu hat (MLE)	33.21	nu star (bias corrected)	31.22
Adjusted Level of Significance (β)	0.041		
Approximate Chi Square Value (31.22, α)	19.45	Adjusted Chi Square Value (31.22, β)	18.92
95% Gamma Approximate UCL (use when n>=50)	0.303	95% Gamma Adjusted UCL (use when n<50)	0.311

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.185	SD (KM)	0.189
Variance (KM)	0.0358	SE of Mean (KM)	0.0352
k hat (KM)	0.959	k star (KM)	0.885
nu hat (KM)	57.52	nu star (KM)	53.1
theta hat (KM)	0.193	theta star (KM)	0.209
80% gamma percentile (KM)	0.301	90% gamma percentile (KM)	0.439
95% gamma percentile (KM)	0.579	99% gamma percentile (KM)	0.907

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (53.10, α)	37.36	Adjusted Chi Square Value (53.10, β)	36.6
95% Gamma Approximate KM-UCL (use when n>=50)	0.263	95% Gamma Adjusted KM-UCL (use when n<50)	0.269

Page 4 of 8 6123201474

Groundwater ProUCL Output - Arsenic

McManus Risk Evaluation Report

McManus Former AP-1

Plant McManus, Glynn County, GA

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.842	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.924	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.225	Lilliefors GOF Test
5% Lilliefors Critical Value	0.164	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.185	Mean in Log Scale	-2.964
SD in Original Scale	0.192	SD in Log Scale	2.11
95% t UCL (assumes normality of ROS data)	0.245	95% Percentile Bootstrap UCL	0.244
95% BCA Bootstrap UCL	0.244	95% Bootstrap t UCL	0.249
95% H-UCL (Log ROS)	2.391		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-3.006	KM Geo Mean	0.0495
KM SD (logged)	2.128	95% Critical H Value (KM-Log)	4.139
KM Standard Error of Mean (logged)	0.396	95% H-UCL (KM -Log)	2.445
KM SD (logged)	2.128	95% Critical H Value (KM-Log)	4.139
KM Standard Error of Mean (logged)	0.396		

DL/2 Statistics

DL/2 Normai		DL/2 Log-Transformed	
Mean in Original Scale	0.185	Mean in Log Scale	-3.003
SD in Original Scale	0.192	SD in Log Scale	2.157
95% t UCL (Assumes normality)	0.245	95% H-Stat UCL	2.72

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

97.5% KM (Chebyshev) UCL 0.405

DL /O Normal

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

6123201474 Page 5 of 8

Groundwater ProUCL Output - Arsenic McManus Risk Evaluation Report McManus Former AP-1

Plant McManus, Glynn County, GA

As3_MCM-5-6

	General Statistics		
Total Number of Observations	30	Number of Distinct Observations	26
Number of Detects	28	Number of Non-Detects	2
Number of Distinct Detects	25	Number of Distinct Non-Detects	1
Minimum Detect	0.0016	Minimum Non-Detect	0.005
Maximum Detect	0.5	Maximum Non-Detect	0.005
Variance Detects	0.0371	Percent Non-Detects	6.667%
Mean Detects	0.198	SD Detects	0.193
Median Detects	0.171	CV Detects	0.972
Skewness Detects	0.395	Kurtosis Detects	-1.47
Mean of Logged Detects	-2.789	SD of Logged Detects	2.071

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.832	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.924	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.234	Lilliefors GOF Test
5% Lilliefors Critical Value	0.164	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.0352	KM Standard Error of Mean	0.185	KM Mean
0.24	95% KM (BCA) UCL	0.189	KM SD
0.241	95% KM (Percentile Bootstrap) UCL	0.245	95% KM (t) UCL
0.246	95% KM Bootstrap t UCL	0.243	95% KM (z) UCL
0.338	95% KM Chebyshev UCL	0.291	90% KM Chebyshev UCL
0.535	99% KM Chebyshev UCL	0.405	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	1.303	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.806	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.207	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.174	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.503	k star (bias corrected MLE)	0.537	k hat (MLE)
0.394	Theta star (bias corrected MLE)	0.369	Theta hat (MLE)
28.17	nu star (bias corrected)	30.06	nu hat (MLE)
		0.198	Mean (detects)

6123201474 Page 6 of 8

Groundwater ProUCL Output - Arsenic McManus Risk Evaluation Report McManus Former AP-1 Plant McManus, Glynn County, GA

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as < 1.0, especially when the sample size is small (e.g., < 15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0016	Mean	0.189
Maximum	0.5	Median	0.0929
SD	0.189	CV	1.005
k hat (MLE)	0.553	k star (bias corrected MLE)	0.52
Theta hat (MLE)	0.341	Theta star (bias corrected MLE)	0.362
nu hat (MLE)	33.21	nu star (bias corrected)	31.22
Adjusted Level of Significance (β)	0.041		
Approximate Chi Square Value (31.22, α)	19.45	Adjusted Chi Square Value (31.22, β)	18.92
95% Gamma Approximate UCL (use when n>=50)	0.303	95% Gamma Adjusted UCL (use when n<50)	0.311

Estimates of Gamma Parameters using KM Estimates

		•	
Mean (KM)	0.185	SD (KM)	0.189
Variance (KM)	0.0358	SE of Mean (KM)	0.0352
k hat (KM)	0.959	k star (KM)	0.885
nu hat (KM)	57.52	nu star (KM)	53.1
theta hat (KM)	0.193	theta star (KM)	0.209
80% gamma percentile (KM)	0.301	90% gamma percentile (KM)	0.439
95% gamma percentile (KM)	0.579	99% gamma percentile (KM)	0.907

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (53.10, α)	37.36	Adjusted Chi Square Value (53.10, β)	36.6
95% Gamma Approximate KM-UCL (use when n>=50)	0.263	95% Gamma Adjusted KM-UCL (use when n<50)	0.269

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.842	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.924	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.225	Lilliefors GOF Test
5% Lilliefors Critical Value	0.164	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

6123201474 Page 7 of 8

Groundwater ProUCL Output - Arsenic

McManus Risk Evaluation Report

McManus Former AP-1

Plant McManus, Glynn County, GA

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.185	Mean in Log Scale	-2.964
SD in Original Scale	0.192	SD in Log Scale	2.11
95% t UCL (assumes normality of ROS data)	0.245	95% Percentile Bootstrap UCL	0.243
95% BCA Bootstrap UCL	0.246	95% Bootstrap t UCL	0.247
95% H-UCL (Log ROS)	2.391		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-3.006	KM Geo Mean	0.0495
KM SD (logged)	2.128	95% Critical H Value (KM-Log)	4.139
KM Standard Error of Mean (logged)	0.396	95% H-UCL (KM -Log)	2.445
KM SD (logged)	2.128	95% Critical H Value (KM-Log)	4.139
KM Standard Error of Mean (logged)	0.396		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.185	Mean in Log Scale	-3.003
SD in Original Scale	0.192	SD in Log Scale	2.157
95% t UCL (Assumes normality)	0.245	95% H-Stat UCL	2.72

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

97.5% KM (Chebyshev) UCL 0.405

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

6123201474 Page 8 of 8

Appendix E-3c
Groundwater ProUCL Input - Lithium
McManus Risk Evaluation Report
McManus Former AP-1
Plant McManus, Glynn County, GA

Step 1	-		
Well(1)	Date(1)	Li1	D_Li1
MCM-06	08/31/16	0.0389	1
MCM-06	11/30/16	0.0303	1
MCM-06	02/16/17	0.05	1
MCM-06	06/02/17	0.0477	1
MCM-06	08/17/17	0.0645	1
MCM-06	06/20/18	0.066	1
MCM-06	09/27/18	0.045	1
MCM-06	11/07/18	0.11	1
MCM-06	03/06/19	0.12	1
MCM-06	08/28/19	0.13	1
MCM-06	10/17/19	0.12	1
MCM-06	3/28/2020	0.064	1

Step 2	_		
Well(2)	Date(2)	Li2	D_Li2
MCM-05	08/31/16	0.0219	1
MCM-05	11/30/16	0.0333	1
MCM-05	02/16/17	0.0376	1
MCM-05	06/02/17	0.0346	1
MCM-05	08/17/17	0.0367	1
MCM-05	06/20/18	0.034	1
MCM-05	09/27/18	0.023	1
MCM-05	11/07/18	0.022	1
MCM-05	08/28/19	0.023	1
MCM-05	10/16/19	0.021	1
MCM-05	03/28/20	0.014	1
MCM-06	08/31/16	0.0389	1
MCM-06	11/30/16	0.0303	1
MCM-06	02/16/17	0.05	1
MCM-06	06/02/17	0.0477	1
MCM-06	08/17/17	0.0645	1
MCM-06	06/20/18	0.066	1
MCM-06	09/27/18	0.045	1
MCM-06	11/07/18	0.11	1
MCM-06	03/06/19	0.12	1
MCM-06	08/28/19	0.13	1
MCM-06	10/17/19	0.12	1
MCM-06	03/28/20	0.064	1

Step 3	-		
Well(3)	Date(3)	Li3	D_Li3
MCM-05	08/31/16	0.0219	1
MCM-05	11/30/16	0.0333	1
MCM-05	02/16/17	0.0376	1
MCM-05	06/02/17	0.0346	1
MCM-05	08/17/17	0.0367	1
MCM-05	06/20/18	0.034	1
MCM-05	09/27/18	0.023	1
MCM-05	11/07/18	0.022	1
MCM-05	08/28/19	0.023	1
MCM-05	10/16/19	0.021	1
MCM-05	03/28/20	0.014	1
MCM-06	08/31/16	0.0389	1
MCM-06	11/30/16	0.0303	1
MCM-06	02/16/17	0.05	1
MCM-06	06/02/17	0.0477	1
MCM-06	08/17/17	0.0645	1
MCM-06	06/20/18	0.066	1
MCM-06	09/27/18	0.045	1
MCM-06	11/07/18	0.11	1
MCM-06	03/06/19	0.12	1
MCM-06	08/28/19	0.13	1
MCM-06	10/17/19	0.12	1
MCM-06	03/28/20	0.064	1

Notes:

Prepared by/Date: <u>LO 9/10/20</u> Checked by/Date: <u>IMR 9/16/20</u>

¹⁾ Concentrations in units of mg/L.

Groundwater ProUCL Output - Lithium McManus Risk Evaluation Report McManus Former AP-1 Plant McManus, Glynn County, GA

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.19/10/2020 9:32:02 AM

From File WorkSheet.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Li1

General Statistics

Total Number of Observations	otal Number of Observations 12 Number of Distinct Observa		11
		Number of Missing Observations	0
Minimum	0.0303	Mean	0.0739
Maximum	0.13	Median	0.0643
SD	0.0359	Std. Error of Mean	0.0104
Coefficient of Variation	0.486	Skewness	0.56

Normal GOF Test

Shapiro Wilk Test Statistic	0.862	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.253	Lilliefors GOF Test
5% Lilliefors Critical Value	0.243	Data Not Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted to		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.0925	95% Adjusted-CLT UCL (Chen-1995)	0.0927
		95% Modified-t UCL (Johnson-1978)	0.0928

Gamma GOF Test

A-D Test Statistic	0.574	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.733	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.201	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.246	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Groundwater ProUCL Output - Lithium

McManus Risk Evaluation Report

McManus Former AP-1

Plant McManus, Glynn County, GA

k hat (MLE)	4.729	k star (bias corrected MLE)	3.603
Theta hat (MLE)	0.0156	Theta star (bias corrected MLE)	0.0205
nu hat (MLE)	113.5	nu star (bias corrected)	86.46
MLE Mean (bias corrected)	0.0739	MLE Sd (bias corrected)	0.0389
		Approximate Chi Square Value (0.05)	66.03
Adjusted Level of Significance	0.029	Adjusted Chi Square Value	63.31

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.0967 95% Adjusted Gamma UCL (use when n<50) 0.101

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.918	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.859	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.183	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.243	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-3.497	Mean of logged Data	-2.715
Maximum of Logged Data	-2.04	SD of logged Data	0.491

Assuming Lognormal Distribution

95% H-UCL	0.102	90% Chebyshev (MVUE) UCL	0.106
95% Chebyshev (MVUE) UCL	0.121	97.5% Chebyshev (MVUE) UCL	0.141
99% Chebyshev (MVUE) UCL	0.18		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.0909	95% Jackknife UCL	0.0925
95% Standard Bootstrap UCL	0.0903	95% Bootstrap-t UCL	0.0965
95% Hall's Bootstrap UCL	0.0888	95% Percentile Bootstrap UCL	0.0905
95% BCA Bootstrap UCL	0.0934		
90% Chebyshev(Mean, Sd) UCL	0.105	95% Chebyshev(Mean, Sd) UCL	0.119
97.5% Chebyshev(Mean, Sd) UCL	0.139	99% Chebyshev(Mean, Sd) UCL	0.177

6123201474 Page 2 of 7

Groundwater ProUCL Output - Lithium McManus Risk Evaluation Report McManus Former AP-1

Plant McManus, Glynn County, GA

Suggested UCL to Use

95% Student's-t UCL 0.0925

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Li2

neral		

23	Number of Distinct Observations	21
	Number of Missing Observations	0
0.014	Mean	0.0516
0.13	Median	0.0376
0.0352	Std. Error of Mean	0.00733
0.681	Skewness	1.271
	0.014 0.13 0.0352	Number of Missing Observations 0.014 Mean 0.13 Median 0.0352 Std. Error of Mean

Normal GOF Test

Shapiro Wilk Test Statistic	0.811	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.914	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.214	Lilliefors GOF Test
5% Lilliefors Critical Value	0.18	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	0.0642	95% Adjusted-CLT UCL (Chen-1995)	0.0658	
		95% Modified-t UCL (Johnson-1978)	0.0645	

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.801	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.752	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.16	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.183	5% K-S Critical Value

Detected data follow Appr. Gamma Distribution at 5% Significance Level

6123201474 Page 3 of 7

Groundwater ProUCL Output - Lithium

McManus Risk Evaluation Report

McManus Former AP-1

Plant McManus, Glynn County, GA

Gamma	Stati	isti	ics
-------	-------	------	-----

k hat (MLE)	2.732	k star (bias corrected MLE)	2.405
Theta hat (MLE)	0.0189	Theta star (bias corrected MLE)	0.0215
nu hat (MLE)	125.7	nu star (bias corrected)	110.6
MLE Mean (bias corrected)	0.0516	MLE Sd (bias corrected)	0.0333
		Approximate Chi Square Value (0.05)	87.34
Adjusted Level of Significance	0.0389	Adjusted Chi Square Value	85.84

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 0.0654 95% Adjusted Gamma UCL (use when n<50) 0.0665

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.945	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.914	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.122	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.18	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-4.269	Mean of logged Data	-3.158
Maximum of Logged Data	-2.04	SD of logged Data	0.624

Assuming Lognormal Distribution

95% H-UCL	0.0682	90% Chebyshev (MVUE) UCL	0.0723
95% Chebyshev (MVUE) UCL	0.0818	97.5% Chebyshev (MVUE) UCL	0.0951
99% Chebyshev (MVUE) UCL	0.121		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.0637	95% Jackknife UCL	0.0642
95% Standard Bootstrap UCL	0.063	95% Bootstrap-t UCL	0.0669
95% Hall's Bootstrap UCL	0.0647	95% Percentile Bootstrap UCL	0.0637
95% BCA Bootstrap UCL	0.0644		
90% Chebyshev(Mean, Sd) UCL	0.0736	95% Chebyshev(Mean, Sd) UCL	0.0836
97.5% Chebyshev(Mean, Sd) UCL	0.0974	99% Chebyshev(Mean, Sd) UCL	0.125

6123201474 Page 4 of 7

Groundwater ProUCL Output - Lithium McManus Risk Evaluation Report McManus Former AP-1 Plant McManus, Glynn County, GA

Suggested UCL to Use

95% Adjusted Gamma UCL 0.0665

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Li3

Statistics

23	Number of Distinct Observations	21
	Number of Missing Observations	0
0.014	Mean	0.0516
0.13	Median	0.0376
0.0352	Std. Error of Mean	0.00733
0.681	Skewness	1.271
	0.014 0.13 0.0352	Number of Missing Observations 0.014 Mean 0.13 Median 0.0352 Std. Error of Mean

Normal GOF Test

Shapiro Wilk Test Statistic	0.811	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.914	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.214	Lilliefors GOF Test
5% Lilliefors Critical Value	0.18	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)			
95% Student's-t UCL	0.0642	95% Adjusted-CLT UCL (Chen-1995)	0.0658
		95% Modified-t UCL (Johnson-1978)	0.0645

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.801	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.752	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.16	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.183	5% K-S Critical Value

Detected data follow Appr. Gamma Distribution at 5% Significance Level

6123201474 Page 5 of 7

Groundwater ProUCL Output - Lithium

McManus Risk Evaluation Report

McManus Former AP-1

Plant McManus, Glynn County, GA

Gamma	

k hat (MLE)	2.732	k star (bias corrected MLE)	2.405
Theta hat (MLE)	0.0189	Theta star (bias corrected MLE)	0.0215
nu hat (MLE)	125.7	nu star (bias corrected)	110.6
MLE Mean (bias corrected)	0.0516	MLE Sd (bias corrected)	0.0333
		Approximate Chi Square Value (0.05)	87.34
Adjusted Level of Significance	0.0389	Adjusted Chi Square Value	85.84

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 0.0654 95% Adjusted Gamma UCL (use when n<50) 0.0665

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.945	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.914	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.122	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.18	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-4.269	Mean of logged Data	-3.158
Maximum of Logged Data	-2.04	SD of logged Data	0.624

Assuming Lognormal Distribution

95% H-UCL	0.0682	90% Chebyshev (MVUE) UCL	0.0723
95% Chebyshev (MVUE) UCL	0.0818	97.5% Chebyshev (MVUE) UCL	0.0951
99% Chebyshev (MVUE) UCL	0.121		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.0637	95% Jackknife UCL	0.0642
95% Standard Bootstrap UCL	0.0633	95% Bootstrap-t UCL	0.0682
95% Hall's Bootstrap UCL	0.0642	95% Percentile Bootstrap UCL	0.0643
95% BCA Bootstrap UCL	0.0656		
90% Chebyshev(Mean, Sd) UCL	0.0736	95% Chebyshev(Mean, Sd) UCL	0.0836
97.5% Chebyshev(Mean, Sd) UCL	0.0974	99% Chebyshev(Mean, Sd) UCL	0.125

6123201474 Page 6 of 7

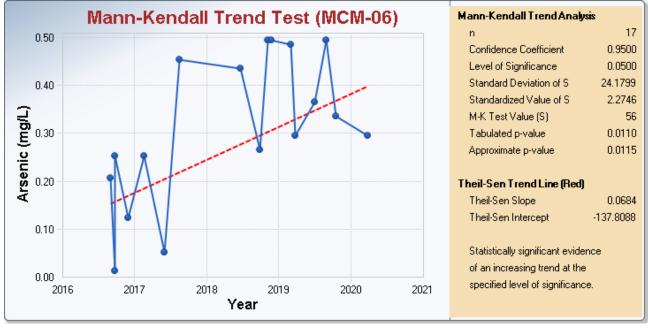
Appendix E-3d Groundwater ProUCL Output - Lithium McManus Risk Evaluation Report McManus Former AP-1 Plant McManus, Glynn County, GA

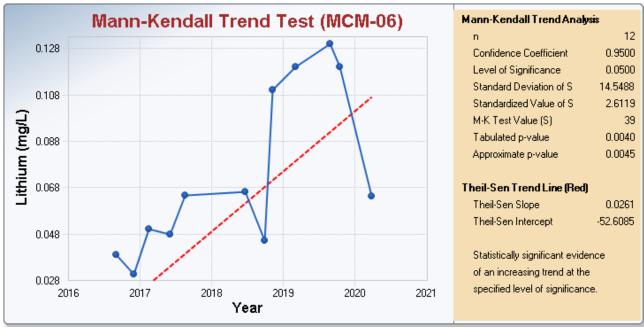
Suggested UCL to Use

95% Adjusted Gamma UCL 0.0665

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.


Recommendations are based upon data size, data distribution, and skewness.


These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

6123201474 Page 7 of 7

Appendix E-4 Groundwater Trend Graphs

Appendix E-4 Groundwater Mann-Kendall Trend Graphs - MCM-06 Arsenic & Lithium McManus Risk Evaluation Report McManus Former AP-1 Plant McManus, Glynn County, GA

APPENDIX F Support for Refined Surface Water Risk Evaluation

APPENDIX F-1 Exposure Point Concentration Calculation Results

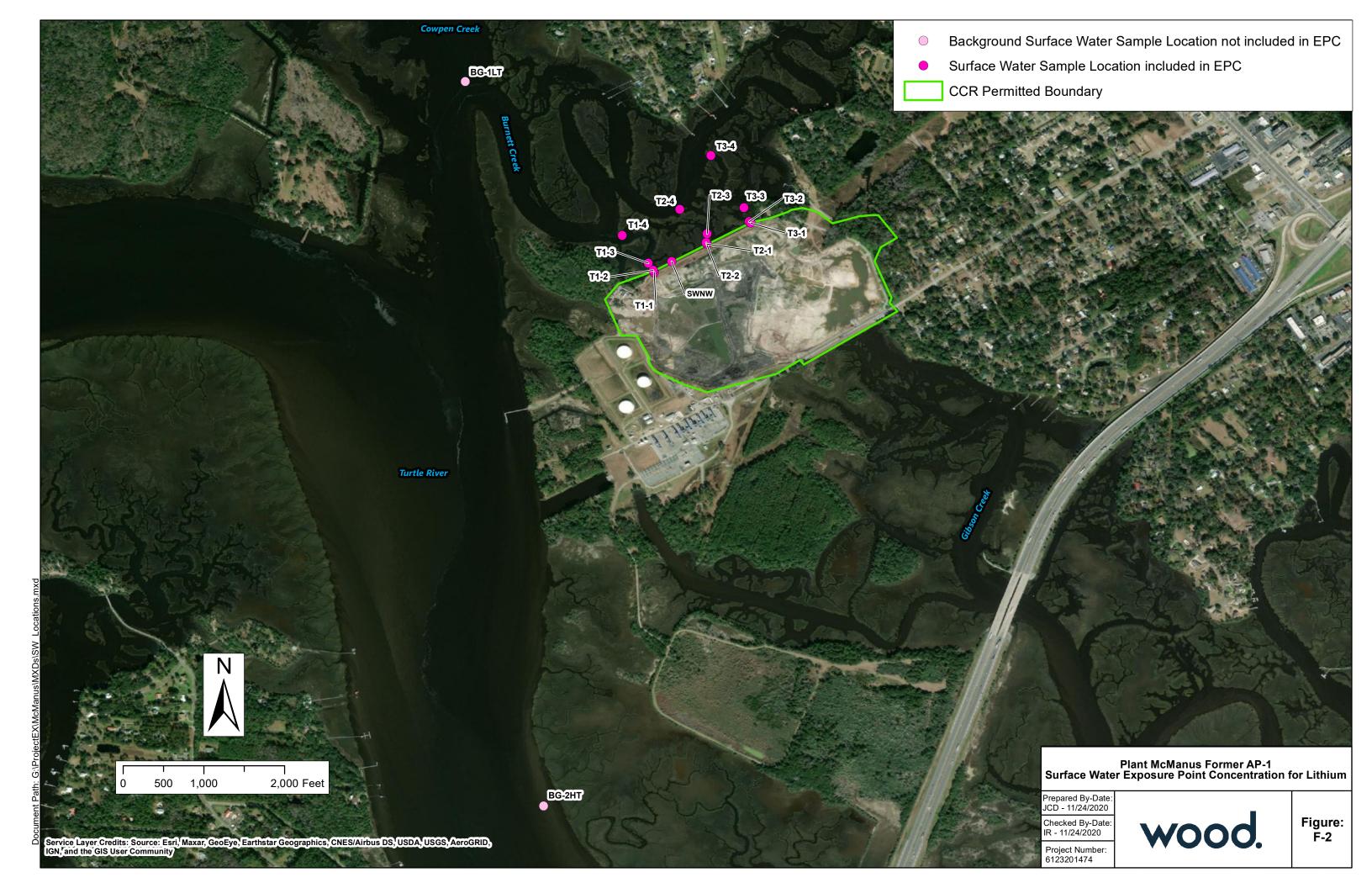
Prepared by/Date: LO 10/30/20

Checked by/Date: IMR 10/30/20

Appendix F-1 Surface Water Exposure Point Calculation Details McManus Risk Evaluation Report McManus Former AP-1 Plant McManus, Glynn County, GA

CCR Rule Designation	Constituent	Exposure Unit	Surface Water Location IDs Included	Maximum Concentration (mg/L)	Detection Frequency	Exceedance Frequency	EPC (mg/L)
Appendix IV	Lithium	North	SWNW T1-1HT T1-1LT T1-2HT T1-2HT T1-2HTS T1-2LT T1-3HT T1-3HTS T1-3LT T1-4HT T1-4HT T1-4HT T2-2HT T2-2HT T2-2HT T2-2HT T2-3HT T2-3HT T2-3HT T2-4HT T1-4HT T1-4HT T1-4HT T1-3-1HT	0.11	32 / 32	3 / 32	0.082

Notes:


Highlighted value is the EPC selected for the refined surface water screening.

Definitions:

CCR = Coal Combustion Residuals EPC = Exposure Point Concentration mg/L = milligrams per liter

APPENDIX F-2

Surface Water Exposure Point Concentration Figure

APPENDIX F-3 Surface Water ProUCL Input/Output Files

Appendix F-3a
Surface Water ProUCL Input - Lithium
McManus Risk Evaluation Report
McManus Former AP-1
Plant McManus, Glynn County, GA

Location	Date	Li	D_Li
SWNW	06/29/18	0.097	1
T1-1HT	02/01/20	0.039	1
T1-1LT	02/01/20	0.024	1
T1-2HT	02/01/20	0.11	1
T1-2HTS	02/01/20	0.055	1
T1-2LT	02/01/20	0.022	1
T1-3HT	02/01/20	0.092	1
T1-3HTS	02/01/20	0.067	1
T1-3LT	02/01/20	0.022	1
T1-4HT	02/01/20	0.08	1
T1-4HTS	02/01/20	0.081	1
T1-4LT	02/01/20	0.09	1
T2-1HT	02/01/20	0.052	1
T2-2HT	02/01/20	0.10	1
T2-2HTS	02/01/20	0.073	1
T2-2LT	02/02/20	0.063	1
T2-3HT	02/01/20	0.099	1
T2-3HTS	02/01/20	0.11	1
T2-3LT	02/02/20	0.049	1
T2-4HT	02/01/20	0.091	1
T2-4HTS	02/01/20	0.085	1
T2-4LT	02/02/20	0.075	1
T3-1HT	02/02/20	0.076	1
T3-2HT	02/02/20	0.097	1
T3-2HTS	02/02/20	0.075	1
T3-2LT	02/03/20	0.077	1
T3-3HT	02/02/20	0.081	1
T3-3HTS	02/02/20	0.08	1
T3-3LT	02/03/20	0.084	1
T3-4HT	02/02/20	0.087	1
T3-4HTS	02/02/20	0.085	1
T3-4LT	02/03/20	0.072	1

Notes:

1) Concentrations in units of mg/L.

Prepared by/Date: <u>LO 10/30/20</u> Checked by/Date: <u>IMR 10/30/20</u>

Surface Water ProUCL Output - Lithium McManus Risk Evaluation Report McManus Former AP-1 Plant McManus, Glynn County, GA

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.15/17/2020 11:40:33 PM

From File Surface water lithium input_a.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Li

Total Number of Observations	32	Number of Distinct Observations	
		Number of Missing Observations	0
Minimum	0.022	Mean	0.0747
Maximum	0.11	Median	0.08
SD	0.0236	Std. Error of Mean	0.00417
Coefficient of Variation	0.316	Skewness	-0.907

Normal GOF Test

Shapiro Wilk Test Statistic	0.91	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.93	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.173	Lilliefors GOF Test
5% Lilliefors Critical Value	0.154	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)
----------------	----------------------------------

Gamma GOF Test

Anderson-Darling Gamma GOF Test	1.	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

6.447	k star (bias corrected MLE)	7.091	k hat (MLE)
0.0116	Theta star (bias corrected MLE)	0.0105	Theta hat (MLE)
412.6	nu star (bias corrected)	453.8	nu hat (MLE)
0.0294	MLE Sd (bias corrected)	0.0747	MLE Mean (bias corrected)
366.5	Approximate Chi Square Value (0.05)		
364.2	Adjusted Chi Square Value	0.0416	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n<=50)) 0.0841 95% Adjusted Gamma UCL (use when n<50) 0.0846

0E% lookknife LICI 0.0010

Appendix F-3b Surface Water ProUCL Output - Lithium McManus Risk Evaluation Report McManus Former AP-1 Plant McManus, Glynn County, GA

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.778	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.93	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.252	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.154	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-3.817	Mean of logged Data	-2.667
Maximum of Logged Data	-2.207	SD of logged Data	0.432

Assuming Lognormal Distribution

95% H-UCL	0.0883	90% Chebyshev (MVUE) UCL	0.0941
95% Chebyshev (MVUE) UCL	0.102	97.5% Chebyshev (MVUE) UCL	0.114
99% Chebyshey (MVUE) UCL	0.136		

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

0.0016

0E0/ CLT LICE

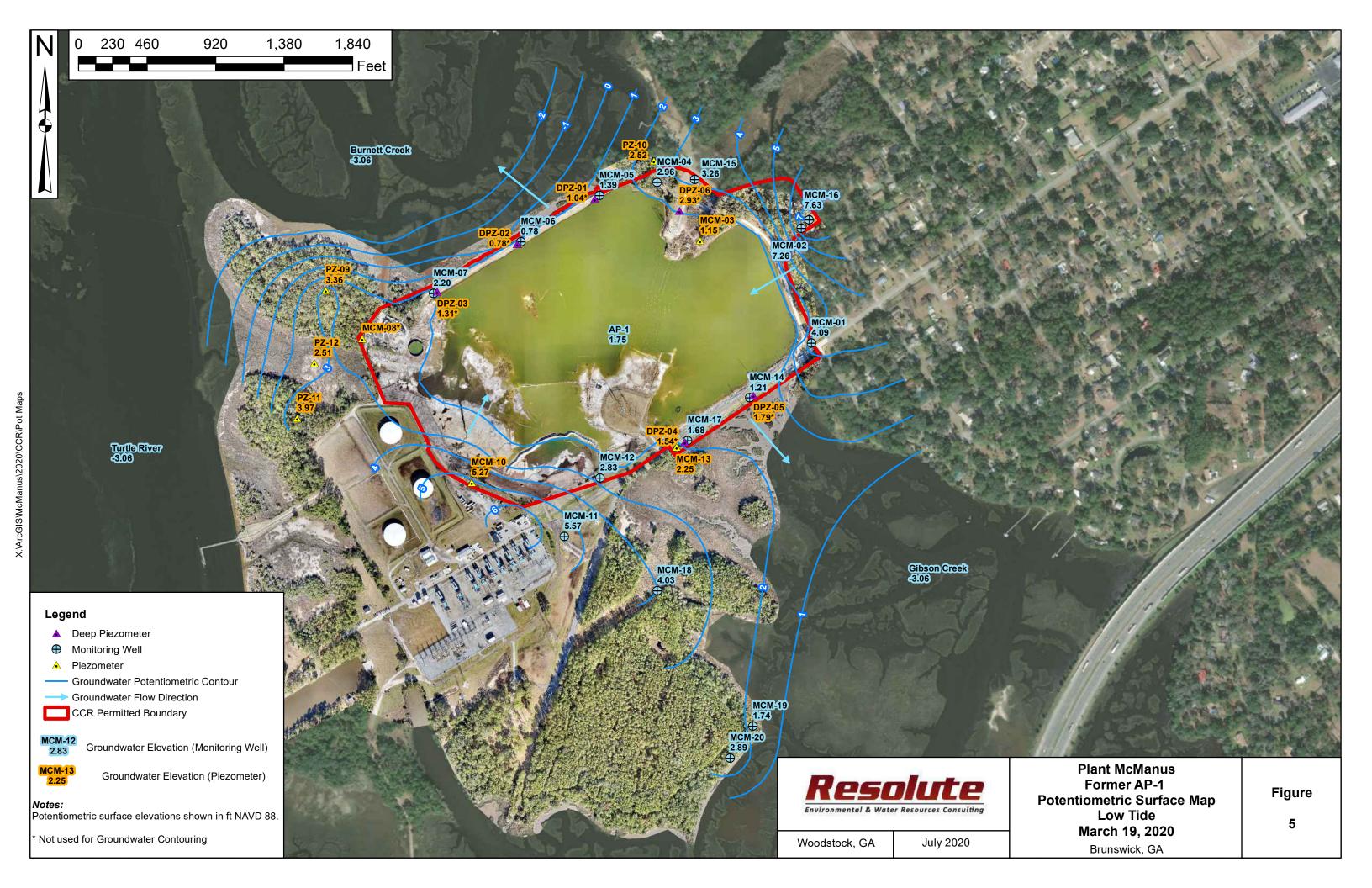
95% CL1 UCL	0.0610	95% Jackkille OCL	0.0616
95% Standard Bootstrap UCL	0.0814	95% Bootstrap-t UCL	0.0812
95% Hall's Bootstrap UCL	0.0812	95% Percentile Bootstrap UCL	0.0814
95% BCA Bootstrap UCL	0.0808		
90% Chebyshev(Mean, Sd) UCL	0.0872	95% Chebyshev(Mean, Sd) UCL	0.0929
97.5% Chebyshev(Mean, Sd) UCL	0.101	99% Chebyshev(Mean, Sd) UCL	0.116

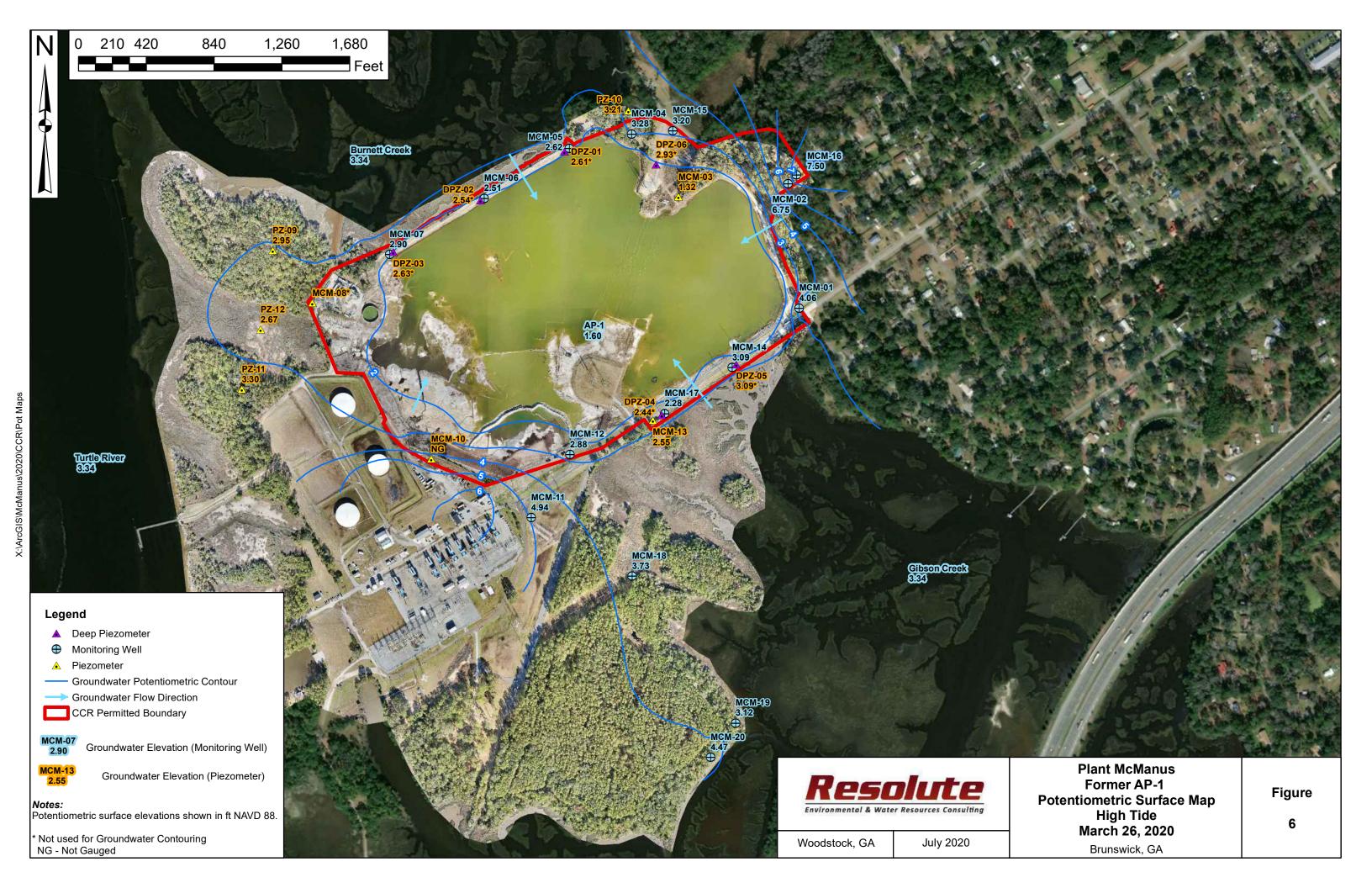
Suggested UCL to Use

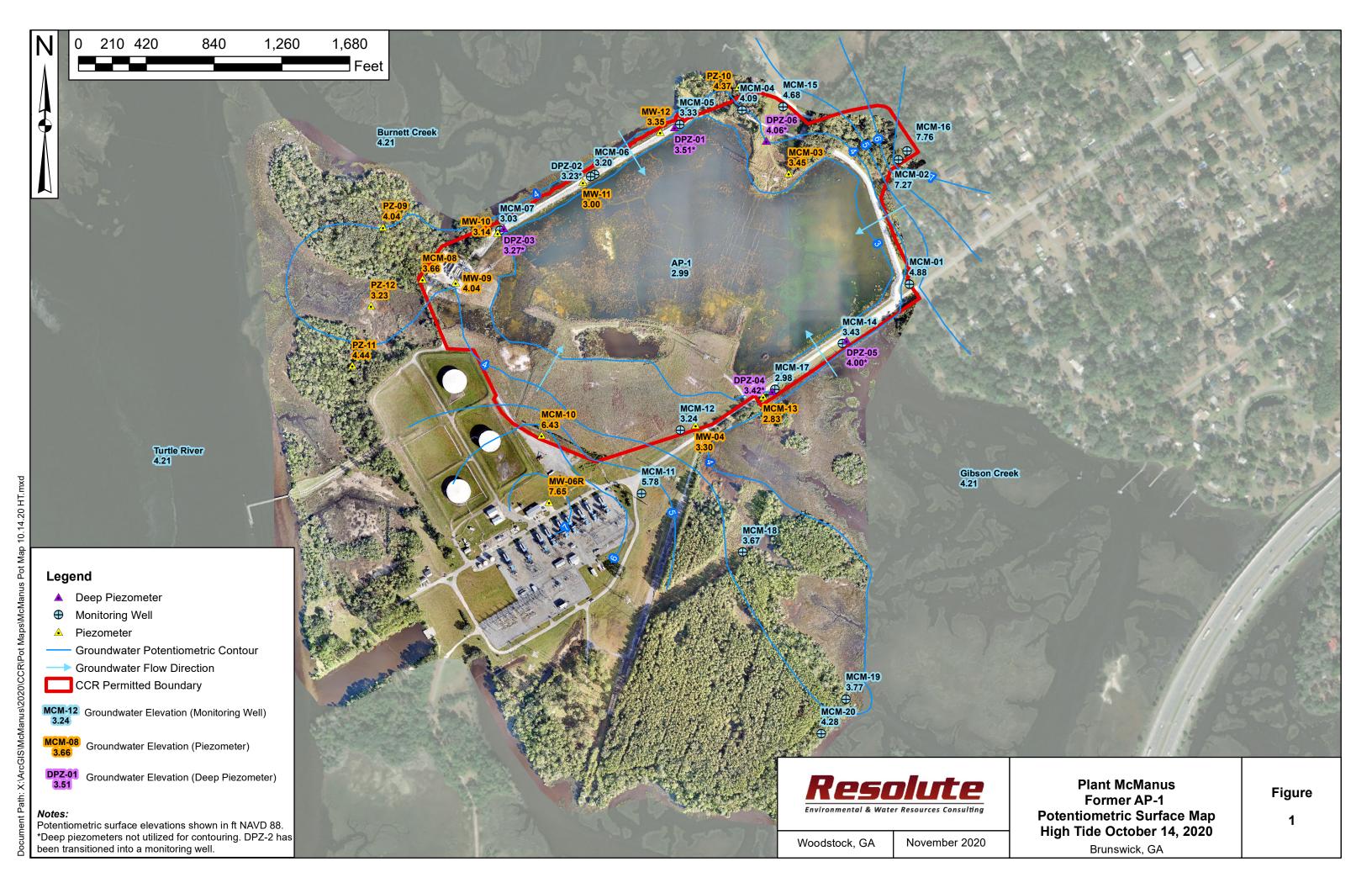
95% Student's-t UCL	0.0818	or 95% Modified-t UCL	0.0817

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

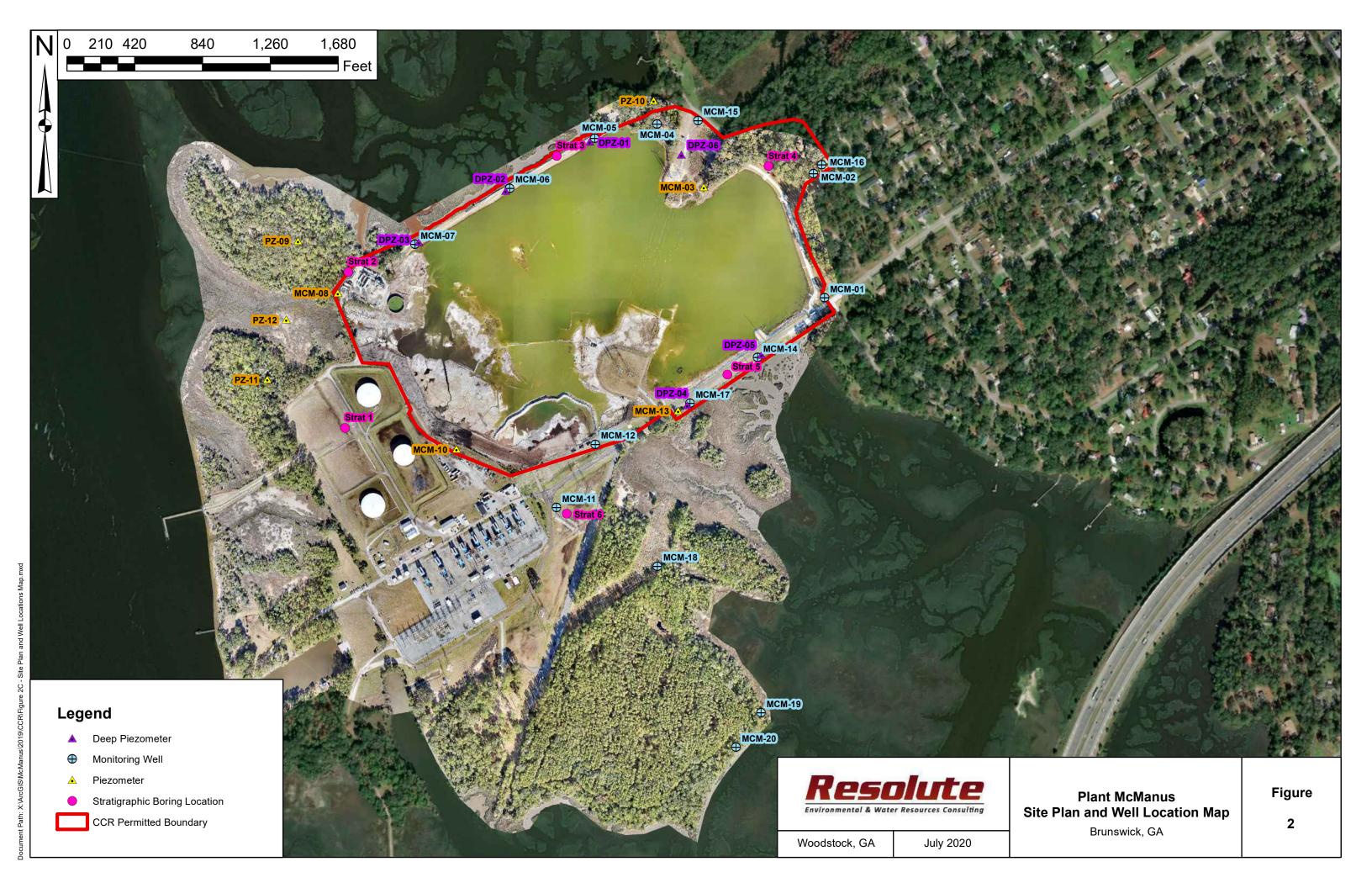
Recommendations are based upon data size, data distribution, and skewness.

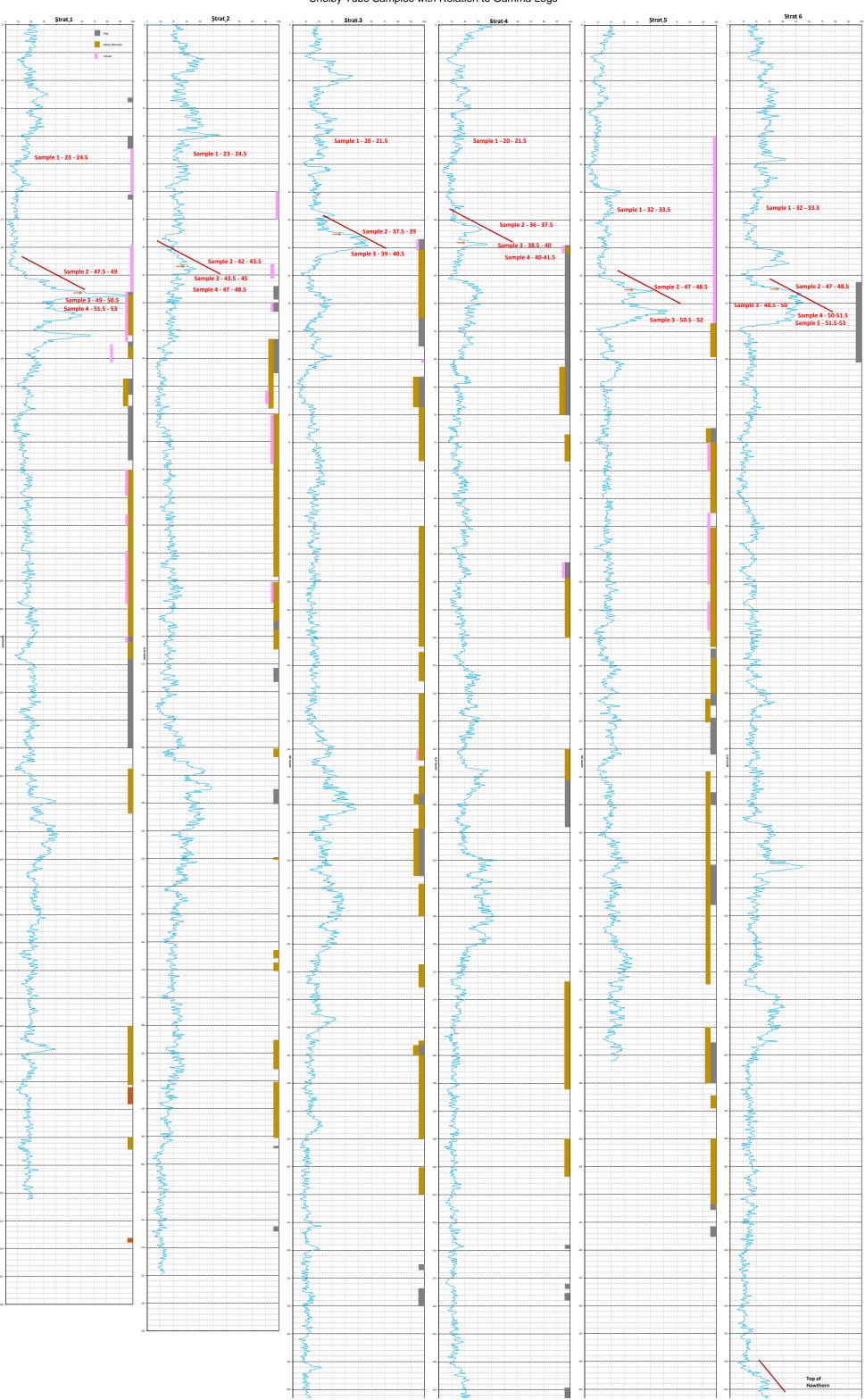

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

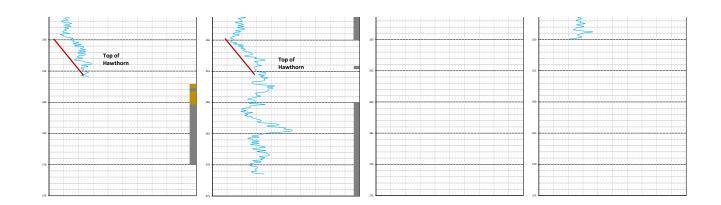

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.


6123201474 Page 2 of 2

APPENDIX B


Potentiometric Maps (Resolute 2020a)





APPENDIX C Gamma Logs and Conductivity Summary (Resolute 2020a)

Vertical Hydraulic Conductivity Based on ASTM D 5084-10 Georgia Power Plant McManus Brunswick, Georgia

	Upper Satilla Formation K Values									
Boring ID Top Depth Bottom Depth Measu (ft bgs) (ft bgs) (cm										
Strat 1	23	25	1.72E-06							
Strat 2	23	25	2.45E-05							
Strat 3	20	22	1.06E-03							
Strat 4	20	22	1.88E-04							
Strat 5	32	34	1.27E-03							
Strat 6	31.5	33.5	6.19E-06							

Lower Satil	la (Cypresshead	d/Ebenezer) Format	tion K Values
Boring ID	Top Depth	Bottom Depth	Measured K
Strat 1	47	49	7.14E-05
Strat 1	49	51	1.65E-04
Strat 1	51.5	53.5	1.58E-05
Strat 2	43.5	45.5	1.81E-05
Strat 2	47	49	2.02E-06
Strat 3	37.5	39.5	1.08E-07
Strat 3	39.5	41.5	4.91E-05
Strat 4	36	38	3.07E-05
Strat 4	38	40	8.09E-06
Strat 4	40	42	4.70E-05
Strat 5	47	49	5.25E-05
Strat 5	50.5	51.5	2.57E-05
Strat 6	48.5	50	2.04E-07
Strat 6	50	51.5	1.24E-06
Strat 6	51.5	53	1.35E-07

Range of Upper Satilla Vertical K Values (cm/s): 1.72E-06 to 1.27E-03
Range of Lower Satilla Vertical K Values (cm/s): 1.08E-07 to 1.65E-04
Average Upper Satilla Vertical K (cm/s): 4.25E-04
Average Lower Satilla Vertical K (cm/s): 3.25E-05

Notes:

ft bgs - feet below ground surface cm/s - centimeters per second

APPENDIX D Analytical Summary Tables (Resolute 2020a)

					Well ID & Sa	mple Date			
List	Parameter	MCM-01	MCM-01	MCM-01 resample	MCM-01	MCM-02	MCM-02	MCM-02 resample	MCM-02
		8/27/2019	10/16/2019	11/20/2019	3/26/2020	8/28/2019	10/16/2019	11/19/2019	3/27/2020
	Boron		ND (0.036 J)		ND (0.064 J)		0.085		ND (0.17 J)
l =	Calcium		13.6		10.1		4.9		4.9
×	Chloride		21.4		23.0		33.1		32.9
	Fluoride	ND	ND (0.046 J)		ND	ND	ND (0.044 J)		ND
APPENDIX III	pH ²	5.58	5.72	5.77	5.45	4.99	4.98	5.11	5.12
⋖	Sulfate		31.9		36.2		24.4		28.6
	TDS		104		114		96.0		119
	Antimony	ND	ND		ND	ND	ND		ND
	Arsenic	0.0079	0.010	0.0064	0.0069	ND	ND (0.0030 J)	ND (0.00057 J)	ND
	Barium	0.077	0.074		0.070	0.10	0.10		0.095
	Beryllium	ND (0.000090 J)	ND		ND	ND (0.00011 J)	ND (0.00013 J)		ND
	Cadmium	ND	-		ND	ND	-		ND
≥	Chromium	ND (0.00079 J)	ND		ND	ND (0.0035 J)	ND		ND
	Cobalt	ND	ND		ND	ND (0.00042 J)	ND (0.00037 J)		ND
	Fluoride	ND	ND (0.046 J)		ND	ND	ND (0.044 J)		ND
APPENDIX	Lead	ND	ND		ND	ND	ND		ND
⋖	Lithium	ND	ND		ND	ND	ND		ND
	Mercury	ND			ND	ND			ND
	Molybdenum	ND	ND		ND	ND	ND		ND
	Radium	1.20 U	1.40 U		1.15U	0.679 U	0.422 U		0.838U
	Selenium	ND	ND		ND	ND	ND		ND
	Thallium	ND	ND		ND	ND	ND		ND

Notes:

Results for substances are reported in milligrams per liter (mg/L). Radium results are reported in picocuries per liter (pCi/L)

ND (Not Detected) indicates the substance was not detected above the analytical method detection limit (MDL)

ND (value J) indicates the substance was detected at such low levels that the precision of the laboratory instruments could not produce a reliable value. Therefore, the value displayed (value J) is qualified by the laboratory as an estimated number

TDS indicates total dissolved solids

U indicates the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value. Therefore, the value followed by U is qualified by the laboratory as estimated

Appendix III = indicator parameters evaluated during Detection Monitoring; Appendix IV = parameters evaluated during Assessment Monitoring

-- indicates the parameter was not analyzed

					Well ID & Sar	nple Date			
List	Parameter	MCM-04	MCM-04	MCM-04 resample	MCM-04	MCM-05	MCM-05	MCM-05 resample	MCM-05
Ι_		8/27/2019	10/15/2019	11/20/2019	3/28/2020	8/28/2019	10/16/2019	11/20/2019	3/28/2020
	Boron		0.068		ND (0.067 J)		0.49	0.53	ND (0.28 J)
APPENDIX III	Calcium		15.5		15.5		55.2	55.8	25.8
	Chloride		46.0		71.4		413	1480	693
	Fluoride	ND	ND (0.095 J)		ND	0.36	0.41	0.34	0.34
	pH ²	5.05	4.89	5.03	5.27	6.69	6.64	6.58	6.6
۲	Sulfate		105		86.6		158	132	63.8
l	TDS		237		284		2860	2640	1470
	Antimony	ND	ND		ND	ND	ND		ND
	Arsenic	0.0072	ND (0.0038 J)		ND (0.0034 J)	ND (0.0019 J)	ND (0.0047 J)		ND
	Barium	0.083	0.082		0.039	0.011	0.012		ND (0.0041 J)
	Beryllium	ND (0.00032 J)	ND (0.00035 J)		ND	ND	ND		ND
	Cadmium	ND			ND	ND			ND
≥	Chromium	ND (0.0018 J)	ND (0.0012 J)		ND	ND (0.00047 J)	ND (0.00057 J)		ND
Ž	Cobalt	0.0078	0.0085	0.0090	ND (0.0041 J)	ND	ND		ND
I S	Fluoride	ND	ND (0.095 J)		ND	0.36	0.41	0.34	0.34
APPENDIX	Lead	ND	ND		ND	ND	ND		ND
⋖	Lithium	ND (0.0020 J)	ND (0.0019 J)		ND	ND (0.023 J)	ND (0.021 J)		ND (0.014 J)
	Mercury	ND			ND	ND			ND
	Molybdenum	ND	ND		ND	ND	ND		ND
	Radium	4.40	4.92		4.16	1.67	1.92		1.44U
	Selenium	ND	ND		ND	ND	ND		ND
	Thallium	ND	ND		ND	ND	ND		ND

Notes:

Results for substances are reported in milligrams per liter (mg/L). Radium results are reported in picocuries per liter (pCi/L)

ND (Not Detected) indicates the substance was not detected above the analytical method detection limit (MDL)

ND (value J) indicates the substance was detected at such low levels that the precision of the laboratory instruments could not produce a reliable value. Therefore, the value displayed (value J) is qualified by the laboratory as an estimated number

TDS indicates total dissolved solids

U indicates the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value. Therefore, the value followed by U is qualified by the laboratory as estimated

Appendix III = indicator parameters evaluated during Detection Monitoring; Appendix IV = parameters evaluated during Assessment Monitoring

-- indicates the parameter was not analyzed

t e				,	Well ID & Sample I	Date		
List	Parameter	MCM-06	MCM-06	MCM-06	MCM-07	MCM-07	MCM-07 resample	MCM-07
-		8/28/2019	10/17/2019	3/28/2020	8/28/2019	10/17/2019	11/20/2019	3/28/2020
	Boron		1.30	0.95		1.1	1.3	0.79
=	Calcium		309	286		260	308	286
×	Chloride		9930	9190		8210	9810	9070
	Fluoride	ND	ND	ND	ND	ND	ND	ND
APPENDIX III	pH ²	6.87	6.86	6.8	6.35	6.40	6.27	6.35
⋖	Sulfate		507	701		1230	1550	1090
	TDS		16100	18800		13200	16700	18300
Γ	Antimony	ND (0.00098 J)	ND (0.00090 J)	ND (0.0029 J)	ND	ND		ND
	Arsenic	0.50	0.34	0.30	0.011	ND (0.0046 J)		0.012
	Barium	0.13	0.13	0.12	0.40	0.35		0.11
	Beryllium	ND	ND	ND	ND	ND (0.000078 J)		ND
	Cadmium	ND		ND	ND			ND
≥	Chromium	ND (0.00085 J)	ND (0.0015 J)	ND	ND (0.0024 J)	ND (0.0019 J)		ND
	Cobalt	ND	ND	ND	ND	ND		ND
APPENDIX	Fluoride	ND	ND	ND	ND	ND	ND	ND
P	Lead	ND	ND (0.00012 J)	ND	ND (0.00010 J)	ND		ND
⋖	Lithium	0.13	0.12	0.064	0.12	0.096	0.12	ND (0.027 J)
	Mercury	ND		ND	ND			ND
	Molybdenum	ND (0.0017 J)	ND (0.0017 J)	ND	ND	ND		ND
	Radium	6.86	7.85	11	8.73	7.97	9.80	11.7
	Selenium	ND (0.0014 J)	ND (0.0066 J)	ND	ND (0.0019 J)	ND (0.0049 J)		ND
	Thallium	ND	ND (0.000076 J)	ND	ND	ND		ND

Notes:

Results for substances are reported in milligrams per liter (mg/L). Radium results are reported in picocuries per liter (pCi/L)

ND (Not Detected) indicates the substance was not detected above the analytical method detection limit (MDL)

ND (value J) indicates the substance was detected at such low levels that the precision of the laboratory instruments could not produce a reliable value. Therefore, the value displayed (value J) is qualified by the laboratory as an estimated number

TDS indicates total dissolved solids

U indicates the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value. Therefore, the value followed by U is qualified by the laboratory as estimated

Appendix III = indicator parameters evaluated during Detection Monitoring; Appendix IV = parameters evaluated during Assessment Monitoring

-- indicates the parameter was not analyzed

				Well ID & Sar	mple Date		
List	Parameter	MCM-08	MCM-08	MCM-08 resample	MCM-11	MCM-11	MCM-11
		8/28/2019	10/16/2019	11/19/2019	8/28/2019	10/16/2019	3/27/2020
	Boron		0.39			ND (0.032 J)	ND (0.058 J)
l =	Calcium		53.0			2.2	3.3
Ĭ	Chloride		2150			12.2	14.5
APPENDIX III	Fluoride	ND	ND (0.10 J)		ND (0.068 J)	ND (0.10 J)	ND (0.066 J)
P	pH ²	5.11	5.23	5.29	4.87	5.05	5.09
⋖	Sulfate		423			17.4	23.4
	TDS		4070			82.0	87.0
	Antimony	ND	ND		ND	ND	ND
	Arsenic	0.023	0.024		ND (0.0050 J) 0.		ND (0.0034 J)
	Barium	0.52	0.54		0.035	0.036	0.039
	Beryllium	ND (0.00061 J)	ND (0.00059 J)		ND (0.000084 J)	ND (0.000090 J)	ND
	Cadmium	ND			ND		ND
>	Chromium	ND (0.0095 J)	0.010		ND (0.00053 J)	ND (0.00072 J)	ND
Ĭ	Cobalt	0.0061	0.0063	ND (0.0062 J)	ND	ND	ND
	Fluoride	ND	ND (0.10 J)		ND (0.068 J)	ND (0.10 J)	ND (0.066 J)
APPENDIX IV	Lead	ND	ND		ND	ND	ND
۲	Lithium	ND (0.0031 J)	ND (0.0027 J)		ND (0.00082 J)	ND	ND
	Mercury	ND			ND		ND
	Molybdenum	ND (0.0026 J)	ND (0.0026 J)		ND	ND	ND
	Radium	20.6	25.3		0.434 U	0.923 U	0.609U
	Selenium	ND (0.0048 J)	ND (0.0043 J)		ND	ND	ND
	Thallium	ND	ND		ND	ND	ND

Notes:

Results for substances are reported in milligrams per liter (mg/L). Radium results are reported in picocuries per liter (pCi/L)

ND (Not Detected) indicates the substance was not detected above the analytical method detection limit (MDL)

ND (value J) indicates the substance was detected at such low levels that the precision of the laboratory instruments could not produce a reliable value. Therefore, the value displayed (value J) is qualified by the laboratory as an estimated number

TDS indicates total dissolved solids

U indicates the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value. Therefore, the value followed by U is qualified by the laboratory as estimated

Appendix III = indicator parameters evaluated during Detection Monitoring; Appendix IV = parameters evaluated during Assessment Monitoring

-- indicates the parameter was not analyzed

				V	Vell ID & Sample Da	ate		
List	Parameter	MCM-12	MCM-12	MCM-12	MCM-14	MCM-14	MCM-14 resample	MCM-14
-		8/27/2019	10/15/2019	3/27/2020	8/26/2019	10/15/2019	11/21/2019	3/27/2020
	Boron		1.1	1.5		1.0	1.0	1.3
≡	Calcium		7.9	8.3		321	305	286
	Chloride		744	675		9050	8330	7680
I S	Fluoride	1.1	1.0	1.1	ND	ND	ND	ND
APPENDIX	pH ²	6.24	6.19	6.33	6.62	6.58	6.67	6.59
۸	Sulfate		ND (0.54 J)	ND		ND	1070	899
l_	TDS		1730	1970		15400	15800	16400
I	Antimony	ND	ND	ND	ND (0.00040 J)	ND		ND
	Arsenic	ND (0.0011 J)	ND (0.0024 J)	ND	ND (0.0022 J)	0.0067		ND
	Barium	0.14	0.14	0.12	0.12	0.12		0.13
	Beryllium	ND (0.00090 J)	ND (0.00079 J)	ND	ND (0.00010 J)	ND		ND
	Cadmium	ND		ND	ND			ND
≥	Chromium	ND (0.0056 J)	ND (0.0057 J)	ND	ND (0.00071 J)	ND (0.00076 J)		ND
	Cobalt	ND (0.00070 J)	ND (0.00054 J)	ND	ND	ND		ND
APPENDIX	Fluoride	1.1	1.0	1.1	ND	ND	ND	ND
PP	Lead	ND (0.00022 J)	ND (0.000056 J)	ND	ND	ND		ND
۸	Lithium	ND (0.012 J)	ND (0.012 J)	ND	0.059	ND (0.056 J)	0.052	0.052
	Mercury	ND		ND	ND			ND
	Molybdenum	ND	ND	ND	ND	ND		ND
	Radium	2.91	3.28	2.33	7.68	8.70	7.34	9.63
	Selenium	ND (0.0019 J)	ND	ND	ND (0.0025 J)	ND (0.0030 J)		ND
	Thallium	ND	ND	ND	ND	ND		ND

Notes:

Results for substances are reported in milligrams per liter (mg/L). Radium results are reported in picocuries per liter (pCi/L)

ND (Not Detected) indicates the substance was not detected above the analytical method detection limit (MDL)

ND (value J) indicates the substance was detected at such low levels that the precision of the laboratory instruments could not produce a reliable value. Therefore, the value displayed (value J) is qualified by the laboratory as an estimated number

TDS indicates total dissolved solids

U indicates the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value. Therefore, the value followed by U is qualified by the laboratory as estimated

Appendix III = indicator parameters evaluated during Detection Monitoring; Appendix IV = parameters evaluated during Assessment Monitoring

-- indicates the parameter was not analyzed

				Well ID & S	ample Date		
List	Parameter	MCM-15	MCM-15	MCM-15	MCM-16	MCM-16	MCM-16
		8/27/2019	10/15/2019	3/27/2020	8/27/2019	10/16/2019	3/27/2020
	Boron		0.046	ND (0.076 J)		0.051	0.088 J
APPENDIX III	Calcium		6.7	5.9		4.8	5.4
×	Chloride		17.1	14.1		20.0	23.6
END	Fluoride	ND	ND (0.14 J)	ND	ND	ND (0.044 J)	ND
P	pH ²	5.35	5.32	5.30	4.88	4.89	5.12
⋖	Sulfate		17.9	14.6		28.5	31.2
	TDS		107	110		95.0	110
	Antimony	ND	ND	ND	ND	ND	ND
	Arsenic	ND (0.0041 J)	ND (0.0038 J)	ND (0.0018 J)	ND (0.0019 J) ND (0.0010 J)		ND
	Barium	0.048	0.041	0.041	0.13	0.13	0.13
	Beryllium	ND (0.00042 J)	ND (0.00034 J)	ND	ND (0.00021 J)	ND (0.00014 J)	ND
	Cadmium	ND		ND	ND		ND
>	Chromium	ND (0.0026 J)	ND (0.0026 J)	ND	ND (0.00043 J)	ND	ND
¥	Cobalt	ND	ND	ND	ND (0.00030 J)	ND	ND
	Fluoride	ND	ND (0.14 J)	ND	ND	ND (0.044 J)	ND
APPENDIX IV	Lead	ND (0.00011 J)	ND (0.00038 J)	ND	ND	ND	ND
⋖	Lithium	ND (0.0020 J)	ND (0.0016 J)	ND	ND	ND	ND
	Mercury	ND		ND	ND		ND
	Molybdenum	ND	ND	ND	ND	ND	ND
	Radium	2.33	0.979 U	1.84	1.03 U	1.86	1.51
	Selenium	ND (0.0018 J)	ND	ND	ND	ND	ND
	Thallium	ND	ND	ND	ND (0.000066 J)	ND	ND

Notes:

Results for substances are reported in milligrams per liter (mg/L). Radium results are reported in picocuries per liter (pCi/L)

ND (Not Detected) indicates the substance was not detected above the analytical method detection limit (MDL)

ND (value J) indicates the substance was detected at such low levels that the precision of the laboratory instruments could not produce a reliable value. Therefore, the value displayed (value J) is qualified by the laboratory as an estimated number

TDS indicates total dissolved solids

U indicates the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value. Therefore, the value followed by U is qualified by the laboratory as estimated

Appendix III = indicator parameters evaluated during Detection Monitoring; Appendix IV = parameters evaluated during Assessment Monitoring

-- indicates the parameter was not analyzed

				Well II	D & Sample Date			
List	Parameter	MCM-17	MCM-17	MCM-17 resample	MCM-17	MCM-18	MCM-19	MCM-20
-		8/27/2019	10/16/2019	11/21/2019	3/27/2020	3/27/2020	3/27/2020	3/27/2020
	Boron		1.6	1.5	1.8	ND (0.24 J)	0.96	0.94
l =	Calcium		118	125	222	23.2	122	113
×	Chloride		4050	3890	4770	1450	6870	7110
	Fluoride	ND	ND (0.083 J)	ND	ND	ND (0.060 J)	ND	ND
APPENDIX III	pH ²	6.23	6.54	6.40	6.93	4.34	5.14	3.81
⋖	Sulfate		470	428	504	219	836	700
	TDS		7740	7720	10200	3090	14300	14600
	Antimony	ND	ND		ND	ND	ND	ND
	Arsenic	ND (0.0024 J)	ND (0.0043 J)	ND (0.0031 J)	ND	ND (0.0043 J)	0.017	0.027
	Barium	0.11	0.14		0.16	0.076	0.12	0.12
	Beryllium	ND (0.00018 J)	ND (0.00014 J)		ND	0.0040	0.011	0.018
	Cadmium	ND			ND	ND	ND	ND
>	Chromium	ND (0.0066 J)	ND (0.0063 J)		ND	ND	ND	ND (0.0095 J)
APPENDIX IV	Cobalt	ND	ND		ND	ND	ND	0.036
	Fluoride	ND	ND (0.083 J)	ND	ND	ND (0.060 J)	ND	ND
P	Lead	ND (0.00014 J)	ND (0.00034 J)		ND	ND	ND	ND
⋖	Lithium	ND (0.023 J)	ND (0.024 J)		ND (0.033 J)	ND	ND (0.018 J)	ND (0.024 J)
	Mercury	ND			ND	ND	ND	ND
	Molybdenum	ND	ND		ND	ND	ND	ND
	Radium	5.82	7.50	8.89	9.54	10.2	22.8	47.2
	Selenium	ND (0.0018 J)	ND		ND	ND (0.0034 J)	0.013	0.012
	Thallium	ND	ND		ND	ND	ND	ND

Notes:

Results for substances are reported in milligrams per liter (mg/L). Radium results are reported in picocuries per liter (pCi/L)

ND (Not Detected) indicates the substance was not detected above the analytical method detection limit (MDL)

ND (value J) indicates the substance was detected at such low levels that the precision of the laboratory instruments could not produce a reliable value. Therefore, the value displayed (value J) is qualified by the laboratory as an estimated number

TDS indicates total dissolved solids

U indicates the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value. Therefore, the value followed by U is qualified by the laboratory as estimated

Appendix III = indicator parameters evaluated during Detection Monitoring; Appendix IV = parameters evaluated during Assessment Monitoring

-- indicates the parameter was not analyzed

Summary of Groundwater Analytical Data - August 2020 Plant McManus Brunswick, Georgia

								1	Well ID & Samp	le Date						
List	Parameter	MCM-01	MCM-02	MCM-04	MCM-05	MCM-06	MCM-07	MCM-11	MCM-12	MCM-14	MCM-15	MCM-16	MCM-17	MCM-18	MCM-19	MCM-20
		8/26/2020	8/26/2020	8/26/2020	8/26/2020	8/26/2020	8/26/2020	8/26/2020	8/26/2020	8/26/2020	8/26/2020	8/26/2020	8/26/2020	8/26/2020	8/26/2020	8/26/2020
	Boron	<0.12	<0.12	<0.12	0.43 J	1.6	1.6	<0.12	1.4	1.2	<0.12	<0.12	1.8	0.25 J	0.91	1.0
■	Calcium	10.5	4.6	20.6	21.5	254	259	3.2	7.5	284	5.8	5.6	146	25.7	121	110
	Chloride	13.2	26.7	42.0	558	6510	7330	13.3	529	<0.60	14.4	22.2	<0.60	0.60	5390	5470
2	Fluoride	<0.050	< 0.050	< 0.050	0.39	< 0.050	<0.050	0.097 J	1.2	< 0.050	< 0.050	<0.050	< 0.050	0.096 J	<0.050	0.058 J
APPENDIX	pН	5.79	5.03	4.95	6.50	6.88	6.32	4.96	6.32	6.62	5.33	4.92	6.65	4.27	5.25	3.78
	Sulfate	32.9	28.0	112	61.9	514	895	21.8	<0.50	730	14.0	27.8	341	170	854	639
	TDS	82.0	89.0	289	1260	14900	19200	86.0	1700	14700	101	95.0	8400	2980	13300	15100
	Antimony	<0.0025	<0.0025	<0.0025	<0.0025	<0.0031	<0.0025	< 0.0025	< 0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025
	Arsenic	0.0079	< 0.0017	0.0059	< 0.0017	0.46	0.019	0.0044 J	< 0.0017	<0.0017	0.0024 J	<0.0017	<0.0017	0.0019 J	0.012	0.018
	Barium	0.056	0.092	0.086	0.0065 J	0.15 J	0.22	0.041	0.10	0.12	0.039	0.12	0.15	0.095	0.11	0.12
	Beryllium	<0.0010	<0.0010	<0.0010	<0.0010	<0.0012	<0.0010	<0.0010	0.0010 J	<0.0010	<0.0010	<0.0010	<0.0010	0.0042	0.011	0.018
	Cadmium	<0.0012	<0.0012	<0.0012	<0.0012	<0.0015	<0.0012	<0.0012	< 0.0012	<0.0012	<0.0012	<0.0012	<0.0012	<0.0012	<0.0012	<0.0012
≥	Chromium	<0.0099	<0.0099	<0.0099	<0.0099	<0.012	<0.0099	<0.0099	<0.0099	<0.0099	<0.0099	<0.0099	<0.0099	<0.0099	<0.0099	<0.0099
Ě	Cobalt	<0.0010	<0.0010	0.015	<0.0010	<0.0012	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.034
APPENDIX	Lead	<0.0015	0.0018 J	<0.0015	<0.0015	<0.0019	0.014	<0.0015	< 0.0015	<0.0015	<0.0015	<0.0015	<0.0015	0.0035 J	<0.0015	<0.0015
₽	Lithium	<0.0078	<0.0078	<0.0078	0.018 J	0.096 J	0.045 J	<0.0078	0.013 J	0.054	<0.0078	<0.0078	0.027 J	<0.0078	0.018 J	0.026 J
	Mercury	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12
	Molybdenum	<0.0022	<0.0022	<0.0022	<0.0022	<0.0028	<0.0022	<0.0022	<0.0022	<0.0022	<0.0022	<0.0022	<0.0022	<0.0022	<0.0022	<0.0022
	Radium	0.491 U	0.470 U	5.28	0.841 U	8.06	11.8	0.424 U	2.14	9.60	1.29 U	0.643 U	8.51	10.5	22.6	36.7
	Selenium	<0.0012	<0.0012	<0.0012	<0.0012	<0.0015	<0.0012	<0.0012	<0.0012	<0.0012	<0.0012	<0.0012	<0.0012	0.0014 J	0.0060 J	0.0052 J
	Thallium	<0.0010	<0.0010	<0.0010	<0.0010	<0.0012	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010

Notes:

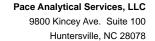
Laboratory results are reported in mg/L.

Non detected values are depicted by < the method detection limit (MDL).

Radium results are reported in picocuries per liter (pCi/L).

U indicates the substance was detected below the Minimum Detection Concentration (MDC)

and the precision of the laboratory instruments could not produce a reliable value.


Therefore, the value followed by U is qualified by the laboratory as estimated.

Created By: JB 11/8/20 Checked By: VF 11/9/20

APPENDIX E

Analytical Reports – Deep Piezometer Investigation, June 2020 Supplemental Sampling, August Scan Event

(704)875-9092

April 08, 2020

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: PLANT MCMANUS SCAN

Pace Project No.: 92471688

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on March 31, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring

kevin.herring@pacelabs.com

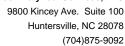
Keni Sterry

1(704)875-9092

HORIZON Database Administrator

Enclosures

cc: Trent Godwin, Resolute Environmental & Water Resources


Kristen Jurinko

Ms. Lauren Petty, Southern Co. Services Kevin Stephenson, Resolute Environmental & Water Resources Consulting, LLC

Stephen Wilson, Resolute Environmental & Water

Resources Consulting, LLC

CERTIFICATIONS

Project: PLANT MCMANUS SCAN

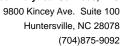
Pace Project No.: 92471688

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028

North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342

North Carolina Wastewater Certification #: 12

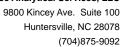

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 Massachusetts Certification #: M-NC030

North Carolina Drinking Water Certification #: 37712

South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

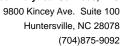


SAMPLE SUMMARY

Project: PLANT MCMANUS SCAN

Pace Project No.: 92471688

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92471688001	DPZ-2	Water	03/28/20 11:46	03/31/20 10:15
92471688002	DPZ-3	Water	03/28/20 10:18	03/31/20 10:15

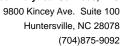

SAMPLE ANALYTE COUNT

Project: PLANT MCMANUS SCAN

Pace Project No.: 92471688

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92471688001	DPZ-2	EPA 6020B	JOR	2	PASI-A

PASI-A = Pace Analytical Services - Asheville PASI-C = Pace Analytical Services - Charlotte

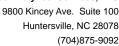


SUMMARY OF DETECTION

Project: PLANT MCMANUS SCAN

Pace Project No.: 92471688

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92471688001	DPZ-2					
EPA 6020B	pH Lithium	7.11 0.078J	Std. Units mg/L	0.60	03/31/20 13:29 04/07/20 14:12	



Project: PLANT MCMANUS SCAN

Pace Project No.: 92471688

Date: 04/08/2020 10:10 AM

Sample: DPZ-2	Lab ID:	92471688001	Collecte	d: 03/28/20	11:46	Received: 03/	/31/20 10:15 Ma	trix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytica	l Method:							
	Pace Ana	llytical Services	- Charlotte						
рН	7.11	Std. Units			1		03/31/20 13:29		
6020 MET ICPMS	Analytica	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Arsenic	ND	mg/L	0.10	0.0012	20	04/07/20 00:47	04/07/20 14:12	7440-38-2	
Lithium	0.078J	mg/L	0.60	0.0084	20	04/07/20 00:47	04/07/20 14:12	7439-93-2	

QUALITY CONTROL DATA

Project: PLANT MCMANUS SCAN

Pace Project No.: 92471688

Date: 04/08/2020 10:10 AM

QC Batch: 534680 QC Batch Method: EPA 3010A Analysis Method: EPA 6020B Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92471688001

METHOD BLANK: 2853426 Matrix: Water

Associated Lab Samples: 92471688001

Blank Reporting MDL Qualifiers Parameter Units Result Limit Analyzed Arsenic mg/L ND 0.0050 0.000060 04/07/20 14:16 Lithium mg/L ND 0.030 0.00042 04/07/20 14:16

LABORATORY CONTROL SAMPLE: 2853427

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Arsenic 0.01 0.010 103 80-120 mg/L Lithium mg/L 0.05 0.049 98 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2853428 2853429 MS MSD 92471688001 Spike Spike MS MSD MS MSD % Rec Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual Arsenic mg/L ND 0.01 0.01 0.012J 0.013J 112 118 75-125 20 Lithium 0.078J 0.05 0.05 0.13J 0.13J 109 109 75-125 0 20 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Huntersville, NC 28078 (704)875-9092

QUALIFIERS

Project: PLANT MCMANUS SCAN

Pace Project No.: 92471688

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

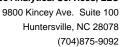
RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.


A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 04/08/2020 10:10 AM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: PLANT MCMANUS SCAN

Pace Project No.: 92471688

Date: 04/08/2020 10:10 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92471688001	DPZ-2				
92471688001	DPZ-2	EPA 3010A	534680	EPA 6020B	534695

Pace Analytical*	Document No.:	(SCOK)	Issuing Authority	
	F-CAR-CS-033-Rev.06		Pace Carolinas Quality	Onice
aboratory receiving samples: Asheville	Greenwood Hu	ntersville	☐ Raleigh☐	Mechanicsville
Sample Condition Client Name:	JET-Cogl Combustion Re	Project #:	W0#:924	71688
ourier:	UCT-Cogl Combustion Re PS USPS Cother:	ent	92471688	
stody Seal Present? Yes No S	ieals Intact? Yes No		Date/Initials Person Examining	Contents: NAF 3/3
,		ther Blue []f	Biological Tissu □Yes □No Y Iona	e Frozen? N/A
oler Temp Corrected (°C): 3.8, 2.2, 14.9	ictor: Add/Subtract (°C)]	p should be above freezing to]Samples out of temp criteria. Sa las begun	6°C mples on ice, cooling process
DA Regulated Soil (N/A, water sample) I samples originate in a quarantine zone within the Yes No	United States: CA, NY, or SC (check ma	ips)? Did inclu	samples originate from a foreign s Iding Hawali and Puerto Rico)? Comments/Discre	YesNo
Chain of Custody Present?	Yes No NA	1.		
Samples Arrived within Hold Time?	Yes No N/A	2.		
Short Hold Time Analysis (<72 hr.)?	□Yes □No □N/A	3.		
Rush Turn Around Time Requested?	□Yes □No □N/A	4.		
Sufficient Volume?	Yes No N/A	5		
Correct Containers Used? -Pace Containers Used?	□YES □NO □N/A □YES □NO □N/A	6.		
Containers Intact?	Yes No N/A	7.		
Dissolved analysis: Samples Field Filtered? Sample Labels Match COC?	□Yes □No □N/A □Yes □No □N/A	9.		
-Includes Date/Time/ID/Analysis Matrix:	TW			-
Headspace in VOA Vials (>5-6mm)? Trip Blank Present?	☐Yes ☐No ☐N/A	10.		
Trip Blank Custody Seals Present?	□Yes □No □N/A			
COMMENTS/SAMPLE DISCREPANCY			Field Dat	a Required? Yes No
		Let ID	of split containers:	
LIENT NOTIFICATION/RESOLUTION		LOUID	of spire containers.	
Person contacted:	Date/	Time:		

Project Manager SCURF Review:

Project Manager SRF Review:

Document Name:

Document Revised: February 7, 2018

Date:

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.06 Document Revised: February 7, 2018 Page 1 of 2

> Issuing Authority: Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottle

Project # WO#: 92471688

Due Date: 04/07/20

CLIENT: 26-GA Power

Item#	BP4U-125 mL Piastic Unpreserved (N/A) (Cl-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP45-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (Cl-)	AG1H-1 liter Amber HC! (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG15-1 liter Amber H2SO4 (pH < 2)	AG35-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4C! (N/A)(CI-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3A-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AG0U-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1						X							/															
2						1/							1	/	/									/				
3	/				1	/	/	/			/		/	/										/	/			
4	/				/						/		/	/										/	/			
5	/				/								/	/										/	/			
6					7	7		7			7		7	/			•							/	/			
7					7	/	7	7			/			/										/				
8		\neg			7	7	7	7					7	/	1				-					/	/			
9					7	7	7	7											-					/	/			
10	1				7	7	7	7			7			7	7									/	/			
11	1				7	7	7	7	\neg		7	-	7	/					\dashv				-	/	/			
12					/	7	1	7			7			/	7				\dashv		-			/	/			

		рН Ас	ljustment Log for Pres	served Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

	Section B	Section C	- 1
Georgia Power - Coal Combustion Residuals	Report To: Lauren Petty / Joju Abraham	Attention:	Fage:
Atlanta GA 30039	V/hitnay Liw	Address:	
jabraham d southomco.com		Pace Guote:	Topulatory Agency
Fax	Project #: Plant McManus \$CO.0	Pace Profile #:	THAT SEAR CASHING STATE / Location of
		atte see the	Requested Analysis Filtered (Y/N)
MATHO	CODE to left)	Preservatives X	
SAMPLE ID	Security Control College		o (VA)
One Character per box. (A-Z, 0-9 /, -) Sample da must be unique Total	S S ≩ §	CONTAINER reserved 504 503 8H \$203	dual Chlorine
IT	-	HOLE MADE	_
1 DPZ-2	WTG 3/28/20 1146	x	AS ALLIONLY (SH 7.11)
2 DPZ3	WTG 3/28/20 1015	×	LI ONLY
	LINES SELECTION OF THE PROPERTY OF THE PROPERT	CONTRACTOR OF THE PROPERTY OF	
*			
The second secon			
	RELINOUISHED BY / AFFELIATION DATE	TIME ACCEPTED BY J AFRITATION	DATE TIME SAMPLE CONDITIONS
DPZ-Z is Asali only	Voranica Fy Resolute 31340	KA W.A OO! O.	3/30/20 11 00
Dr2-3 is L only		12 Fred PRESCO	5101
U		,	04.0
	And a second sec		29

SAMPLER NAME AND SIGNATURE
PRINT Name of SAMPLER: SIGNATURE of SAMPLER:

devous In

Kovin Stophanson / Veronica Fay / Will Lasker

DATE Signed:

3128120

TEMP in C

Received on Ice (Y/N)
Custody
Sealed
Cooler (Y/N)
Samples Intact (Y/N)

June 25, 2020

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: MCMANUS GW GEOCHEM PERF

Pace Project No.: 92482476

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on June 18, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring

kevin.herring@pacelabs.com

Keni Sterry

1(704)875-9092

HORIZON Database Administrator

Enclosures

cc: Veronica Fay

Trent Godwin, Resolute Environmental & Water Resources

Kristen Jurinko

Ms. Lauren Petty, Southern Co. Services

Kevin Stephenson, Resolute Environmental & Water

Resources Consulting, LLC

Stephen Wilson, Resolute Environmental & Water

Resources Consulting, LLC

CERTIFICATIONS

Project: MCMANUS GW GEOCHEM PERF

Pace Project No.: 92482476

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342

North Carolina Wastewater Certification #: 12

South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 Massachusetts Certification #: M-NC030

North Carolina Drinking Water Certification #: 37712

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

SAMPLE SUMMARY

Project: MCMANUS GW GEOCHEM PERF

Pace Project No.: 92482476

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
92482476001	MCM-06	Water	06/16/20 19:57	06/18/20 10:43	
92482476002	MCM-07	Water	06/16/20 20:33	06/18/20 10:43	
92482476003	DPZ-2	Water	06/16/20 19:50	06/18/20 10:43	

SAMPLE ANALYTE COUNT

Project: MCMANUS GW GEOCHEM PERF

Pace Project No.: 92482476

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92482476001	MCM-06	EPA 6010D		6	PASI-A
		EPA 6010D	DS	2	PASI-A
		EPA 6020B	BG2, JOR	3	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	RED	1	PASI-A
		SM 3500-Fe D#4	EWS	1	PASI-A
		SM 3500-Fe B-2011	NAL	1	PASI-A
		SM 4500-S2D-2011	LMS1	1	PASI-A
		SM 5210B-2011	SMK	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	2	PASI-A
		SM 5310B-2011	ECH	1	PASI-A
2482476002	MCM-07	EPA 6010D	DS, SH1	6	PASI-A
		EPA 6010D	DS	2	PASI-A
		EPA 6020B	BG2	2	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	RED	1	PASI-A
		SM 3500-Fe D#4	EWS	1	PASI-A
		SM 3500-Fe B-2011	NAL	1	PASI-A
		SM 4500-S2D-2011	LMS1	1	PASI-A
		SM 5210B-2011	SMK	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	2	PASI-A
		SM 5310B-2011	ECH	1	PASI-A
2482476003	DPZ-2	EPA 6010D	DS, SH1	6	PASI-A
		EPA 6010D	DS	2	PASI-A
		EPA 6020B	BG2, JOR	2	PASI-A
		SM 2320B-2011	SMK	3	PASI-A
		SM 2540C-2011	RED	1	PASI-A
		SM 3500-Fe D#4	EWS	1	PASI-A
		SM 3500-Fe B-2011	NAL	1	PASI-A
		SM 4500-S2D-2011	LMS1	1	PASI-A
		SM 5210B-2011	SMK	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	2	PASI-A
		SM 5310B-2011	ECH	1	PASI-A

PASI-A = Pace Analytical Services - Asheville PASI-C = Pace Analytical Services - Charlotte

SUMMARY OF DETECTION

Project: MCMANUS GW GEOCHEM PERF

Pace Project No.: 92482476

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifier
2482476001	MCM-06					
	рН	6.87	Std. Units		06/22/20 08:45	
PA 6010D	Calcium	234	mg/L	1.0	06/20/20 17:15	
PA 6010D	Iron	0.046J	mg/L	0.050	06/19/20 16:52	
PA 6010D	Magnesium	624	mg/L	1.0	06/20/20 17:15	
PA 6010D	Manganese	0.29	mg/L	0.0050	06/19/20 16:52	
PA 6010D	Potassium	157	mg/L	50.0	06/20/20 17:15	
PA 6010D	Sodium	4840	mg/L	500	06/20/20 17:48	
PA 6010D	Manganese, Dissolved	0.26	mg/L	0.0050	06/19/20 16:11	
PA 6020B	Arsenic	0.51	mg/L	0.25	06/22/20 02:09	
PA 6020B	Boron	2.0	mg/L	1.2		
PA 6020B	Lithium	0.12J	mg/L	0.60	06/19/20 15:34	
M 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	725	mg/L	5.0	06/18/20 19:43	
M 2320B-2011	Alkalinity, Total as CaCO3	725	mg/L	5.0	06/18/20 19:43	
M 2540C-2011	Total Dissolved Solids	17800	mg/L	2500	06/19/20 17:25	
M 4500-S2D-2011	Sulfide	0.41	mg/L	0.10	06/19/20 18:27	
M 5210B-2011	BOD, 5 day	77.6	mg/L	2.0	06/23/20 11:49	
PA 300.0 Rev 2.1 1993	Chloride	77.0	mg/L	100	06/19/20 04:22	
PA 300.0 Rev 2.1 1993	Sulfate	663	mg/L	100	06/19/20 04:22	
M 5310B-2011	Total Organic Carbon	9.6	-	1.0	06/23/20 04:37	
	•	9.6	mg/L	1.0	00/23/20 04.37	
2482476002	MCM-07	0.00	Otal Illa:ta		00/00/00 00:45	
D1 0010D	pH	6.33	Std. Units	4.0	06/22/20 08:45	
PA 6010D	Calcium	254	mg/L	1.0	06/20/20 17:18	
PA 6010D	Iron	0.088	mg/L	0.050	06/19/20 17:12	
PA 6010D	Magnesium	640	mg/L	1.0	06/20/20 17:18	
PA 6010D	Manganese	0.20	mg/L	0.0050	06/19/20 17:12	
PA 6010D	Potassium	156	mg/L	50.0	06/20/20 17:18	
PA 6010D	Sodium	4680	mg/L	500	06/20/20 17:52	
PA 6010D	Manganese, Dissolved	0.19	mg/L	0.0050	06/19/20 16:21	
PA 6020B	Boron	1.7	mg/L	0.50	06/19/20 15:38	
PA 6020B	Lithium	0.049J	mg/L	0.60	06/19/20 15:38	
M 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	276	mg/L	5.0	06/18/20 19:53	
M 2320B-2011	Alkalinity, Total as CaCO3	276	mg/L	5.0	06/18/20 19:53	
M 2540C-2011	Total Dissolved Solids	17900	mg/L	2500	06/19/20 17:25	
M 4500-S2D-2011	Sulfide	33.9	mg/L	5.0	06/19/20 18:39	
M 5210B-2011	BOD, 5 day	3.2	mg/L	2.0	06/23/20 11:50	B2
PA 300.0 Rev 2.1 1993	Chloride	7580	mg/L	100	06/19/20 04:36	
PA 300.0 Rev 2.1 1993	Sulfate	961	mg/L	100	06/19/20 04:36	
M 5310B-2011	Total Organic Carbon	14.5	mg/L	1.0	06/23/20 05:02	
2482476003	DPZ-2					
	рН	7.22	Std. Units		06/22/20 08:45	
PA 6010D	Calcium	245	mg/L	1.0	06/20/20 17:22	
PA 6010D	Magnesium	578	mg/L	1.0	06/20/20 17:22	
PA 6010D	Manganese	0.28	mg/L	0.0050	06/19/20 17:15	
PA 6010D	Potassium	162	mg/L	50.0	06/20/20 17:22	
PA 6010D	Sodium	4840	mg/L	500	06/20/20 17:55	
EPA 6010D	Manganese, Dissolved	0.26	mg/L	0.0050	06/19/20 16:25	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SUMMARY OF DETECTION

Project: MCMANUS GW GEOCHEM PERF

Pace Project No.: 92482476

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92482476003	DPZ-2					
EPA 6020B	Boron	2.1	mg/L	1.2	06/22/20 02:17	
EPA 6020B	Lithium	0.096J	mg/L	0.60	06/19/20 15:42	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	391	mg/L	5.0	06/18/20 20:02	
SM 2320B-2011	Alkalinity, Total as CaCO3	391	mg/L	5.0	06/18/20 20:02	
SM 2540C-2011	Total Dissolved Solids	20100	mg/L	2500	06/19/20 17:25	
SM 4500-S2D-2011	Sulfide	37.9	mg/L	5.0	06/19/20 18:40	
SM 5210B-2011	BOD, 5 day	13.4	mg/L	2.0	06/23/20 11:44	B2,D6
EPA 300.0 Rev 2.1 1993	Chloride	7780	mg/L	100	06/19/20 04:50	
EPA 300.0 Rev 2.1 1993	Sulfate	970	mg/L	100	06/19/20 04:50	
SM 5310B-2011	Total Organic Carbon	6.7	mg/L	1.0	06/23/20 05:27	

Project: MCMANUS GW GEOCHEM PERF

Pace Project No.: 92482476

Date: 06/25/2020 12:28 PM

Sample: MCM-06	Lab ID:	92482476001	Collected:	06/16/20	19:57	Received: 06/	18/20 10:43 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Analy	ytical Services	- Charlotte						
Н	6.87	Std. Units			1		06/22/20 08:45		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Met	hod: EF	PA 3010A			
	Pace Analy	ytical Services	- Asheville						
Calcium	234	mg/L	1.0	0.94	10	06/19/20 01:48	06/20/20 17:15	7440-70-2	
ron	0.046J	mg/L	0.050	0.042	1	06/19/20 01:48	06/19/20 16:52		
Vagnesium	624	mg/L	1.0	0.68	10	06/19/20 01:48	06/20/20 17:15		
Manganese	0.29	mg/L	0.0050	0.0034	1	06/19/20 01:48			
Potassium	157	mg/L	50.0	30.4	10	06/19/20 01:48			
Sodium	4840	mg/L	500	61.1	100	06/19/20 01:48			
	A b - t' b -	-	040D D			24 00404			
6010 MET ICP, Dissolved	-	Method: EPA 6 ytical Services	•	ration Met	nod: EF	A 3010A			
ron, Dissolved	ND	mg/L	0.050	0.042	1	06/19/20 03:06	06/19/20 16:11	7439-89-6	
Manganese, Dissolved	0.26	mg/L	0.0050	0.0034	1	06/19/20 03:06	06/19/20 16:11		
6020 MET ICPMS	•	Method: EPA 6 ytical Services	•	ration Met	hod: EF	PA 3010A			
Arsenic	0.51	mg/L	0.25	0.0043	50	06/19/20 00:59	06/22/20 02:09	7440-38-2	
Boron	2.0	mg/L	1.2	0.31	50	06/19/20 00:59	06/22/20 02:09		
_ithium	0.12J	mg/L	0.60	0.0078	20	06/19/20 00:59	06/19/20 15:34		
2320B Alkalinity	Apalytical	Method: SM 23	220B 2011						
2320B Alkallility	-	ytical Services							
Alkalinity, Bicarbonate (CaCO3)	725	mg/L	5.0	5.0	1		06/18/20 19:43		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		06/18/20 19:43		
Alkalinity, Total as CaCO3	725	mg/L	5.0	5.0	1		06/18/20 19:43		
-		Ü		0.0	•		00, 10,20 10110		
2540C Total Dissolved Solids	-	Method: SM 25 ytical Services							
Total Dissolved Solids	17800	mg/L	2500	2500	1		06/19/20 17:25		
ron, Ferric (Calculation)	•	Method: SM 3							
		ytical Services		0.05			00/00/00 47 44	7400 00 0	NO
ron, Ferric	ND	mg/L	0.50	0.25	1		06/22/20 17:14	7439-89-6	N2
ron, Ferrous	•	Method: SM 35 ytical Services		1					
ron, Ferrous	ND	mg/L	0.50	0.084	1		06/21/20 12:55		H3,N2
4500S2D Sulfide Water	,	Method: SM 45		1					
Sulfide	0.41	mg/L	0.10	0.050	1		06/19/20 18:27	18496-25-8	

Project: MCMANUS GW GEOCHEM PERF

Pace Project No.: 92482476

Date: 06/25/2020 12:28 PM

Sample: MCM-06	Lab ID:	92482476001	Collected	d: 06/16/20	19:57	7 Received: 06/18/20 10:43 Matrix: Water					
			Report								
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual		
5210B BOD, 5 day	Analytical	Method: SM 52	210B-2011								
	Pace Anal	ytical Services	- Asheville								
BOD, 5 day	77.6	mg/L	2.0	2.0	1	06/18/20 15:43	06/23/20 11:49				
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0 Rev 2.1 1993										
	Pace Anal	ytical Services	- Asheville								
Chloride	7760	mg/L	100	60.0	100		06/19/20 04:22	16887-00-6			
Sulfate	663	mg/L	100	50.0	100		06/19/20 04:22	14808-79-8			
5310B TOC	Analytical	Method: SM 53	310B-2011								
	Pace Anal	ytical Services	- Asheville								
Total Organic Carbon	9.6	mg/L	1.0	0.50	1		06/23/20 04:37	7440-44-0			

Project: MCMANUS GW GEOCHEM PERF

Pace Project No.: 92482476

Date: 06/25/2020 12:28 PM

Sample: MCM-07	Lab ID:	92482476002	Collected	d: 06/16/2	0 20:33	Received: 06	/18/20 10:43 M	atrix: Water			
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual		
Field Data	Analytical	Method:	, ,								
	Pace Anal	lytical Services	- Charlotte								
рН	6.33	Std. Units			1		06/22/20 08:45				
6010 MET ICP	Analytical	Method: EPA 6	010D Prep	aration Me	thod: Ef	PA 3010A					
	Analytical Method: EPA 6010D Preparation Method: EPA 3010A Pace Analytical Services - Asheville										
Calcium	254	mg/L	1.0	0.94	10	06/19/20 01:48	06/20/20 17:18	7440-70-2			
Iron	0.088	mg/L	0.050	0.042	1	06/19/20 01:48	06/19/20 17:12				
Magnesium	640	mg/L	1.0	0.68	10	06/19/20 01:48					
Manganese	0.20	mg/L	0.0050	0.0034	1		06/19/20 17:12				
Potassium	156	mg/L	50.0	30.4	10	06/19/20 01:48					
Sodium	4680	mg/L	500	61.1	100		06/20/20 17:52				
		•									
6010 MET ICP, Dissolved	•	Method: EPA 6	•	aration Me	thod: EF	PA 3010A					
	Pace Anal	lytical Services	- Asheville								
Iron, Dissolved	ND	mg/L	0.050	0.042	1	06/19/20 03:06	06/19/20 16:21	7439-89-6			
Manganese, Dissolved	0.19	mg/L	0.0050	0.0034	1	06/19/20 03:06	06/19/20 16:21	7439-96-5			
6020 MET ICPMS	Analytical	Mothod: EDA 6	020B Bron	aration Ma	thad: E	ολ 2010Λ					
0020 MET ICFMS	Analytical Method: EPA 6020B Preparation Method: EPA 3010A Pace Analytical Services - Asheville										
		•									
Boron	1.7	mg/L	0.50	0.12	20	06/19/20 00:59	06/19/20 15:38				
Lithium	0.049J	mg/L	0.60	0.0078	20	06/19/20 00:59	06/19/20 15:38	7439-93-2			
2320B Alkalinity	Analytical	Method: SM 23	320B-2011								
•	Pace Analytical Services - Asheville										
Alkalinity,Bicarbonate (CaCO3)	276	mg/L	5.0	5.0	1		06/18/20 19:53				
Alkalinity, Carbonate (CaCO3)	ND	ū	5.0	5.0	1		06/18/20 19:53				
Alkalinity, Total as CaCO3	276	mg/L mg/L	5.0	5.0	1		06/18/20 19:53				
Alkalifility, Total as CaCO3	270	IIIg/L	5.0	3.0	'		00/10/20 19.55				
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C-2011								
	Pace Anal	lytical Services	- Asheville								
Total Dissolved Solids	17900	mg/L	2500	2500	1		06/19/20 17:25				
Iron, Ferric (Calculation)	Analytical	Method: SM 35	00-Fe D#4								
non, romo (Gardaranon,	•	lytical Services									
Iron Forrio		•		0.25	4		06/00/00 47.44	7420 00 6	NO		
Iron, Ferric	ND	mg/L	0.50	0.25	1		06/22/20 17:14	1439-09-0	N2		
Iron, Ferrous	Analytical	Method: SM 35	00-Fe B-20	11							
	Pace Anal	lytical Services	- Asheville								
Iron, Ferrous	ND	mg/L	0.50	0.084	1		06/21/20 12:58		H3,N2		
		· ·			•				, . 12		
4500S2D Sulfide Water	-	Method: SM 45		11							
	Pace Anal	lytical Services	- Asheville								
Sulfide	33.9	mg/L	5.0	2.5	50		06/19/20 18:39	18496-25-8			
		5		-	-						

Project: MCMANUS GW GEOCHEM PERF

Pace Project No.: 92482476

Date: 06/25/2020 12:28 PM

Sample: MCM-07	Lab ID:	92482476002	Collecte	d: 06/16/20	20:33	Received: 06/	/18/20 10:43 Ma	atrix: Water		
			Report							
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
5210B BOD, 5 day	Analytical Method: SM 5210B-2011									
	Pace Anal	ytical Services	- Asheville							
BOD, 5 day	3.2	mg/L	2.0	2.0	1	06/18/20 15:43	06/23/20 11:50		B2	
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0 Rev 2.1 1993									
	Pace Anal	ytical Services	- Asheville							
Chloride	7580	mg/L	100	60.0	100		06/19/20 04:36	16887-00-6		
Sulfate	961	mg/L	100	50.0	100		06/19/20 04:36	14808-79-8		
5310B TOC	Analytical	Method: SM 53	310B-2011							
	Pace Anal	ytical Services	- Asheville							
Total Organic Carbon	14.5	mg/L	1.0	0.50	1		06/23/20 05:02	7440-44-0		

Project: MCMANUS GW GEOCHEM PERF

Pace Project No.: 92482476

Date: 06/25/2020 12:28 PM

Sample: DPZ-2	Lab ID:	92482476003	Collected:	06/16/20	19:50	Received: 06/	′18/20 10:43 M	atrix: Water			
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual		
Field Data	Analytical	Method:									
- 1010 - 010	•	ytical Services	- Charlotte								
рН	7.22	Std. Units			1		06/22/20 08:45				
6010 MET ICP	Analytical	Method: FPA 6	010D Prena	ration Met	hod: FF	PA 3010A					
00 10 INIE 1 101	Analytical Method: EPA 6010D Preparation Method: EPA 3010A Pace Analytical Services - Asheville										
Calcium	245	•	1.0	0.94	10	06/19/20 01:48	06/20/20 17:22	7440 70 2			
Iron	243 ND	mg/L mg/L	0.050	0.94	10	06/19/20 01:48	06/20/20 17:22				
Magnesium	578	mg/L	1.0	0.042	10	06/19/20 01:48					
Manganese	0.28	mg/L	0.0050	0.0034	1	06/19/20 01:48					
Potassium	162	mg/L	50.0	30.4	10		06/20/20 17:13				
Sodium	4840	mg/L	500	61.1	100		06/20/20 17:55				
Codium		-					00/20/20 17:55	7440 20 0			
6010 MET ICP, Dissolved	Analytical	Method: EPA 6	010D Prepa	ration Met	hod: EF	PA 3010A					
	Pace Anal	ytical Services	- Asheville								
Iron, Dissolved	ND	mg/L	0.050	0.042	1	06/19/20 03:06	06/19/20 16:25	7439-89-6			
Manganese, Dissolved	0.26	mg/L	0.0050	0.0034	1	06/19/20 03:06	06/19/20 16:25	7439-96-5			
	Analytical	Mathad: EDA 6	020P Brono	ration Mat	had: EF	0Λ 2010Λ					
6020 MET ICPMS	•	Method: EPA 6 lytical Services	•	ration iviet	IIOU. EF	A 30 TOA					
Boron	2.1	mg/L	1.2	0.31	50	06/19/20 00:59	06/22/20 02:17	7440-42-8			
Lithium	0.096J	mg/L	0.60	0.0078	20	06/19/20 00:59					
Ettilidiii	0.0000	mg/L	0.00	0.0070	20	00/10/20 00:00	00/10/20 10:42	7400 00 2			
2320B Alkalinity	Analytical	Method: SM 23	320B-2011								
	Pace Anal	ytical Services	- Asheville								
Alkalinity, Bicarbonate (CaCO3)	391	mg/L	5.0	5.0	1		06/18/20 20:02				
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		06/18/20 20:02				
Alkalinity, Total as CaCO3	391	mg/L	5.0	5.0	1		06/18/20 20:02				
05400 Total Disaskus d Calida	Analytical	Mathadi CM 25	100 2011								
2540C Total Dissolved Solids	•	Method: SM 25									
	Pace Ana	ytical Services	- Asneville								
Total Dissolved Solids	20100	mg/L	2500	2500	1		06/19/20 17:25				
Iron, Ferric (Calculation)	Analytical	Method: SM 35	00-Fe D#4								
	•	ytical Services									
Iron Forrio		•		0.25	4		06/00/00 47:44	7420 00 6	NO		
Iron, Ferric	ND	mg/L	0.50	0.25	1		06/22/20 17:14	7439-69-6	N2		
Iron, Ferrous	Analytical	Method: SM 35	00-Fe B-201	1							
	Pace Anal	ytical Services	- Asheville								
Iron, Ferrous	ND	mg/L	0.50	0.084	1		06/21/20 12:53		H3,N2		
·	A 1	Ü							-		
4500S2D Sulfide Water	•	Method: SM 45		7							
	Pace Anal	ytical Services	- Asheville								
Sulfide	37.9	mg/L	5.0	2.5	50		06/19/20 18:40				

Project: MCMANUS GW GEOCHEM PERF

Pace Project No.: 92482476

Date: 06/25/2020 12:28 PM

Sample: DPZ-2	Lab ID:	92482476003	Collected	d: 06/16/20	19:50	Received: 06/	18/20 10:43 Ma	atrix: Water		
			Report							
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
5210B BOD, 5 day	Analytical	Method: SM 52	210B-2011							
	Pace Anal	ytical Services	- Asheville							
BOD, 5 day	13.4	mg/L	2.0	2.0	1	06/18/20 15:43	06/23/20 11:44		B2,D6	
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0 Rev 2.1 1993									
	Pace Anal	ytical Services	- Asheville							
Chloride	7780	mg/L	100	60.0	100		06/19/20 04:50	16887-00-6		
Sulfate	970	mg/L	100	50.0	100		06/19/20 04:50	14808-79-8		
5310B TOC	Analytical	Method: SM 53	310B-2011							
	Pace Anal	ytical Services	- Asheville							
Total Organic Carbon	6.7	mg/L	1.0	0.50	1		06/23/20 05:27	7440-44-0		

Project: MCMANUS GW GEOCHEM PERF

Pace Project No.: 92482476

Date: 06/25/2020 12:28 PM

QC Batch: 548410 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92482476001, 92482476002, 92482476003

METHOD BLANK: 2917703 Matrix: Water

Associated Lab Samples: 92482476001, 92482476002, 92482476003

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Calcium	mg/L	ND ND	0.10	0.094	06/20/20 16:45	
Iron	mg/L	ND	0.050	0.042	06/19/20 16:28	
Magnesium	mg/L	ND	0.10	0.068	06/19/20 16:28	
Manganese	mg/L	ND	0.0050	0.0034	06/19/20 16:28	
Potassium	mg/L	ND	5.0	3.0	06/20/20 16:45	
Sodium	mg/L	ND	5.0	0.61	06/20/20 16:45	

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Calcium	mg/L		4.9	97	80-120	
Iron	mg/L	5	4.9	99	80-120	
Magnesium	mg/L	5	4.9	98	80-120	
Manganese	mg/L	0.5	0.51	102	80-120	
Potassium	mg/L	5	4.7J	95	80-120	
Sodium	mg/L	5	4.8J	97	80-120	

MATRIX SPIKE & MATRIX S	705 MS	MSD	2917706									
		92482471001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Calcium	mg/L	153	5	5	158	150	97	-61	75-125	5	20	M1
Iron	mg/L	0.25	5	5	5.5	5.3	105	102	75-125	3	20	
Magnesium	mg/L	496	5	5	484	478	-229	-359	75-125	1	20	M1,M6
Manganese	mg/L	0.035	0.5	0.5	0.57	0.55	106	104	75-125	2	20	
Potassium	mg/L	157	5	5	161	155	91	-32	75-125	4	20	M1
Sodium	mg/L	4010	5	5	4120	4000	2100	-180	75-125	3	20	M6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS GW GEOCHEM PERF

Pace Project No.: 92482476

QC Batch: 548426 Analysis Method: EPA 6010D

QC Batch Method: EPA 3010A Analysis Description: 6010 MET Filtered Diss.

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92482476001, 92482476002, 92482476003

METHOD BLANK: 2917744 Matrix: Water

Associated Lab Samples: 92482476001, 92482476002, 92482476003

Blank Reporting MDL Qualifiers Parameter Units Result Limit Analyzed Iron, Dissolved ND 0.050 0.042 06/19/20 15:48 mg/L Manganese, Dissolved mg/L ND 0.0050 0.0034 06/19/20 15:48

LABORATORY CONTROL SAMPLE: 2917745

Date: 06/25/2020 12:28 PM

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Iron. Dissolved 5 5.4 108 80-120 mg/L Manganese, Dissolved mg/L 0.5 0.55 110 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2917746 2917747 MS MSD 92482471001 Spike Spike MS MSD MS MSD % Rec Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual Iron, Dissolved mg/L 0.24 5 5 5.2 5.1 99 98 75-125 20 Manganese, Dissolved 0.030 0.5 0.5 0.53 0.52 99 97 75-125 2 20 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS GW GEOCHEM PERF

Pace Project No.: 92482476

Date: 06/25/2020 12:28 PM

QC Batch: 548421 Analysis Method: EPA 6020B
QC Batch Method: EPA 3010A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92482476001, 92482476002, 92482476003

METHOD BLANK: 2917738 Matrix: Water

Associated Lab Samples: 92482476001, 92482476002, 92482476003

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Arsenic	mg/L	ND	0.0050	0.000087	06/19/20 16:00	
Boron	mg/L	ND	0.025	0.0062	06/19/20 16:00	
Lithium	mg/L	ND	0.030	0.00039	06/19/20 16:00	

LABORATORY CONTROL SAMPLE:	2917739					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/L	0.01	0.011	108	80-120	
Boron	mg/L	0.05	0.052	104	80-120	
Lithium	mg/L	0.05	0.054	107	80-120	

MATRIX SPIKE & MATRIX SI	PIKE DUPLIC	CATE: 2917	740		2917741							
			MS	MSD								
	9	2482471002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/L	0.0026J	0.01	0.01	0.014J	0.014J	113	114	75-125	1	20	
Boron	mg/L	2.4	0.05	0.05	2.2	2.3	-387	-319	75-125	2	20	M6
Lithium	mg/L	0.091	0.05	0.05	0.14J	0.14J	95	101	75-125	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS GW GEOCHEM PERF

Pace Project No.: 92482476

Date: 06/25/2020 12:28 PM

QC Batch: 548334 Analysis Method: SM 2320B-2011
QC Batch Method: SM 2320B-2011 Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92482476001, 92482476002, 92482476003

METHOD BLANK: 2917431 Matrix: Water

Associated Lab Samples: 92482476001, 92482476002, 92482476003

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Alkalinity, Total as CaCO3	mg/L	ND	5.0	5.0	06/18/20 18:38	
Alkalinity, Bicarbonate (CaCO3)	mg/L	ND	5.0	5.0	06/18/20 18:38	
Alkalinity, Carbonate (CaCO3)	mg/L	ND	5.0	5.0	06/18/20 18:38	

LABORATORY CONTROL SAMPLE: 2917432

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Alkalinity, Total as CaCO3	ma/l	50	46.1	92	80-120	

MATRIX SPIKE & MATRIX SPIKE DUPI ICATE:	2917433	2917434

			MS	MSD								
		92482129001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Alkalinity, Total as CaCO3	mg/L	41.2	50	50	90.4	92.9	98	103	80-120	3	25	

MATRIX SPIKE & MATRIX SF	IKE DUPLI	CATE: 2917	435		2917436							
			MS	MSD								
	ę	2482275002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Alkalinity, Total as CaCO3	mg/L	140	50	50	193	197	107	115	80-120	2	25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS GW GEOCHEM PERF

Pace Project No.: 92482476

QC Batch: 548579 Analysis Method: SM 2540C-2011

QC Batch Method: SM 2540C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92482476001, 92482476002, 92482476003

METHOD BLANK: 2918485 Matrix: Water

Associated Lab Samples: 92482476001, 92482476002, 92482476003

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L ND 25.0 25.0 06/19/20 17:24

LABORATORY CONTROL SAMPLE: 2918486

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 251 264 105 90-110

SAMPLE DUPLICATE: 2918487

Parameter Units Result Result RPD Qualifiers

Total Dissolved Solids mg/L 281 277 1 25

SAMPLE DUPLICATE: 2918488

Date: 06/25/2020 12:28 PM

35556537004 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 177 171 mg/L 3 25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS GW GEOCHEM PERF

Pace Project No.: 92482476

QC Batch: 548699 Analysis Method: SM 3500-Fe B-2011

QC Batch Method: SM 3500-Fe B-2011 Analysis Description: Iron, Ferrous

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92482476001, 92482476002, 92482476003

METHOD BLANK: 2919033 Matrix: Water

Associated Lab Samples: 92482476001, 92482476002, 92482476003

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Iron, Ferrous mg/L ND 0.50 0.084 06/21/20 12:43 N2

LABORATORY CONTROL SAMPLE: 2919034

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Iron, Ferrous mg/L 1.5 1.5 101 90-110 N2

SAMPLE DUPLICATE: 2919035

 Parameter
 Units
 Result
 Result
 RPD
 Max

 Iron, Ferrous
 mg/L
 ND
 ND
 10 H3,N2

SAMPLE DUPLICATE: 2919036

Date: 06/25/2020 12:28 PM

Parameter Units Persons mg/L 0.24J Dup Max Result RPD Qualifiers 0.24J 0.28J 10 H3,N2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

MCMANUS GW GEOCHEM PERF Project:

Pace Project No.: 92482476

Date: 06/25/2020 12:28 PM

QC Batch: 548293 Analysis Method: SM 4500-S2D-2011 QC Batch Method: SM 4500-S2D-2011 Analysis Description: 4500S2D Sulfide Water

> Laboratory: Pace Analytical Services - Asheville

92482476001, 92482476002, 92482476003 Associated Lab Samples:

METHOD BLANK: Matrix: Water

Associated Lab Samples: 92482476001, 92482476002, 92482476003

> Blank Reporting MDL Parameter Units Result Limit Analyzed Qualifiers

Sulfide ND 0.10 0.050 06/19/20 18:24 mg/L

LABORATORY CONTROL SAMPLE: 2917137

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Sulfide 0.5 0.53 106 80-120 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2917138 2917139

> MSD MS

92482471001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Result **RPD** RPD Result Conc. Conc. % Rec % Rec Limits Qual 10 M1 Sulfide mg/L ND 0.5 0.5 0.38 0.37 70 69 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2917140 2917141

MS

MSD 92482471002 MS MSD MS MSD % Rec Spike Spike Max **RPD** RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits Qual Sulfide 0.5 ND 0.5 0.37 0.39 67 70 80-120 10 M1 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS GW GEOCHEM PERF

Pace Project No.: 92482476

QC Batch: 548237 Analysis Method: SM 5210B-2011
QC Batch Method: SM 5210B-2011 Analysis Description: 5210B BOD, 5 day

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92482476001, 92482476002, 92482476003

METHOD BLANK: 2916890 Matrix: Water

Associated Lab Samples: 92482476001, 92482476002, 92482476003

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

BOD, 5 day mg/L ND 2.0 2.0 06/23/20 11:23

LABORATORY CONTROL SAMPLE: 2916891

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units BOD, 5 day mg/L 198 195 98 84.6-115

SAMPLE DUPLICATE: 2916892

Date: 06/25/2020 12:28 PM

92482476003 Dup Max **RPD** Parameter Units Result Result **RPD** Qualifiers 13.4 BOD, 5 day 74 25 D6 mg/L 6.2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS GW GEOCHEM PERF

MATRIX ORIVE A MATRIX ORIVE BURLICATE

Date: 06/25/2020 12:28 PM

Pace Project No.: 92482476

QC Batch: 548304 Analysis Method: EPA 300.0 Rev 2.1 1993

0047400

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92482476001, 92482476002, 92482476003

METHOD BLANK: 2917189 Matrix: Water

Associated Lab Samples: 92482476001, 92482476002, 92482476003

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	06/18/20 17:15	
Sulfate	mg/L	ND	1.0	0.50	06/18/20 17:15	

LABORATORY CONTROL SAMPLE:	2917190	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	49.7	99	90-110	
Sulfate	mg/L	50	49.7	99	90-110	

MATRIX SPIKE & MATRIX SF	PIKE DUPLIC	ATE: 2917	191		2917192							
	9.	2482471001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	6450	50	50	6730	6630	571	359	90-110	2	10	M6
Sulfate	mg/L	864	50	50	1080	964	428	199	90-110	11	10	M6,R1

MATRIX SPIKE & MATRIX SE	IKE DUPL	LICATE: 2917	193		2917194							
			MS	MSD								
		92482276002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	102	50	50	151	151	99	100	90-110	0	10	
Sulfate	mg/L	ND	50	50	55.0	55.5	110	111	90-110	1	10	M1

0047404

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS GW GEOCHEM PERF

Pace Project No.: 92482476

Date: 06/25/2020 12:28 PM

QC Batch: 548938 Analysis Method: SM 5310B-2011
QC Batch Method: SM 5310B-2011 Analysis Description: 5310B TOC

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92482476001, 92482476002, 92482476003

METHOD BLANK: 2919835 Matrix: Water

Associated Lab Samples: 92482476001, 92482476002, 92482476003

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Organic Carbon mg/L ND 1.0 0.50 06/23/20 00:19

LABORATORY CONTROL SAMPLE: 2919836

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Organic Carbon** 25 24.0 96 90-110 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2919837 2919838

MSD MS 92482471001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result **RPD** RPD Result % Rec % Rec Limits Qual **Total Organic Carbon** mg/L 12.2 25 25 37.0 37.1 99 100 90-110 0 10

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2919839 2919840

MS MSD 92482471002 MS MSD MS MSD % Rec Spike Spike Max **RPD** RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits Qual Total Organic Carbon 9.9 25 25 99 34.5 34.7 99 10 mg/L 90-110

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: MCMANUS GW GEOCHEM PERF

Pace Project No.: 92482476

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

RPD value was outside control limits.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

R1

Date: 06/25/2020 12:28 PM

B2	Oxygen usage is less than 2.0 for all dilutions set. The reported value is an estimated less than value and is calculated for the dilution using the most amount of sample.
D6	The precision between the sample and sample duplicate exceeded laboratory control limits.
H3	Sample was received or analysis requested beyond the recognized method holding time.
M1	Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
M6	Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.
N2	The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: MCMANUS GW GEOCHEM PERF

Pace Project No.: 92482476

Date: 06/25/2020 12:28 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92482476001 92482476002 92482476003	MCM-06 MCM-07 DPZ-2				
92482476001 92482476002 92482476003	MCM-06 MCM-07 DPZ-2	EPA 3010A EPA 3010A EPA 3010A	548410 548410 548410	EPA 6010D EPA 6010D EPA 6010D	548437 548437 548437
92482476001 92482476002 92482476003	MCM-06 MCM-07 DPZ-2	EPA 3010A EPA 3010A EPA 3010A	548426 548426 548426	EPA 6010D EPA 6010D EPA 6010D	548441 548441 548441
92482476001 92482476002 92482476003	MCM-06 MCM-07 DPZ-2	EPA 3010A EPA 3010A EPA 3010A	548421 548421 548421	EPA 6020B EPA 6020B EPA 6020B	548433 548433 548433
92482476001 92482476002 92482476003	MCM-06 MCM-07 DPZ-2	SM 2320B-2011 SM 2320B-2011 SM 2320B-2011	548334 548334 548334		
92482476001 92482476002 92482476003	MCM-06 MCM-07 DPZ-2	SM 2540C-2011 SM 2540C-2011 SM 2540C-2011	548579 548579 548579		
92482476001 92482476002 92482476003	MCM-06 MCM-07 DPZ-2	SM 3500-Fe D#4 SM 3500-Fe D#4 SM 3500-Fe D#4	548904 548904 548904		
92482476001 92482476002 92482476003	MCM-06 MCM-07 DPZ-2	SM 3500-Fe B-2011 SM 3500-Fe B-2011 SM 3500-Fe B-2011	548699 548699 548699		
92482476001 92482476002 92482476003	MCM-06 MCM-07 DPZ-2	SM 4500-S2D-2011 SM 4500-S2D-2011 SM 4500-S2D-2011	548293 548293 548293		
92482476001 92482476002 92482476003	MCM-06 MCM-07 DPZ-2	SM 5210B-2011 SM 5210B-2011 SM 5210B-2011	548237 548237 548237	SM 5210B-2011 SM 5210B-2011 SM 5210B-2011	548321 548321 548321
92482476001 92482476002 92482476003	MCM-06 MCM-07 DPZ-2	EPA 300.0 Rev 2.1 1993 EPA 300.0 Rev 2.1 1993 EPA 300.0 Rev 2.1 1993	548304 548304 548304		
92482476001 92482476002 92482476003	MCM-06 MCM-07 DPZ-2	SM 5310B-2011 SM 5310B-2011 SM 5310B-2011	548938 548938 548938		

Pace Analytical*

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.06

Document Revised: February 7, 2018 Page 1 of 2

Issuing Authority: Pace Carolinas Quality Office

Laboratory receiving samples:			2000		m - []	Raleigh	Mechanicsville
Asheville Eden C	Greenwood		Hun	itersvi	lle 🗌		
Sample Condition Client Name: Upon Receipt	D .c		P	roject	, WO#	‡ : 9248	
Courier: Fed Ex UPS Commercial Pace	USPS Other:		Clie	ent	924824	76	is .
ustody Seal Present? Yes No Seals	intact? [Yes	□No		Date/Init	ials Person Examining	Contents: JD
# 1887		None	/	her		Biological Tissu ☐Yes ☐No [Contents: 5 V 6 118/20 In Frozen?
hermometer: 737061	Type of Ice	e: 📈	Wet B	ue	None		
ooler Temp (°C): Correction Factor	r: Add/Subtrac	t (°C) _	0,0	— т	emp should be Samples has begun	e above freezing to out of temp criteria. Sa	6°C mples on ice, cooling process
SDA Regulated Soil(\(\sum N/A, water sample) id samples originate in a quarantine zone within the Unit \(\sum Yes \sum No \)	ted States: CA, I	NY, or SC	C (check map	os)?	Did samples ori including Hawa	ii and Puerto Rico)? 🔃	
						Comments/Discrep	pancy:
Chain of Custody Present?	Yes	□No	□N/A	1.		-	
Samples Arrived within Hold Time?	Yes	□No	□N/A	2.			
Short Hold Time Analysis (<72 hr.)?	⊠Yes	□No	□N/A	3.			
Rush Turn Around Time Requested?	□Yes	ΔNo	□N/A	4.			
	ITIVas	□No	□N/A	5.			
Sufficient Volume?	Yes	□No	□N/A	6.			
Correct Containers Used? -Pace Containers Used?	∏Yes ∏Yes	□No	□N/A □N/A	0.			
	Yes	□No	□n/a	7.			
Containers Intact?	Yes	□No	□N/A	8.			
Dissolved analysis: Samples Field Filtered? Sample Labels Match COC?	✓Yes	□No	□N/A	9.	· · · · · · · · · · · · · · · · · · ·		
Sample Labels Water Coc:	المراجع المراجع						
-Includes Date/Time/ID/Analysis Matrix:	wt		Service				
Headspace in VOA Vials (>5-6mm)?	Yes	No	□N/A □N/A	10.			
Trip Blank Present?	Yes	No	_/	11.			
Trip Blank Custody Seals Present? COMMENTS/SAMPLE DISCREPANCY	□Yes	□No	J/N/A			Field Dat	a Required? Yes No
Fed Ex +1 M Ling 3939 5259 3351							
CLIENT NOTIFICATION/RESOLUTION				Lo	t ID of split co	ntainers:	
Person contacted:			_ Date/T	ime:			
Project Manager SCURF Review:					Date	:	
Project Manager SRF Review:					Date	::	

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.06

Document Revised: February 7, 2018 Page 1 of 2

Issuing Authority: Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottle

Project

WO#: 92482476

PM: KLH1

Due Date: 06/22/20

CLIENT: GA-GA Power

Item#	BP4U-125 mL Plastic Unpreserved (N/A) (Cl-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S- 125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N- 250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (Cl-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (Cl-)	AG1S- 1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3A-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AG0U-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1		2	١	1		4	X									3												
2		2	1	1		X	X									3									7		1	
3	/	2	1	1		4	X									3												
4	/				/			/																				
5	/				/	/	/	/																				
6	/				/	/	/	/																				
7	/				/	/	/	/			/																	
8	/				/	/	/	/									7.											
9	/				/	/	/	/			1																	
10	/				/	/	/	/			<u></u>																	
11	/				/	/	/	/																1				
12	/				/																							

		prince	ljustment Log for Pres	er tea eampies		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #
			-			

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

	'	= Cart		12	1 6	9	00	7	6	5	4	3	2	1	ITEM#	П	tsant	one:	ail:	fress:	npany:	ation A
		= Carb & BiCarb = AiK	ADDITIONAL COMMENTS									DPZ-2	MCM-07	MCM-06	SAMPLE ID One Character per box. (A-Z, 0-9 / , -) Sample Ids must be unique		quested Due Date:	(404)358_8460 Fax:	ie 320, Woodstock, GA 30188	1003 Weatherstone Parkway	y: Georgia Power	ztion A quired Client Information:
	4	Veronica fan	RELINQUISHED BY / AFFILIATION									WT G 6/16/20	WTG 6/16/20	WI G bliels	MATRIX CODE (See Valid codes to left Matrix CODE) MATRIX CODE (See Valid codes to left MPC) MATRIX CODE (See Valid codes to left MPC) MATRIX CODE (See Valid codes to left MPC) SAMPLE TYPE (G=GRAB C=COMP) SAMPLE TYPE (G=GRAB C=COMP))			Purchase Order #:	Copy To: Lauren Potty	Report To: Veronica Fay	Section B Required Project Information:
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER:	+) Resolute 6/17/120	Y/AFFILIATION DATE									120 1950	2033	-	COLLECTED START END TIME DATE TIME		Con Coccinent Chemical Property	McManus GW Geochem Performance Monitori		ty	Stephen Wilson	on:
conuco Jay	an b	w 1230 FedEx	TIME ACCEP									124 431	124 431	124 431	SAMPLE TEMP AT COLLECTION # OF CONTAINERS Unpreserved H2SO4 HNO3 HCI NaOH Na2S2O3 Methanol	11	Pace Profile #: 10768	Pace Project Manager: Kevin	Address:	Company Name:	Attention:	Section C Invoice Information:
pnen Wilson, Veronica DATE Signed: 6/1	The Reco	6/17/120	TED BY / AFFILIATION DATE									× × × × × ×	× × × × ×	*	Other Analyses Test Y/N TOC BOD Total Fe, Mg, Mn, K, Na Diss Fe, Mn Alkalinity + Ferrous Iron Sulfide L.	Requested Analysis Filtered (Y/N	geraciaes.com,	ring@pacelahs com				
TEMP in C		7/120 (2.30	TIME									X X X	× × ×	× × ×	As B, Ca C1, 504 TDS Residual Chlorine (Y/N)		G	元及6回番目の第二番を選びる。 1	Regulatory Agenc			Page:
Received on Ice (Y/N) Custody Sealed Cooler (Y/N) Samples Intact (Y/N)	<i>y y y</i>		SAMPLE CONDITIONS									7.	6	PH 6.87			GA		y Agency		į	of 1

September 23, 2020

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on August 28, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring

kevin.herring@pacelabs.com

Keni Sterry

1(704)875-9092

HORIZON Database Administrator

Enclosures

cc: Veronica Fay

Trent Godwin, Resolute Environmental & Water Resources

Kristen Jurinko

Ms. Lauren Petty, Southern Co. Services

Kevin Stephenson, Resolute Environmental & Water

Resources Consulting, LLC

Stephen Wilson, Resolute Environmental & Water

Resources Consulting, LLC

CERTIFICATIONS

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028

North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342

North Carolina Wastewater Certification #: 12

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 Massachusetts Certification #: M-NC030

North Carolina Drinking Water Certification #: 37712

South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

SAMPLE SUMMARY

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92493014001	MCM-01	Water	08/26/20 13:38	08/28/20 11:35
92493014002	MCM-02	Water	08/26/20 14:25	08/28/20 11:35
92493014003	MCM-04	Water	08/26/20 11:58	08/28/20 11:35
92493014004	MCM-05	Water	08/26/20 12:47	08/28/20 11:35
92493014005	MCM-07	Water	08/26/20 11:21	08/28/20 11:35
92493014006	MCM-11	Water	08/26/20 10:26	08/28/20 11:35
92493014007	MCM-12	Water	08/26/20 10:29	08/28/20 11:35
92493014008	MCM-14	Water	08/26/20 11:48	08/28/20 11:35
92493014009	MCM-15	Water	08/26/20 14:49	08/28/20 11:35
92493014010	MCM-16	Water	08/26/20 16:52	08/28/20 11:35
92493014011	MCM-17	Water	08/26/20 15:56	08/28/20 11:35
92493014012	MCM-18	Water	08/26/20 11:58	08/28/20 11:35
92493014013	MCM-19	Water	08/26/20 14:30	08/28/20 11:35
92493014014	MCM-20	Water	08/26/20 15:48	08/28/20 11:35
92493014015	FBL082620	Water	08/26/20 16:49	08/28/20 11:35
92493014016	EQBL082620	Water	08/26/20 16:55	08/28/20 11:35
92493014017	DUP-1	Water	08/26/20 00:00	08/28/20 11:35
92493014018	DUP-2	Water	08/26/20 00:00	08/28/20 11:35
92493014019	MCM-06	Water	08/26/20 16:08	08/28/20 11:35

SAMPLE ANALYTE COUNT

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92493014001	MCM-01	EPA 6010D	SH1	1	PASI-A
		EPA 6020B	BG2	13	PASI-A
		EPA 7470A	SOO	1	PASI-A
		SM 2540C-2011	RED	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
92493014002	MCM-02	EPA 6010D	SH1	1	PASI-A
		EPA 6020B	BG2	13	PASI-A
		EPA 7470A	SOO	1	PASI-A
		SM 2540C-2011	RED	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
2493014003	MCM-04	EPA 6010D	SH1	1	PASI-A
		EPA 6020B	BG2	13	PASI-A
		EPA 7470A	SOO	1	PASI-A
		SM 2540C-2011	RED	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
2493014004	MCM-05	EPA 6010D	SH1	1	PASI-A
		EPA 6020B	BG2	13	PASI-A
		EPA 7470A	SOO	1	PASI-A
		SM 2540C-2011	RED	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
2493014005	MCM-07	EPA 6010D	SH1	1	PASI-A
		EPA 6020B	BG2	13	PASI-A
		EPA 7470A	SOO	1	PASI-A
		SM 2540C-2011	ALP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
2493014006	MCM-11	EPA 6010D	SH1	1	PASI-A
		EPA 6020B	BG2	13	PASI-A
		EPA 7470A	SOO	1	PASI-A
		SM 2540C-2011	ALP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
2493014007	MCM-12	EPA 6010D	SH1	1	PASI-A
		EPA 6020B	BG2	13	PASI-A
		EPA 7470A	SOO	1	PASI-A
		SM 2540C-2011	ALP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
2493014008	MCM-14	EPA 6010D	SH1	1	PASI-A
		EPA 6020B	BG2	13	PASI-A

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE ANALYTE COUNT

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 7470A		1	PASI-A
		SM 2540C-2011	ALP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
92493014009	MCM-15	EPA 6010D	SH1	1	PASI-A
		EPA 6020B	BG2	13	PASI-A
		EPA 7470A	SOO	1	PASI-A
		SM 2540C-2011	ALP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
2493014010	MCM-16	EPA 6010D	SH1	1	PASI-A
		EPA 6020B	BG2	13	PASI-A
		EPA 7470A	SOO	1	PASI-A
		SM 2540C-2011	ALP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
2493014011	MCM-17	EPA 6010D	SH1	1	PASI-A
		EPA 6020B	BG2	13	PASI-A
		EPA 7470A	SOO	1	PASI-A
		SM 2540C-2011	ALP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
2493014012	MCM-18	EPA 6010D	SH1	1	PASI-A
		EPA 6020B	BG2	13	PASI-A
		EPA 7470A	SOO	1	PASI-A
		SM 2540C-2011	ALP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
2493014013	MCM-19	EPA 6010D	SH1	1	PASI-A
		EPA 6020B	BG2	13	PASI-A
		EPA 7470A	SOO	1	PASI-A
		SM 2540C-2011	ALP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
2493014014	MCM-20	EPA 6010D	SH1	1	PASI-A
		EPA 6020B	BG2	13	PASI-A
		EPA 7470A	SOO	1	PASI-A
		SM 2540C-2011	ALP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
2493014015	FBL082620	EPA 6010D	SH1	1	PASI-A
		EPA 6020B	JOR	13	PASI-A
		EPA 7470A	soo	1	PASI-A
		SM 2540C-2011	ALP	1	PASI-A

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE ANALYTE COUNT

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
92493014016	EQBL082620	EPA 6010D	SH1	1	PASI-A
		EPA 6020B	JOR	13	PASI-A
		EPA 7470A	SOO	1	PASI-A
		SM 2540C-2011	ALP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
92493014017	DUP-1	EPA 6010D	SH1	1	PASI-A
		EPA 6020B	BG2	13	PASI-A
		EPA 7470A	SOO	1	PASI-A
		SM 2540C-2011	ALP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
92493014018	DUP-2	EPA 6010D	SH1	1	PASI-A
		EPA 6020B	BG2	13	PASI-A
		EPA 7470A	SOO	1	PASI-A
		SM 2540C-2011	RED	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
92493014019	MCM-06	EPA 6010D	SH1	1	PASI-A
		EPA 6020B	BG2, JOR	13	PASI-A
		EPA 7470A	SOO	1	PASI-A
		SM 2540C-2011	RED	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A

PASI-A = Pace Analytical Services - Asheville PASI-C = Pace Analytical Services - Charlotte

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Lab Sample ID	Client Sample ID					
Method	Parameters —	Result	Units	Report Limit	Analyzed	Qualifiers
2493014001	MCM-01					
	рН	5.79	Std. Units		09/10/20 09:31	
EPA 6010D	Calcium	10.5	mg/L	0.10	09/01/20 23:02	
EPA 6020B	Arsenic	0.0079	mg/L	0.0050	09/16/20 17:53	
PA 6020B	Barium	0.056	mg/L	0.010	09/16/20 17:53	
SM 2540C-2011	Total Dissolved Solids	82.0	mg/L	25.0	08/31/20 18:33	
PA 300.0 Rev 2.1 1993	Chloride	13.2	mg/L	1.0	08/29/20 18:18	
PA 300.0 Rev 2.1 1993	Sulfate	32.9	mg/L	1.0	08/29/20 18:18	
2493014002	MCM-02					
	рН	5.03	Std. Units		09/10/20 09:31	
PA 6010D	Calcium	4.6	mg/L	0.10	09/02/20 22:37	
PA 6020B	Barium	0.092	mg/L	0.010	09/16/20 18:16	
PA 6020B	Lead	0.0018J	mg/L	0.0050	09/16/20 18:16	
M 2540C-2011	Total Dissolved Solids	89.0	mg/L	25.0	08/31/20 18:33	
PA 300.0 Rev 2.1 1993	Chloride	26.7	mg/L	1.0	08/29/20 18:31	
PA 300.0 Rev 2.1 1993	Sulfate	28.0	mg/L	1.0	08/29/20 18:31	
2493014003	MCM-04					
	рН	4.95	Std. Units		09/10/20 09:31	
PA 6010D	Calcium	20.6	mg/L	0.10	09/02/20 22:57	
PA 6020B	Arsenic	0.0059	mg/L	0.0050	09/16/20 18:20	
PA 6020B	Barium	0.086	mg/L	0.010	09/16/20 18:20	
PA 6020B	Cobalt	0.015	mg/L	0.0050	09/16/20 18:20	
M 2540C-2011	Total Dissolved Solids	289	mg/L	25.0	08/31/20 18:33	
PA 300.0 Rev 2.1 1993	Chloride	42.0	mg/L	1.0	08/29/20 18:45	
PA 300.0 Rev 2.1 1993	Sulfate	112	mg/L	3.0	08/30/20 01:05	
493014004	MCM-05					
	рН	6.50	Std. Units		09/10/20 09:31	
PA 6010D	Calcium	21.5	mg/L	0.10	09/02/20 23:00	
PA 6020B	Barium	0.0065J	mg/L	0.010	09/16/20 18:35	
PA 6020B	Boron	0.43J	mg/L	0.50	09/16/20 18:35	
PA 6020B	Lithium	0.018J	mg/L	0.030	09/16/20 18:35	
M 2540C-2011	Total Dissolved Solids	1260	mg/L	125	08/31/20 18:33	
PA 300.0 Rev 2.1 1993	Chloride	558	mg/L	12.0	08/30/20 01:19	
PA 300.0 Rev 2.1 1993	Fluoride	0.39	mg/L	0.10	08/29/20 18:58	
PA 300.0 Rev 2.1 1993	Sulfate	61.9	mg/L	1.0	08/29/20 18:58	
2493014005	MCM-07					
	рН	6.32	Std. Units		09/10/20 09:31	
PA 6010D	Calcium	259	mg/L	0.50	09/03/20 19:13	
PA 6020B	Arsenic	0.019	mg/L	0.0050	09/16/20 18:51	
PA 6020B	Barium	0.22	mg/L	0.010	09/16/20 18:51	
PA 6020B	Boron	1.6	mg/L	0.50	09/16/20 18:51	
PA 6020B	Lead	0.014	mg/L	0.0050	09/16/20 18:51	
PA 6020B	Lithium	0.045J	mg/L	0.030	09/16/20 18:51	
M 2540C-2011	Total Dissolved Solids	19200	mg/L	2500	09/01/20 13:15	
PA 300.0 Rev 2.1 1993	Chloride	7330	mg/L	100	08/30/20 01:33	
PA 300.0 Rev 2.1 1993	Sulfate	895	mg/L	100	08/30/20 01:33	

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Lab Sample ID	Client Sample ID					
Method	Parameters —	Result	Units	Report Limit	Analyzed	Qualifiers
2493014006	MCM-11					
	рН	4.96	Std. Units		09/10/20 09:31	
EPA 6010D	Calcium	3.2	mg/L	0.10	09/02/20 23:07	
EPA 6020B	Arsenic	0.0044J	mg/L	0.0050	09/16/20 18:59	
EPA 6020B	Barium	0.041	mg/L	0.010	09/16/20 18:59	
SM 2540C-2011	Total Dissolved Solids	86.0	mg/L	25.0	09/01/20 13:15	
EPA 300.0 Rev 2.1 1993	Chloride	13.3	mg/L	1.0	08/29/20 19:52	
EPA 300.0 Rev 2.1 1993	Fluoride	0.097J	mg/L	0.10	08/29/20 19:52	M1
EPA 300.0 Rev 2.1 1993	Sulfate	21.8	mg/L	1.0	08/29/20 19:52	
2493014007	MCM-12					
	рН	6.32	Std. Units		09/10/20 09:31	
EPA 6010D	Calcium	7.5	mg/L	0.10	09/02/20 23:10	
PA 6020B	Barium	0.10	mg/L	0.010	09/16/20 19:03	
PA 6020B	Beryllium	0.0010J	mg/L	0.0030	09/16/20 19:03	
PA 6020B	Boron	1.4	mg/L	0.50	09/16/20 19:03	
PA 6020B	Lithium	0.013J	mg/L	0.030	09/16/20 19:03	
SM 2540C-2011	Total Dissolved Solids	1700	mg/L	250	09/01/20 13:15	
PA 300.0 Rev 2.1 1993	Chloride	529	mg/L	12.0	08/30/20 01:48	
PA 300.0 Rev 2.1 1993	Fluoride	1.2	mg/L	0.10	08/29/20 21:00	
2493014008	MCM-14					
	рН	6.62	Std. Units		09/10/20 09:31	
PA 6010D	Calcium	284	mg/L	0.50	09/03/20 19:17	
PA 6020B	Barium	0.12	mg/L	0.010	09/16/20 19:10	
PA 6020B	Boron	1.2	mg/L	0.50	09/16/20 19:10	
PA 6020B	Lithium	0.054	mg/L	0.030	09/16/20 19:10	
SM 2540C-2011	Total Dissolved Solids	14700	mg/L	2500	09/01/20 13:16	
PA 300.0 Rev 2.1 1993	Sulfate	730	mg/L	100	08/30/20 02:29	
2493014009	MCM-15					
	рН	5.33	Std. Units		09/10/20 09:31	
PA 6010D	Calcium	5.8	mg/L	0.10	09/02/20 23:17	
PA 6020B	Arsenic	0.0024J	mg/L	0.0050	09/16/20 19:18	
PA 6020B	Barium	0.039	mg/L	0.010		
M 2540C-2011	Total Dissolved Solids	101	mg/L	25.0	09/01/20 13:17	
PA 300.0 Rev 2.1 1993	Chloride	14.4	mg/L	1.0	08/29/20 21:27	
PA 300.0 Rev 2.1 1993	Sulfate	14.0	mg/L	1.0	08/29/20 21:27	
2493014010	MCM-16					
	рН	4.92	Std. Units		09/10/20 09:31	
PA 6010D	Calcium	5.6	mg/L		09/02/20 23:20	
PA 6020B	Barium	0.12	mg/L	0.010	09/16/20 19:22	
M 2540C-2011	Total Dissolved Solids	95.0	mg/L	25.0	09/01/20 13:18	
PA 300.0 Rev 2.1 1993	Chloride	22.2	mg/L	1.0	08/29/20 21:40	
PA 300.0 Rev 2.1 1993	Sulfate	27.8	mg/L	1.0	08/29/20 21:40	
2493014011	MCM-17					
	рН	6.65	Std. Units		09/10/20 09:31	
EPA 6010D	Calcium	146	mg/L	0.50	09/03/20 19:20	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2493014011	MCM-17					
EPA 6020B	Barium	0.15	mg/L	0.010	09/16/20 19:26	
EPA 6020B	Boron	1.8	mg/L	0.50	09/16/20 19:26	
EPA 6020B	Lithium	0.027J	mg/L	0.030	09/16/20 19:26	
SM 2540C-2011	Total Dissolved Solids	8400	mg/L	1250	09/01/20 13:18	
EPA 300.0 Rev 2.1 1993	Sulfate	341	mg/L	100	08/30/20 02:43	
2493014012	MCM-18					
	pH	4.27	Std. Units		09/10/20 09:31	
EPA 6010D	Calcium	25.7	mg/L	0.10	09/02/20 23:40	
EPA 6020B	Arsenic	0.0019J	mg/L	0.0050	09/16/20 19:41	
EPA 6020B	Barium	0.095	mg/L	0.010		
EPA 6020B	Beryllium	0.0042	mg/L	0.0030	09/16/20 19:41	
EPA 6020B	Boron	0.25J	mg/L	0.50	09/16/20 19:41	
EPA 6020B	Lead	0.0035J	mg/L	0.0050	09/16/20 19:41	
EPA 6020B	Selenium	0.0014J	mg/L	0.010		
SM 2540C-2011	Total Dissolved Solids	2980	mg/L	500	09/01/20 13:18	
PA 300.0 Rev 2.1 1993	Fluoride	0.096J	mg/L	0.10	08/29/20 22:07	
EPA 300.0 Rev 2.1 1993	Sulfate	170	mg/L	100	08/30/20 02:57	
2493014013	MCM-19					
	рН	5.25	Std. Units		09/10/20 09:31	
EPA 6010D	Calcium	121	mg/L	0.50	09/03/20 19:23	
PA 6020B	Arsenic	0.012	mg/L	0.0050	09/16/20 19:57	
EPA 6020B	Barium	0.11	mg/L	0.010	09/16/20 19:57	
PA 6020B	Beryllium	0.011	mg/L	0.0030	09/16/20 19:57	
PA 6020B	Boron	0.91	mg/L	0.50	09/16/20 19:57	
PA 6020B	Lithium	0.018J	mg/L	0.030	09/16/20 19:57	
PA 6020B	Selenium	0.0060J	mg/L	0.010	09/16/20 19:57	
SM 2540C-2011	Total Dissolved Solids	13300	mg/L	2500	09/01/20 13:18	
PA 300.0 Rev 2.1 1993	Chloride	5390	mg/L	100	08/31/20 00:04	
PA 300.0 Rev 2.1 1993	Sulfate	854	mg/L	100	08/31/20 00:04	
2493014014	MCM-20					
	рН	3.78	Std. Units		09/10/20 09:31	
EPA 6010D	Calcium	110	mg/L	0.50		
EPA 6020B	Arsenic	0.018	mg/L	0.0050	09/16/20 20:04	
EPA 6020B	Barium	0.12	mg/L	0.010	09/16/20 20:04	
EPA 6020B	Beryllium	0.018	mg/L		09/16/20 20:04	
EPA 6020B	Boron	1.0	mg/L	0.50	09/16/20 20:04	
PA 6020B	Cobalt	0.034	mg/L	0.0050	09/16/20 20:04	
PA 6020B	Lithium	0.026J	mg/L	0.030	09/16/20 20:04	
PA 6020B	Selenium	0.0052J	mg/L	0.010	09/16/20 20:04	
SM 2540C-2011	Total Dissolved Solids	15100	mg/L	2500	09/01/20 13:19	
PA 300.0 Rev 2.1 1993	Chloride	5470	mg/L	100	08/30/20 03:11	
EPA 300.0 Rev 2.1 1993	Fluoride	0.058J	mg/L	0.10	08/29/20 22:34	
EPA 300.0 Rev 2.1 1993	Sulfate	639	mg/L	100		
2493014015	FBL082620					
EPA 6020B	Barium	0.00044J	mg/L	0.010	09/17/20 00:03	
			=			

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92493014016	EQBL082620			_		
EPA 6020B	Barium	0.00047J	mg/L	0.010	09/17/20 00:07	
92493014017	DUP-1					
EPA 6010D	Calcium	21.3	mg/L	0.10	09/02/20 23:56	
EPA 6020B	Arsenic	0.0056	mg/L	0.0050	09/16/20 20:20	
EPA 6020B	Barium	0.082	mg/L	0.010	09/16/20 20:20	
EPA 6020B	Cobalt	0.015	mg/L	0.0050	09/16/20 20:20	
SM 2540C-2011	Total Dissolved Solids	300	mg/L	25.0	09/01/20 13:19	
EPA 300.0 Rev 2.1 1993	Chloride	43.9	mg/L	1.0	08/30/20 00:22	
EPA 300.0 Rev 2.1 1993	Sulfate	113	mg/L	2.0	08/30/20 03:27	
2493014018	DUP-2					
EPA 6010D	Calcium	112	mg/L	0.50	09/03/20 19:30	
PA 6020B	Arsenic	0.018	mg/L	0.0050	09/16/20 20:27	
EPA 6020B	Barium	0.12	mg/L	0.010	09/16/20 20:27	
EPA 6020B	Beryllium	0.019	mg/L	0.0030	09/16/20 20:27	
EPA 6020B	Boron	1.0	mg/L	0.50	09/16/20 20:27	
EPA 6020B	Cobalt	0.035	mg/L	0.0050	09/16/20 20:27	
EPA 6020B	Lithium	0.025J	mg/L	0.030	09/16/20 20:27	
EPA 6020B	Selenium	0.0054J	mg/L	0.010	09/16/20 20:27	
SM 2540C-2011	Total Dissolved Solids	12600	mg/L	1250	09/01/20 16:19	
EPA 300.0 Rev 2.1 1993	Chloride	5570	mg/L	100	08/30/20 03:41	
EPA 300.0 Rev 2.1 1993	Fluoride	0.079J	mg/L	0.10	08/30/20 00:36	
EPA 300.0 Rev 2.1 1993	Sulfate	670	mg/L	100	08/30/20 03:41	
2493014019	MCM-06					
	рH	6.88	Std. Units		09/10/20 09:31	
EPA 6010D	Calcium	254	mg/L	0.50	09/03/20 19:34	
EPA 6020B	Arsenic	0.46	mg/L	0.12	09/10/20 13:26	
EPA 6020B	Barium	0.15J	mg/L	0.25	09/10/20 13:26	
EPA 6020B	Boron	1.6	mg/L	1.2	09/09/20 14:13	
EPA 6020B	Lithium	0.096J	mg/L	0.75	09/10/20 13:26	
SM 2540C-2011	Total Dissolved Solids	14900	mg/L	2500	09/01/20 16:19	
EPA 300.0 Rev 2.1 1993	Chloride	6510	mg/L	100	08/30/20 03:55	
EPA 300.0 Rev 2.1 1993	Sulfate	514	mg/L	100	08/30/20 03:55	

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

Sample: MCM-01	Lab ID:	92493014001	Collected:	08/26/20	13:38	Received: 08/	28/20 11:35 N	latrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical								
	Pace Ana	lytical Services	- Charlotte						
рН	5.79	Std. Units			1		09/10/20 09:31		
6010 MET ICP	Analytical	Method: EPA 6	6010D Prepa	ration Metl	nod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	10.5	mg/L	0.10	0.094	1	09/01/20 01:35	09/01/20 23:02	2 7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	6020B Prepa	ration Meth	nod: EF	PA 3010A			
		lytical Services							
Antimony	ND	mg/L	0.0030	0.0025	20	09/16/20 01:12	09/16/20 17:53	7440-36-0	
Arsenic	0.0079	mg/L	0.0050	0.0017	20	09/16/20 01:12	09/16/20 17:53	7440-38-2	
Barium	0.056	mg/L	0.010	0.0043	20	09/16/20 01:12	09/16/20 17:53	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.0010	20	09/16/20 01:12	09/16/20 17:53	3 7440-41-7	
Boron	ND	mg/L	0.50	0.12	20	09/16/20 01:12	09/16/20 17:53	7440-42-8	
Cadmium	ND	mg/L	0.0025	0.0012	20	09/16/20 01:12	09/16/20 17:53	7440-43-9	
Chromium	ND	mg/L	0.010	0.0099	20	09/16/20 01:12	09/16/20 17:53	3 7440-47-3	
Cobalt	ND	mg/L	0.0050	0.0010	20	09/16/20 01:12	09/16/20 17:53	7440-48-4	
Lead	ND	mg/L	0.0050	0.0015	20	09/16/20 01:12	09/16/20 17:53	7439-92-1	
Lithium	ND	mg/L	0.030	0.0078	20	09/16/20 01:12	09/16/20 17:53	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0022	20	09/16/20 01:12	09/16/20 17:53	7439-98-7	
Selenium	ND	mg/L	0.010	0.0012	20	09/16/20 01:12	09/16/20 17:53	7782-49-2	
Thallium	ND	mg/L	0.0010	0.0010	20	09/16/20 01:12	09/16/20 17:53	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	7470A Prepa	ration Meth	nod: EF	A 7470A			
	Pace Ana	lytical Services	- Asheville						
Mercury	ND	ug/L	0.50	0.12	1	09/01/20 20:08	09/02/20 14:49	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2011						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	82.0	mg/L	25.0	25.0	1		08/31/20 18:33	3	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2.1	1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	13.2	mg/L	1.0	0.60	1		08/29/20 18:18	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		08/29/20 18:18	16984-48-8	
Sulfate	32.9	mg/L	1.0	0.50	1		08/29/20 18:18	14808-79-8	

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

Sample: MCM-02	Lab ID:	92493014002	Collected:	08/26/20	14:25	Received: 08/	/28/20 11:35 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
рН	5.03	Std. Units			1		09/10/20 09:31		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Met	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	4.6	mg/L	0.10	0.094	1	09/02/20 01:33	09/02/20 22:37	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	6020B Prepa	ration Met	thod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Antimony	ND	mg/L	0.0030	0.0025	20	09/16/20 01:12	09/16/20 18:16	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0017	20	09/16/20 01:12	09/16/20 18:16	7440-38-2	
Barium	0.092	mg/L	0.010	0.0043	20	09/16/20 01:12	09/16/20 18:16	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.0010	20	09/16/20 01:12	09/16/20 18:16	7440-41-7	
Boron	ND	mg/L	0.50	0.12	20	09/16/20 01:12	09/16/20 18:16	7440-42-8	
Cadmium	ND	mg/L	0.0025	0.0012	20	09/16/20 01:12	09/16/20 18:16	7440-43-9	
Chromium	ND	mg/L	0.010	0.0099	20		09/16/20 18:16		
Cobalt	ND	mg/L	0.0050	0.0010	20	09/16/20 01:12	09/16/20 18:16	7440-48-4	
Lead	0.0018J	mg/L	0.0050	0.0015	20	09/16/20 01:12	09/16/20 18:16	7439-92-1	
Lithium	ND	mg/L	0.030	0.0078	20	09/16/20 01:12	09/16/20 18:16	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0022	20	09/16/20 01:12	09/16/20 18:16	7439-98-7	
Selenium	ND	mg/L	0.010	0.0012	20	09/16/20 01:12	09/16/20 18:16	7782-49-2	
Thallium	ND	mg/L	0.0010	0.0010	20	09/16/20 01:12	09/16/20 18:16	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prepa	ration Met	hod: EF	PA 7470A			
•	Pace Ana	lytical Services	- Asheville						
Mercury	ND	ug/L	0.50	0.12	1	09/01/20 20:08	09/02/20 14:56	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	89.0	mg/L	25.0	25.0	1		08/31/20 18:33		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2.1	1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	26.7	mg/L	1.0	0.60	1		08/29/20 18:31	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		08/29/20 18:31		
Sulfate	28.0	mg/L	1.0	0.50	1		08/29/20 18:31		

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

Sample: MCM-04	Lab ID:	92493014003	Collected	: 08/26/20	11:58	Received: 08/	28/20 11:35 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	lytical Services	- Charlotte						
рН	4.95	Std. Units			1		09/10/20 09:31		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	aration Me	thod: EF	PA 3010A			
	Pace Anal	lytical Services	- Asheville						
Calcium	20.6	mg/L	0.10	0.094	1	09/02/20 01:33	09/02/20 22:57	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	hod: EF	PA 3010A			
	-	lytical Services							
Antimony	ND	mg/L	0.0030	0.0025	20	09/16/20 01:12	09/16/20 18:20	7440-36-0	
Arsenic	0.0059	mg/L	0.0050	0.0017	20	09/16/20 01:12	09/16/20 18:20	7440-38-2	
Barium	0.086	mg/L	0.010	0.0043	20	09/16/20 01:12	09/16/20 18:20	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.0010	20	09/16/20 01:12	09/16/20 18:20	7440-41-7	
Boron	ND	mg/L	0.50	0.12	20		09/16/20 18:20		
Cadmium	ND	mg/L	0.0025	0.0012	20		09/16/20 18:20		
Chromium	ND	mg/L	0.010	0.0099	20		09/16/20 18:20		
Cobalt	0.015	mg/L	0.0050	0.0010	20		09/16/20 18:20		
Lead	ND	mg/L	0.0050	0.0015	20		09/16/20 18:20		
Lithium	ND	mg/L	0.030	0.0078	20		09/16/20 18:20		
Molybdenum	ND	mg/L	0.010	0.0022	20		09/16/20 18:20		
Selenium	ND	mg/L	0.010	0.0012	20		09/16/20 18:20		
Thallium	ND	mg/L	0.0010	0.0010	20		09/16/20 18:20		
7470 Mercury	Analytical	Method: EPA 7	′470A Prepa	ration Met	hod: EF	'A 7470A			
·,	-	lytical Services							
Mercury	ND	ug/L	0.50	0.12	1	09/01/20 20:08	09/02/20 14:59	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Anal	lytical Services	- Asheville						
Total Dissolved Solids	289	mg/L	25.0	25.0	1		08/31/20 18:33		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2.1	I 1993					
	Pace Anal	lytical Services	- Asheville						
Chloride	42.0	mg/L	1.0	0.60	1		08/29/20 18:45	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		08/29/20 18:45	16984-48-8	
Sulfate	112	mg/L	3.0	1.5	3		08/30/20 01:05	14808-79-8	

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

Sample: MCM-05	Lab ID:	92493014004	Collected:	08/26/20	12:47	Received: 08/	28/20 11:35 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical								
	Pace Ana	lytical Services	- Charlotte						
рН	6.50	Std. Units			1		09/10/20 09:31		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Meth	nod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	21.5	mg/L	0.10	0.094	1	09/02/20 01:33	09/02/20 23:00	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prena	ration Meth	nod: FF	PA 3010A			
0020 MET TOT MO	-	lytical Services		ration moti	iou. Li	71001071			
Antimony	ND	mg/L	0.0030	0.0025	20	09/16/20 01:12	09/16/20 18:35	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0017	20	09/16/20 01:12	09/16/20 18:35	7440-38-2	
Barium	0.0065J	mg/L	0.010	0.0043	20	09/16/20 01:12	09/16/20 18:35	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.0010	20	09/16/20 01:12	09/16/20 18:35	7440-41-7	
Boron	0.43J	mg/L	0.50	0.12	20	09/16/20 01:12	09/16/20 18:35	7440-42-8	
Cadmium	ND	mg/L	0.0025	0.0012	20	09/16/20 01:12	09/16/20 18:35	7440-43-9	
Chromium	ND	mg/L	0.010	0.0099	20	09/16/20 01:12	09/16/20 18:35	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.0010	20	09/16/20 01:12	09/16/20 18:35	7440-48-4	
Lead	ND	mg/L	0.0050	0.0015	20	09/16/20 01:12	09/16/20 18:35	7439-92-1	
Lithium	0.018J	mg/L	0.030	0.0078	20	09/16/20 01:12	09/16/20 18:35	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0022	20	09/16/20 01:12	09/16/20 18:35	7439-98-7	
Selenium	ND	mg/L	0.010	0.0012	20	09/16/20 01:12	09/16/20 18:35	7782-49-2	
Thallium	ND	mg/L	0.0010	0.0010	20	09/16/20 01:12	09/16/20 18:35	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prepa	ration Meth	nod: EF	A 7470A			
	Pace Ana	lytical Services	- Asheville						
Mercury	ND	ug/L	0.50	0.12	1	09/01/20 20:08	09/02/20 15:01	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	1260	mg/L	125	125	1		08/31/20 18:33		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2.1	1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	558	mg/L	12.0	7.2	12		08/30/20 01:19	16887-00-6	
Fluoride	0.39	mg/L	0.10	0.050	1		08/29/20 18:58	16984-48-8	
Sulfate	61.9	mg/L	1.0	0.50	1		08/29/20 18:58	14808-79-8	

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

Sample: MCM-07	Lab ID:	92493014005	Collected:	08/26/20	11:21	Received: 08/	28/20 11:35 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical								
	Pace Ana	lytical Services	- Charlotte						
рН	6.32	Std. Units			1		09/10/20 09:31		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Meth	nod: EF	PA 3010A			
	Pace Ana	lytical Services	- Asheville						
Calcium	259	mg/L	0.50	0.47	5	09/02/20 01:33	09/03/20 19:13	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Meth	nod: EF	PA 3010A			
	-	lytical Services							
Antimony	ND	mg/L	0.0030	0.0025	20	09/16/20 01:12	09/16/20 18:51	7440-36-0	
Arsenic	0.019	mg/L	0.0050	0.0017	20	09/16/20 01:12	09/16/20 18:51	7440-38-2	
Barium	0.22	mg/L	0.010	0.0043	20	09/16/20 01:12	09/16/20 18:51	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.0010	20	09/16/20 01:12	09/16/20 18:51	7440-41-7	
Boron	1.6	mg/L	0.50	0.12	20	09/16/20 01:12	09/16/20 18:51	7440-42-8	
Cadmium	ND	mg/L	0.0025	0.0012	20	09/16/20 01:12	09/16/20 18:51	7440-43-9	
Chromium	ND	mg/L	0.010	0.0099	20	09/16/20 01:12	09/16/20 18:51	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.0010	20	09/16/20 01:12	09/16/20 18:51	7440-48-4	
Lead	0.014	mg/L	0.0050	0.0015	20	09/16/20 01:12	09/16/20 18:51	7439-92-1	
Lithium	0.045J	mg/L	0.030	0.0078	20	09/16/20 01:12	09/16/20 18:51	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0022	20		09/16/20 18:51		
Selenium	ND	mg/L	0.010	0.0012	20	09/16/20 01:12	09/16/20 18:51	7782-49-2	
Thallium	ND	mg/L	0.0010	0.0010	20	09/16/20 01:12	09/16/20 18:51	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prepa	ration Meth	od: EF	PA 7470A			
	Pace Ana	lytical Services	- Asheville						
Mercury	ND	ug/L	0.50	0.12	1	09/01/20 20:08	09/02/20 15:03	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	19200	mg/L	2500	2500	1		09/01/20 13:15		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.1	1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	7330	mg/L	100	60.0	100		08/30/20 01:33	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		08/29/20 19:12	16984-48-8	
Sulfate	895	mg/L	100	50.0	100		08/30/20 01:33	14808-79-8	

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

Sample: MCM-11	Lab ID:	92493014006	Collected	: 08/26/20	10:26	Received: 08/	28/20 11:35 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
рН	4.96	Std. Units			1		09/10/20 09:31		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	3.2	mg/L	0.10	0.094	1	09/02/20 01:33	09/02/20 23:07	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	hod: EF	PA 3010A			
		ytical Services							
Antimony	ND	mg/L	0.0030	0.0025	20	09/16/20 01:12	09/16/20 18:59	7440-36-0	
Arsenic	0.0044J	mg/L	0.0050	0.0017	20	09/16/20 01:12	09/16/20 18:59	7440-38-2	
Barium	0.041	mg/L	0.010	0.0043	20		09/16/20 18:59		
Beryllium	ND	mg/L	0.0030	0.0010	20		09/16/20 18:59		
Boron	ND	mg/L	0.50	0.12	20		09/16/20 18:59	-	
Cadmium	ND	mg/L	0.0025	0.0012	20		09/16/20 18:59		
Chromium	ND	mg/L	0.010	0.0099	20		09/16/20 18:59		
Cobalt	ND	mg/L	0.0050	0.0010	20		09/16/20 18:59		
Lead	ND	mg/L	0.0050	0.0015	20		09/16/20 18:59		
Lithium	ND	mg/L	0.030	0.0078	20		09/16/20 18:59		
Molybdenum	ND	mg/L	0.010	0.0022	20		09/16/20 18:59		
Selenium	ND ND	mg/L	0.010	0.0022	20		09/16/20 18:59		
Thallium	ND ND	mg/L	0.0010	0.0012	20		09/16/20 18:59		
7470 Mercury	Analytical	Method: EPA 7	470A Prepa	ration Met	hod: FP	A 7470A			
,,	-	ytical Services				-			
Mercury	ND	ug/L	0.50	0.12	1	09/01/20 20:08	09/02/20 15:06	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	86.0	mg/L	25.0	25.0	1		09/01/20 13:15		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.1	1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	13.3	mg/L	1.0	0.60	1		08/29/20 19:52	16887-00-6	
Fluoride	0.097J	mg/L	0.10	0.050	1		08/29/20 19:52	16984-48-8	M1
Sulfate	21.8	mg/L	1.0	0.50	1		08/29/20 19:52	14808-79-8	

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

Sample: MCM-12	Lab ID:	92493014007	Collected:	08/26/20	10:29	Received: 08/	28/20 11:35 M	latrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical		Ob and att a						
	Pace Ana	lytical Services	- Charlotte						
рН	6.32	Std. Units			1		09/10/20 09:31		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Meth	nod: EF	PA 3010A			
	•	lytical Services							
Calcium	7.5	mg/L	0.10	0.094	1	09/02/20 01:33	09/02/20 23:10	7440-70-2	
	Anabataal	Mathad EDA 6	000D D						
6020 MET ICPMS	-	Method: EPA 6		ration Metr	ioa: EF	A 3010A			
	Pace Ana	lytical Services	- Asheville						
Antimony	ND	mg/L	0.0030	0.0025	20	09/16/20 01:12	09/16/20 19:03	3 7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0017	20	09/16/20 01:12	09/16/20 19:03	3 7440-38-2	
Barium	0.10	mg/L	0.010	0.0043	20	09/16/20 01:12	09/16/20 19:03	7440-39-3	
Beryllium	0.0010J	mg/L	0.0030	0.0010	20	09/16/20 01:12	09/16/20 19:03	3 7440-41-7	
Boron	1.4	mg/L	0.50	0.12	20	09/16/20 01:12	09/16/20 19:03	3 7440-42-8	
Cadmium	ND	mg/L	0.0025	0.0012	20	09/16/20 01:12	09/16/20 19:03	7440-43-9	
Chromium	ND	mg/L	0.010	0.0099	20	09/16/20 01:12	09/16/20 19:03	3 7440-47-3	
Cobalt	ND	mg/L	0.0050	0.0010	20	09/16/20 01:12	09/16/20 19:03	3 7440-48-4	
Lead	ND	mg/L	0.0050	0.0015	20	09/16/20 01:12	09/16/20 19:03	7439-92-1	
Lithium	0.013J	mg/L	0.030	0.0078	20	09/16/20 01:12	09/16/20 19:03	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0022	20	09/16/20 01:12			
Selenium	ND	mg/L	0.010	0.0012	20	09/16/20 01:12	09/16/20 19:03	7782-49-2	
Thallium	ND	mg/L	0.0010	0.0010	20	09/16/20 01:12	09/16/20 19:03	3 7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prepa	ration Meth	od: EP	A 7470A			
,,	-	lytical Services				-			
Mercury	ND	ug/L	0.50	0.12	1	09/01/20 20:08	09/02/20 15:13	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Ana	lytical Services	- Asheville						
Total Dissolved Solids	1700	mg/L	250	250	1		09/01/20 13:15	5	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.1	1993					
•	Pace Ana	lytical Services	- Asheville						
Chloride	529	mg/L	12.0	7.2	12		08/30/20 01:48	3 16887-00-6	
Fluoride	1.2	mg/L	0.10	0.050	1		08/29/20 21:00		
Sulfate	ND	mg/L	1.0	0.50	1		08/29/20 21:00		

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

Sample: MCM-14	Lab ID:	92493014008	Collected:	08/26/20	11:48	Received: 08/	28/20 11:35 Ma	atrix: Water				
			Report									
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua			
Field Data	Analytical	Method:										
	Pace Anal	ytical Services	- Charlotte									
рН	6.62	Std. Units			1		09/10/20 09:31					
6010 MET ICP	Analytical Method: EPA 6010D Preparation Method: EPA 3010A											
	Pace Anal	Pace Analytical Services - Asheville										
Calcium	284	mg/L	0.50	0.47	5	09/02/20 01:33	09/03/20 19:17	7440-70-2				
6020 MET ICPMS	Analytical Method: EPA 6020B Preparation Method: EPA 3010A											
	-	ytical Services										
Antimony	ND	mg/L	0.0030	0.0025	20	09/16/20 01:12	09/16/20 19:10	7440-36-0				
Arsenic	ND	mg/L	0.0050	0.0017	20	09/16/20 01:12	09/16/20 19:10	7440-38-2				
Barium	0.12	mg/L	0.010	0.0043	20	09/16/20 01:12	09/16/20 19:10	7440-39-3				
Beryllium	ND	mg/L	0.0030	0.0010	20	09/16/20 01:12	09/16/20 19:10	7440-41-7				
Boron	1.2	mg/L	0.50	0.12	20		09/16/20 19:10					
Cadmium	ND	mg/L	0.0025	0.0012	20		09/16/20 19:10					
Chromium	ND	mg/L	0.010	0.0099	20	09/16/20 01:12	09/16/20 19:10	7440-47-3				
Cobalt	ND	mg/L	0.0050	0.0010	20		09/16/20 19:10					
Lead	ND	mg/L	0.0050	0.0015	20		09/16/20 19:10					
Lithium	0.054	mg/L	0.030	0.0078	20		09/16/20 19:10					
Molybdenum	ND	mg/L	0.010	0.0022	20		09/16/20 19:10					
Selenium	ND	mg/L	0.010	0.0012	20		09/16/20 19:10					
Thallium	ND	mg/L	0.0010	0.0010	20		09/16/20 19:10					
7470 Mercury	Analytical	Method: EPA 7	470A Prepa	ration Met	hod: EF	'A 7470A						
,	-	ytical Services										
Mercury	ND	ug/L	0.50	0.12	1	09/01/20 20:08	09/02/20 15:15	7439-97-6				
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011									
	Pace Anal	ytical Services	- Asheville									
Total Dissolved Solids	14700	mg/L	2500	2500	1		09/01/20 13:16					
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0 Rev 2.1 1993											
	Pace Anal	ytical Services	- Asheville									
Chloride	ND	mg/L	1.0	0.60	1		08/29/20 21:13	16887-00-6				
Fluoride	ND	mg/L	0.10	0.050	1		08/29/20 21:13	16984-48-8				
Sulfate	730	mg/L	100	50.0	100		08/30/20 02:29					

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

Sample: MCM-15	Lab ID:	92493014009	Collected:	08/26/20	14:49	Received: 08/	28/20 11:35 Ma	atrix: Water		
			Report							
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua	
Field Data	Analytical	Method:								
	Pace Anal	ytical Services	- Charlotte							
рН	5.33	Std. Units			1		09/10/20 09:31			
6010 MET ICP	Analytical Method: EPA 6010D Preparation Method: EPA 3010A									
	Pace Anal	ytical Services	- Asheville							
Calcium	5.8	mg/L	0.10	0.094	1	09/02/20 01:33	09/02/20 23:17	7440-70-2		
6020 MET ICPMS	Analytical Method: EPA 6020B Preparation Method: EPA 3010A									
		ytical Services								
Antimony	ND	mg/L	0.0030	0.0025	20	09/16/20 01:12	09/16/20 19:18	7440-36-0		
Arsenic	0.0024J	mg/L	0.0050	0.0017	20	09/16/20 01:12	09/16/20 19:18	7440-38-2		
Barium	0.039	mg/L	0.010	0.0043	20	09/16/20 01:12	09/16/20 19:18	7440-39-3		
Beryllium	ND	mg/L	0.0030	0.0010	20	09/16/20 01:12	09/16/20 19:18	7440-41-7		
Boron	ND	mg/L	0.50	0.12	20		09/16/20 19:18	-		
Cadmium	ND	mg/L	0.0025	0.0012	20		09/16/20 19:18			
Chromium	ND	mg/L	0.010	0.0099	20		09/16/20 19:18			
Cobalt	ND	mg/L	0.0050	0.0010	20		09/16/20 19:18			
Lead	ND	mg/L	0.0050	0.0015	20		09/16/20 19:18			
Lithium	ND	mg/L	0.030	0.0078	20		09/16/20 19:18			
Molybdenum	ND	mg/L	0.010	0.0022	20		09/16/20 19:18			
Selenium	ND	mg/L	0.010	0.0012	20		09/16/20 19:18			
Thallium	ND	mg/L	0.0010	0.0010	20		09/16/20 19:18			
7470 Mercury	Analytical	Method: EPA 7	470A Prepa	ration Met	nod: EP	A 7470A				
,	-	ytical Services				-				
Mercury	ND	ug/L	0.50	0.12	1	09/01/20 20:08	09/02/20 15:18	7439-97-6		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011							
	Pace Anal	ytical Services	- Asheville							
Total Dissolved Solids	101	mg/L	25.0	25.0	1		09/01/20 13:17			
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0 Rev 2.1 1993									
-	Pace Anal	ytical Services	- Asheville							
Chloride	14.4	mg/L	1.0	0.60	1		08/29/20 21:27	16887-00-6		
Fluoride	ND	mg/L	0.10	0.050	1		08/29/20 21:27	16984-48-8		
Sulfate	14.0	mg/L	1.0	0.50	1		08/29/20 21:27	14808-79-8		

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

Sample: MCM-16	Lab ID:	92493014010	Collected:	08/26/20	16:52	Received: 08/	28/20 11:35 M	atrix: Water			
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual		
Field Data	Analytical	Method: lytical Services	- Charlotte								
-11			- Chanotte				00/40/00 00 04				
рН	4.92	Std. Units			1		09/10/20 09:31				
6010 MET ICP	Analytical Method: EPA 6010D Preparation Method: EPA 3010A Pace Analytical Services - Asheville										
Calcium	5.6	mg/L	0.10	0.094	1	09/02/20 01:33	09/02/20 23:20	7440-70-2			
6020 MET ICPMS		Analytical Method: EPA 6020B Preparation Method: EPA 3010A Pace Analytical Services - Asheville									
Antimony	ND	mg/L	0.0030	0.0025	20	09/16/20 01:12	09/16/20 19:22	7440-36-0			
Arsenic	ND	mg/L	0.0050	0.0017	20	09/16/20 01:12	09/16/20 19:22	7440-38-2			
Barium	0.12	mg/L	0.010	0.0043	20	09/16/20 01:12	09/16/20 19:22	7440-39-3			
Beryllium	ND	mg/L	0.0030	0.0010	20	09/16/20 01:12	09/16/20 19:22	7440-41-7			
Boron	ND	mg/L	0.50	0.12	20	09/16/20 01:12	09/16/20 19:22	7440-42-8			
Cadmium	ND	mg/L	0.0025	0.0012	20	09/16/20 01:12	09/16/20 19:22	7440-43-9			
Chromium	ND	mg/L	0.010	0.0099	20	09/16/20 01:12	09/16/20 19:22	7440-47-3			
Cobalt	ND	mg/L	0.0050	0.0010	20	09/16/20 01:12	09/16/20 19:22	7440-48-4			
Lead	ND	mg/L	0.0050	0.0015	20	09/16/20 01:12	09/16/20 19:22	7439-92-1			
Lithium	ND	mg/L	0.030	0.0078	20	09/16/20 01:12	09/16/20 19:22	7439-93-2			
Molybdenum	ND	mg/L	0.010	0.0022	20	09/16/20 01:12	09/16/20 19:22	7439-98-7			
Selenium	ND	mg/L	0.010	0.0012	20	09/16/20 01:12	09/16/20 19:22	7782-49-2			
Thallium	ND	mg/L	0.0010	0.0010	20	09/16/20 01:12	09/16/20 19:22	7440-28-0			
7470 Mercury	Analytical Method: EPA 7470A Preparation Method: EPA 7470A Pace Analytical Services - Asheville										
Mercury	ND	ug/L	0.50	0.12	1	09/01/20 20:08	09/02/20 15:20	7439-97-6			
2540C Total Dissolved Solids	Analytical Method: SM 2540C-2011										
	Pace Ana	lytical Services	- Asheville								
Total Dissolved Solids	95.0	mg/L	25.0	25.0	1		09/01/20 13:18				
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0 Rev 2.1 1993										
	Pace Ana	lytical Services	- Asheville								
Chloride	22.2	mg/L	1.0	0.60	1		08/29/20 21:40	16887-00-6			
Fluoride	ND	mg/L	0.10	0.050	1		08/29/20 21:40	16984-48-8			
Sulfate	27.8	mg/L	1.0	0.50	1		08/29/20 21:40	14808-79-8			

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

Sample: MCM-17	Lab ID:	92493014011	Collected	: 08/26/20	15:56	Received: 08/	28/20 11:35 Ma	atrix: Water			
			Report								
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua		
Field Data	Analytical	Method:									
	Pace Ana	lytical Services	- Charlotte								
рН	6.65	Std. Units			1		09/10/20 09:31				
6010 MET ICP	Analytical Method: EPA 6010D Preparation Method: EPA 3010A										
	Pace Analytical Services - Asheville										
Calcium	146	mg/L	0.50	0.47	5	09/02/20 01:33	09/03/20 19:20	7440-70-2			
6020 MET ICPMS	Analytical Method: EPA 6020B Preparation Method: EPA 3010A										
		lytical Services									
Antimony	ND	mg/L	0.0030	0.0025	20	09/16/20 01:12	09/16/20 19:26	7440-36-0			
Arsenic	ND	mg/L	0.0050	0.0017	20	09/16/20 01:12	09/16/20 19:26	7440-38-2			
Barium	0.15	mg/L	0.010	0.0043	20	09/16/20 01:12	09/16/20 19:26	7440-39-3			
Beryllium	ND	mg/L	0.0030	0.0010	20	09/16/20 01:12	09/16/20 19:26	7440-41-7			
Boron	1.8	mg/L	0.50	0.12	20	09/16/20 01:12	09/16/20 19:26	7440-42-8			
Cadmium	ND	mg/L	0.0025	0.0012	20		09/16/20 19:26				
Chromium	ND	mg/L	0.010	0.0099	20	09/16/20 01:12	09/16/20 19:26	7440-47-3			
Cobalt	ND	mg/L	0.0050	0.0010	20		09/16/20 19:26				
Lead	ND	mg/L	0.0050	0.0015	20		09/16/20 19:26				
Lithium	0.027J	mg/L	0.030	0.0078	20		09/16/20 19:26				
Molybdenum	ND	mg/L	0.010	0.0022	20		09/16/20 19:26				
Selenium	ND	mg/L	0.010	0.0012	20		09/16/20 19:26				
Thallium	ND	mg/L	0.0010	0.0010	20		09/16/20 19:26				
7470 Mercury	Analytical	Method: EPA 7	470A Prepa	ration Met	hod: EP	A 7470A					
,	-	lytical Services									
Mercury	ND	ug/L	0.50	0.12	1	09/01/20 20:08	09/02/20 15:22	7439-97-6			
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2011								
	Pace Ana	lytical Services	- Asheville								
Total Dissolved Solids	8400	mg/L	1250	1250	1		09/01/20 13:18				
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0 Rev 2.1 1993										
	Pace Ana	lytical Services	- Asheville								
Chloride	ND	mg/L	1.0	0.60	1		08/29/20 21:54	16887-00-6			
Fluoride	ND	mg/L	0.10	0.050	1		08/29/20 21:54	16984-48-8			
Sulfate	341	mg/L	100	50.0	100		08/30/20 02:43				

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

Sample: MCM-18	Lab ID:	92493014012	Collected	: 08/26/20	11:58	Received: 08/	28/20 11:35 Ma	atrix: Water			
			Report								
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua		
Field Data	Analytical	Method:									
	Pace Anal	ytical Services	- Charlotte								
pH	4.27	Std. Units			1		09/10/20 09:31				
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Met	thod: EF	PA 3010A					
	Pace Anal	ytical Services	- Asheville								
Calcium	25.7	mg/L	0.10	0.094	1	09/02/20 01:33	09/02/20 23:40	7440-70-2			
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	hod: EF	A 3010A					
	-	Analytical Method: EPA 6020B Preparation Method: EPA 3010A Pace Analytical Services - Asheville									
Antimony	ND	mg/L	0.0030	0.0025	20	09/16/20 01:12	09/16/20 19:41	7440-36-0			
Arsenic	0.0019J	mg/L	0.0050	0.0017	20	09/16/20 01:12	09/16/20 19:41	7440-38-2			
Barium	0.095	mg/L	0.010	0.0043	20	09/16/20 01:12	09/16/20 19:41	7440-39-3			
Beryllium	0.0042	mg/L	0.0030	0.0010	20	09/16/20 01:12	09/16/20 19:41	7440-41-7			
Boron	0.25J	mg/L	0.50	0.12	20	09/16/20 01:12	09/16/20 19:41	7440-42-8			
Cadmium	ND	mg/L	0.0025	0.0012	20	09/16/20 01:12	09/16/20 19:41	7440-43-9			
Chromium	ND	mg/L	0.010	0.0099	20	09/16/20 01:12	09/16/20 19:41	7440-47-3			
Cobalt	ND	mg/L	0.0050	0.0010	20	09/16/20 01:12	09/16/20 19:41	7440-48-4			
Lead	0.0035J	mg/L	0.0050	0.0015	20	09/16/20 01:12	09/16/20 19:41	7439-92-1			
Lithium	ND	mg/L	0.030	0.0078	20	09/16/20 01:12	09/16/20 19:41	7439-93-2			
Molybdenum	ND	mg/L	0.010	0.0022	20	09/16/20 01:12	09/16/20 19:41	7439-98-7			
Selenium	0.0014J	mg/L	0.010	0.0012	20	09/16/20 01:12	09/16/20 19:41	7782-49-2			
Thallium	ND	mg/L	0.0010	0.0010	20	09/16/20 01:12	09/16/20 19:41	7440-28-0			
7470 Mercury	Analytical	Method: EPA 7	470A Prepa	ration Met	hod: EF	A 7470A					
	Pace Anal	ytical Services	- Asheville								
Mercury	ND	ug/L	0.50	0.12	1	09/01/20 20:08	09/02/20 15:25	7439-97-6			
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011								
	Pace Anal	ytical Services	- Asheville								
Total Dissolved Solids	2980	mg/L	500	500	1		09/01/20 13:18				
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.1	1993							
	Pace Anal	ytical Services	- Asheville								
Chloride	ND	mg/L	1.0	0.60	1		08/29/20 22:07	16887-00-6			
Fluoride	0.096J	mg/L	0.10	0.050	1		08/29/20 22:07				
Sulfate	170	mg/L	100	50.0	100		08/30/20 02:57				

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

Sample: MCM-19	Lab ID:	92493014013	Collected:	: 08/26/20	14:30	Received: 08/	28/20 11:35 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
рН	5.25	Std. Units			1		09/10/20 09:31		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	121	mg/L	0.50	0.47	5	09/02/20 01:33	09/03/20 19:23	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	hod: EF	PA 3010A			
	-	ytical Services							
Antimony	ND	mg/L	0.0030	0.0025	20	09/16/20 01:12	09/16/20 19:57	7440-36-0	
Arsenic	0.012	mg/L	0.0050	0.0017	20	09/16/20 01:12	09/16/20 19:57	7440-38-2	
Barium	0.11	mg/L	0.010	0.0043	20	09/16/20 01:12	09/16/20 19:57	7440-39-3	
Beryllium	0.011	mg/L	0.0030	0.0010	20	09/16/20 01:12	09/16/20 19:57	7440-41-7	
Boron	0.91	mg/L	0.50	0.12	20		09/16/20 19:57	-	
Cadmium	ND	mg/L	0.0025	0.0012	20		09/16/20 19:57		
Chromium	ND	mg/L	0.010	0.0099	20		09/16/20 19:57		
Cobalt	ND	mg/L	0.0050	0.0010	20		09/16/20 19:57		
Lead	ND	mg/L	0.0050	0.0015	20		09/16/20 19:57		
Lithium	0.018J	mg/L	0.030	0.0078	20		09/16/20 19:57		
Molybdenum	ND	mg/L	0.010	0.0022	20		09/16/20 19:57		
Selenium	0.0060J	mg/L	0.010	0.0012	20		09/16/20 19:57		
Thallium	ND	mg/L	0.0010	0.0012	20		09/16/20 19:57		
7470 Mercury	Analytical	Method: EPA 7	470A Prepa	ration Met	hod: FP	A 7470A			
oo. ou. ,	-	ytical Services							
Mercury	ND	ug/L	0.50	0.12	1	09/01/20 20:08	09/02/20 15:27	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	13300	mg/L	2500	2500	1		09/01/20 13:18		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.1	1993					
-	Pace Anal	ytical Services	- Asheville						
Chloride	5390	mg/L	100	60.0	100		08/31/20 00:04	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		08/29/20 22:21	16984-48-8	
Sulfate	854	mg/L	100	50.0	100		08/31/20 00:04	14808-79-8	

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

Sample: MCM-20	Lab ID:	92493014014	Collected	: 08/26/2	0 15:48	Received: 08/	28/20 11:35 Ma	atrix: Water			
			Report								
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua		
Field Data	Analytical	Method:									
	Pace Anal	ytical Services	- Charlotte								
рН	3.78	Std. Units			1		09/10/20 09:31				
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	aration Me	thod: EF	PA 3010A					
	Pace Anal	ytical Services	- Asheville								
Calcium	110	mg/L	0.50	0.47	5	09/02/20 01:33	09/03/20 19:27	7440-70-2			
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Me	thod: EF	PA 3010A					
		Analytical Method: EPA 6020B Preparation Method: EPA 3010A Pace Analytical Services - Asheville									
Antimony	ND	mg/L	0.0030	0.0025	20	09/16/20 01:12	09/16/20 20:04	7440-36-0			
Arsenic	0.018	mg/L	0.0050	0.0017	20	09/16/20 01:12	09/16/20 20:04	7440-38-2			
Barium	0.12	mg/L	0.010	0.0043	20	09/16/20 01:12	09/16/20 20:04	7440-39-3			
Beryllium	0.018	mg/L	0.0030	0.0010	20	09/16/20 01:12	09/16/20 20:04	7440-41-7			
Boron	1.0	mg/L	0.50	0.12	20		09/16/20 20:04				
Cadmium	ND	mg/L	0.0025	0.0012	20		09/16/20 20:04				
Chromium	ND	mg/L	0.010	0.0099	20		09/16/20 20:04				
Cobalt	0.034	mg/L	0.0050	0.0010	20		09/16/20 20:04				
Lead	ND	mg/L	0.0050	0.0015	20		09/16/20 20:04				
Lithium	0.026J	mg/L	0.030	0.0078	20		09/16/20 20:04				
Molybdenum	ND	mg/L	0.010	0.0022	20	09/16/20 01:12					
Selenium	0.0052J	mg/L	0.010	0.0012	20		09/16/20 20:04				
Thallium	ND	mg/L	0.0010	0.0010	20		09/16/20 20:04				
7470 Mercury	Analytical	Method: EPA 7	470A Prepa	ration Met	thod: EF	'A 7470A					
·	-	ytical Services									
Mercury	ND	ug/L	0.50	0.12	1	09/01/20 20:08	09/02/20 15:30	7439-97-6			
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011								
	Pace Anal	ytical Services	- Asheville								
Total Dissolved Solids	15100	mg/L	2500	2500	1		09/01/20 13:19				
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.1	1 1993							
	Pace Anal	ytical Services	- Asheville								
Chloride	5470	mg/L	100	60.0	100		08/30/20 03:11	16887-00-6			
Fluoride	0.058J	mg/L	0.10	0.050	1		08/29/20 22:34	16984-48-8			
Sulfate	639	mg/L	100	50.0	100		08/30/20 03:11				

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

Sample: FBL082620	Lab ID:	92493014015	Collecte	ed: 08/26/20	16:49	Received: 08/	28/20 11:35 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical	Method: EPA 6	010D Pre	paration Met	hod: EF	PA 3010A			
	Pace Analy	ytical Services	- Asheville						
Calcium	ND	mg/L	0.10	0.094	1	09/02/20 01:33	09/02/20 23:50	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	oaration Met	hod: EF	PA 3010A			
	Pace Analy	ytical Services	- Asheville						
Antimony	ND	mg/L	0.0030	0.00012	1	09/16/20 01:12	09/17/20 00:03	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.000087	1	09/16/20 01:12	09/17/20 00:03	7440-38-2	
Barium	0.00044J	mg/L	0.010	0.00021	1	09/16/20 01:12	09/17/20 00:03	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	09/16/20 01:12	09/17/20 00:03	7440-41-7	
Boron	ND	mg/L	0.025	0.0062	1	09/16/20 01:12	09/17/20 00:03	7440-42-8	
Cadmium	ND	mg/L	0.0025	0.000060	1	09/16/20 01:12	09/17/20 00:03	7440-43-9	
Chromium	ND	mg/L	0.010	0.00050	1	09/16/20 01:12	09/17/20 00:03	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.000050	1	09/16/20 01:12	09/17/20 00:03	7440-48-4	
_ead	ND	mg/L	0.0050	0.000077	1	09/16/20 01:12	09/17/20 00:03	7439-92-1	
Lithium	ND	mg/L	0.030	0.00039	1	09/16/20 01:12	09/17/20 00:03	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00011	1	09/16/20 01:12	09/17/20 00:03	7439-98-7	
Selenium	ND	mg/L	0.010	0.000061	1	09/16/20 01:12	09/17/20 00:03	7782-49-2	
Thallium	ND	mg/L	0.0010	0.000050	1	09/16/20 01:12	09/17/20 00:03	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prep	paration Met	hod: EF	A 7470A			
	Pace Analy	ytical Services	- Asheville						
Mercury	ND	ug/L	0.50	0.12	1	09/01/20 20:08	09/02/20 15:32	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C-2011						
	Pace Analy	ytical Services	- Asheville						
Total Dissolved Solids	ND	mg/L	25.0	25.0	1		09/01/20 13:19		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	ND	mg/L	1.0	0.60	1		08/30/20 23:50	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		08/30/20 23:50		
Sulfate	ND	mg/L	1.0	0.50	1		08/30/20 23:50		

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

Sample: EQBL082620	Lab ID:	92493014016	Collecte	ed: 08/26/20	16:55	Received: 08/	28/20 11:35 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical	Method: EPA 6	010D Pre	paration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	ND	mg/L	0.10	0.094	1	09/02/20 01:33	09/02/20 23:53	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Antimony	ND	mg/L	0.0030	0.00012	1	09/16/20 01:12	09/17/20 00:07	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.000087	1	09/16/20 01:12	09/17/20 00:07	7440-38-2	
Barium	0.00047J	mg/L	0.010	0.00021	1	09/16/20 01:12	09/17/20 00:07	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.000050	1	09/16/20 01:12	09/17/20 00:07	7440-41-7	
Boron	ND	mg/L	0.025	0.0062	1	09/16/20 01:12	09/17/20 00:07	7440-42-8	
Cadmium	ND	mg/L	0.0025	0.000060	1	09/16/20 01:12	09/17/20 00:07	7440-43-9	
Chromium	ND	mg/L	0.010	0.00050	1	09/16/20 01:12	09/17/20 00:07	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.000050	1	09/16/20 01:12	09/17/20 00:07	7440-48-4	
Lead	ND	mg/L	0.0050	0.000077	1	09/16/20 01:12	09/17/20 00:07	7439-92-1	
Lithium	ND	mg/L	0.030	0.00039	1	09/16/20 01:12	09/17/20 00:07	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00011	1	09/16/20 01:12	09/17/20 00:07	7439-98-7	
Selenium	ND	mg/L	0.010	0.000061	1	09/16/20 01:12	09/17/20 00:07	7782-49-2	
Thallium	ND	mg/L	0.0010	0.000050	1	09/16/20 01:12	09/17/20 00:07	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Pre	paration Met	hod: EF	'A 7470A			
	Pace Anal	ytical Services	- Asheville						
Mercury	ND	ug/L	0.50	0.12	1	09/01/20 20:08	09/02/20 15:34	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C-2011						
		ytical Services							
Total Dissolved Solids	ND	mg/L	25.0	25.0	1		09/01/20 13:19		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	ND	mg/L	1.0	0.60	1		08/29/20 23:42	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		08/29/20 23:42		M1,R1
Sulfate	ND	mg/L	1.0	0.50	1		08/29/20 23:42		,

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

Sample: DUP-1	Lab ID:	92493014017	Collected:	08/26/20	00:00	Received: 08/	28/20 11:35 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	21.3	mg/L	0.10	0.094	1	09/02/20 01:33	09/02/20 23:56	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	hod: EF	A 3010A			
	Pace Anal	ytical Services	- Asheville						
Antimony	ND	mg/L	0.0030	0.0025	20	09/16/20 01:12	09/16/20 20:20	7440-36-0	
Arsenic	0.0056	mg/L	0.0050	0.0017	20	09/16/20 01:12	09/16/20 20:20	7440-38-2	
Barium	0.082	mg/L	0.010	0.0043	20	09/16/20 01:12	09/16/20 20:20	7440-39-3	
Beryllium	ND	mg/L	0.0030	0.0010	20	09/16/20 01:12	09/16/20 20:20	7440-41-7	
Boron	ND	mg/L	0.50	0.12	20	09/16/20 01:12	09/16/20 20:20	7440-42-8	
Cadmium	ND	mg/L	0.0025	0.0012	20	09/16/20 01:12	09/16/20 20:20	7440-43-9	
Chromium	ND	mg/L	0.010	0.0099	20	09/16/20 01:12	09/16/20 20:20	7440-47-3	
Cobalt	0.015	mg/L	0.0050	0.0010	20	09/16/20 01:12	09/16/20 20:20	7440-48-4	
Lead	ND	mg/L	0.0050	0.0015	20	09/16/20 01:12	09/16/20 20:20	7439-92-1	
Lithium	ND	mg/L	0.030	0.0078	20	09/16/20 01:12	09/16/20 20:20	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0022	20	09/16/20 01:12	09/16/20 20:20	7439-98-7	
Selenium	ND	mg/L	0.010	0.0012	20	09/16/20 01:12	09/16/20 20:20	7782-49-2	
Thallium	ND	mg/L	0.0010	0.0010	20	09/16/20 01:12	09/16/20 20:20	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470A Prepa	ration Metl	nod: EP	A 7470A			
•	Pace Anal	ytical Services	- Asheville						
Mercury	ND	ug/L	0.50	0.12	1	09/01/20 20:08	09/02/20 13:45	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	300	mg/L	25.0	25.0	1		09/01/20 13:19		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.1	1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	43.9	mg/L	1.0	0.60	1		08/30/20 00:22	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		08/30/20 00:22	16984-48-8	
Sulfate	113	mg/L	2.0	1.0	2		08/30/20 03:27	14808-79-8	

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

Sample: DUP-2	Lab ID:	92493014018	3 Collected	08/26/20	00:00	Received: 08/	28/20 11:35 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical	Method: EPA	6010D Prepa	ration Met	thod: El	PA 3010A			
	Pace Anal	ytical Services	s - Asheville						
Calcium	112	mg/L	0.50	0.47	5	09/02/20 01:33	09/03/20 19:30	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA	6020B Prepa	ration Met	thod: Ef	PA 3010A			
	Pace Anal	ytical Services	s - Asheville						
Antimony	ND	mg/L	0.0030	0.0025	20	09/16/20 01:12	09/16/20 20:27	7440-36-0	
Arsenic	0.018	mg/L	0.0050	0.0017	20	09/16/20 01:12	09/16/20 20:27	7440-38-2	
Barium	0.12	mg/L	0.010	0.0043	20	09/16/20 01:12	09/16/20 20:27	7440-39-3	
Beryllium	0.019	mg/L	0.0030	0.0010	20	09/16/20 01:12	09/16/20 20:27	7440-41-7	
Boron	1.0	mg/L	0.50	0.12	20	09/16/20 01:12	09/16/20 20:27	7440-42-8	
Cadmium	ND	mg/L	0.0025	0.0012	20	09/16/20 01:12	09/16/20 20:27	7440-43-9	
Chromium	ND	mg/L	0.010	0.0099	20	09/16/20 01:12	09/16/20 20:27	7440-47-3	
Cobalt	0.035	mg/L	0.0050	0.0010	20	09/16/20 01:12	09/16/20 20:27	7440-48-4	
₋ead	ND	mg/L	0.0050	0.0015	20	09/16/20 01:12	09/16/20 20:27	7439-92-1	
_ithium	0.025J	mg/L	0.030	0.0078	20	09/16/20 01:12	09/16/20 20:27	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.0022	20	09/16/20 01:12	09/16/20 20:27	7439-98-7	
Selenium	0.0054J	mg/L	0.010	0.0012	20	09/16/20 01:12	09/16/20 20:27	7782-49-2	
Thallium	ND	mg/L	0.0010	0.0010	20	09/16/20 01:12			
7470 Mercury	Analytical	Method: EPA	7470A Prepa	ration Met	hod: EF	PA 7470A			
•	-	ytical Services							
Mercury	ND	ug/L	0.50	0.12	1	09/01/20 20:08	09/02/20 13:47	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C-2011						
	Pace Anal	ytical Services	s - Asheville						
Total Dissolved Solids	12600	mg/L	1250	1250	1		09/01/20 16:19		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2.1	1993					
	Pace Anal	ytical Services	s - Asheville						
Chloride	5570	mg/L	100	60.0	100		08/30/20 03:41	16887-00-6	
Fluoride	0.079J	mg/L	0.10	0.050	1		08/30/20 00:36	16984-48-8	
Sulfate	670	mg/L	100	50.0	100		08/30/20 03:41	14808-79-8	

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

Sample: MCM-06	Lab ID:	92493014019	Collected	08/26/20	16:08	Received: 08/	28/20 11:35 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
рН	6.88	Std. Units			1		09/10/20 09:31		
6010 MET ICP	Analytical	Method: EPA 6	010D Prepa	ration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Calcium	254	mg/L	0.50	0.47	5	09/02/20 01:33	09/03/20 19:34	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	hod: EF	PA 3010A			
		ytical Services							
Antimony	ND	mg/L	0.075	0.0031	25	09/02/20 01:04	09/10/20 13:26	7440-36-0	
Arsenic	0.46	mg/L	0.12	0.0022	25	09/02/20 01:04	09/10/20 13:26	7440-38-2	
Barium	0.15J	mg/L	0.25	0.0054	25	09/02/20 01:04	09/10/20 13:26	7440-39-3	
Beryllium	ND	mg/L	0.075	0.0012	25	09/02/20 01:04		7440-41-7	
Boron	1.6	mg/L	1.2	0.31	50	09/02/20 01:04		7440-42-8	
Cadmium	ND	mg/L	0.062	0.0015	25	09/02/20 01:04			
Chromium	ND	mg/L	0.25	0.012	25	09/02/20 01:04	09/10/20 13:26	7440-47-3	
Cobalt	ND	mg/L	0.12	0.0012	25	09/02/20 01:04			
Lead	ND	mg/L	0.12	0.0019	25	09/02/20 01:04			
Lithium	0.096J	mg/L	0.75	0.0098	25	09/02/20 01:04			
Molybdenum	ND	mg/L	0.25	0.0028	25	09/02/20 01:04			
Selenium	ND	mg/L	0.25	0.0015	25	09/02/20 01:04			
Thallium	ND	mg/L	0.025	0.0012	25	09/02/20 01:04			
7470 Mercury	Analytical	Method: EPA 7	470A Prepa	ration Met	hod: EP	'A 7470A			
,	-	ytical Services							
Mercury	ND	ug/L	0.50	0.12	1	09/01/20 20:08	09/02/20 13:50	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	640C-2011						
	Pace Anal	ytical Services	- Asheville						
Total Dissolved Solids	14900	mg/L	2500	2500	1		09/01/20 16:19		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.1	1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	6510	mg/L	100	60.0	100		08/30/20 03:55	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		08/30/20 00:49	16984-48-8	
Sulfate	514	mg/L	100	50.0	100		08/30/20 03:55		

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

QC Batch: 563861 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92493014001, 92493014002, 92493014003, 92493014004, 92493014005, 92493014006, 92493014007,

92493014008, 92493014009, 92493014010, 92493014011, 92493014012, 92493014013, 92493014014,

92493014015, 92493014016, 92493014017, 92493014018, 92493014019

METHOD BLANK: 2989211 Matrix: Water

Associated Lab Samples: 92493014001, 92493014002, 92493014003, 92493014004, 92493014005, 92493014006, 92493014007,

92493014008, 92493014009, 92493014010, 92493014011, 92493014012, 92493014013, 92493014014,

92493014015, 92493014016, 92493014017, 92493014018, 92493014019

Blank Reporting Limit Qualifiers Parameter Units Result MDL Analyzed ug/L Mercury ND 0.50 0.12 09/02/20 14:45 LABORATORY CONTROL SAMPLE: 2989212 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury 2.5 2.7 109 80-120 ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2989213 2989214 MS MSD 92493014001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual 2.5 104 Mercury ND 2.7 75-125 25 ug/L 2.5 2.6 105

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

Calcium

QC Batch: 563604 QC Batch Method: EPA 3010A Analysis Method: EPA 6010D Analysis Description: 6010 MET

Laboratory: Pa

Pace Analytical Services - Asheville

Associated Lab Samples: 92493014001

METHOD BLANK: 2988233 Matrix: Water

Associated Lab Samples: 92493014001

 Parameter
 Units
 Blank Reporting Result
 Limit
 MDL
 Analyzed
 Qualifiers

 mg/L
 ND
 0.10
 0.094
 09/01/20 21:24

LABORATORY CONTROL SAMPLE: 2988234

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Calcium mg/L 4.8 97 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2988235 2988236

MSD MS 92493209001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits 2540 ug/L 5 Calcium mg/L 5 7.5 7.5 99 98 75-125 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Calcium

Date: 09/23/2020 08:13 AM

QC Batch: EPA 6010D 563907 Analysis Method: QC Batch Method: **EPA 3010A** Analysis Description: 6010 MET

> Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92493014002, 92493014003, 92493014004, 92493014005, 92493014006, 92493014007, 92493014008,

92493014009, 92493014010, 92493014011, 92493014012, 92493014013, 92493014014, 92493014015,

92493014016, 92493014017, 92493014018, 92493014019

METHOD BLANK: 2989431 Matrix: Water

Associated Lab Samples: 92493014002, 92493014003, 92493014004, 92493014005, 92493014006, 92493014007, 92493014008,

92493014009, 92493014010, 92493014011, 92493014012, 92493014013, 92493014014, 92493014015,

92493014016, 92493014017, 92493014018, 92493014019

Blank Reporting Qualifiers Parameter Units Result Limit MDL Analyzed ND 0.10 0.094 09/02/20 22:31 mg/L

2989432 LABORATORY CONTROL SAMPLE:

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Calcium 5 5.0 100 80-120 mg/L

MS

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2989433 2989434

MSD 92493014002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Calcium 4.6 5 5 9.9 75-125 2 20 mg/L 9.7 106 102

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

QC Batch: 563910 QC Batch Method: EPA 3010A Analysis Method: EPA 6020B Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92493014019

METHOD BLANK: 2989443 Matrix: Water

Associated Lab Samples: 92493014019

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	mg/L	ND	0.0030	0.00012	09/07/20 21:42	
Arsenic	mg/L	ND	0.0050	0.000087	09/07/20 21:42	
Barium	mg/L	ND	0.010	0.00021	09/07/20 21:42	
Beryllium	mg/L	ND	0.0030	0.000050	09/07/20 21:42	
Boron	mg/L	ND	0.025	0.0062	09/07/20 21:42	
Cadmium	mg/L	ND	0.0025	0.000060	09/07/20 21:42	
Chromium	mg/L	ND	0.010	0.00050	09/07/20 21:42	
Cobalt	mg/L	ND	0.0050	0.000050	09/07/20 21:42	
Lead	mg/L	ND	0.0050	0.000077	09/07/20 21:42	
Lithium	mg/L	ND	0.030	0.00039	09/07/20 21:42	
Molybdenum	mg/L	ND	0.010	0.00011	09/07/20 21:42	
Selenium	mg/L	ND	0.010	0.000061	09/07/20 21:42	
Thallium	mg/L	ND	0.0010	0.000050	09/07/20 21:42	

LABORATORY CONTROL SAMPLE:	2989444					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.05	0.052	104	80-120	
Arsenic	mg/L	0.01	0.010	103	80-120	
Barium	mg/L	0.05	0.051	102	80-120	
Beryllium	mg/L	0.01	0.0099	99	80-120	
Boron	mg/L	0.05	0.050	100	80-120	
Cadmium	mg/L	0.01	0.010	103	80-120	
Chromium	mg/L	0.05	0.052	103	80-120	
Cobalt	mg/L	0.01	0.010	103	80-120	
Lead	mg/L	0.05	0.051	102	80-120	
Lithium	mg/L	0.05	0.050	100	80-120	
Molybdenum	mg/L	0.05	0.052	103	80-120	
Selenium	mg/L	0.05	0.051	102	80-120	
Thallium	mg/L	0.01	0.010	101	80-120	

MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: 2989	445		2989446	i						
		92493089001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
							70 1100	70 1100				Quai
Antimony	mg/L	ND	0.05	0.05	0.052	0.053	104	105	75-125	1	20	
Arsenic	mg/L	0.19 ug/L	0.01	0.01	0.010	0.010	99	101	75-125	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

MATRIX SPIKE & MATRIX	SPIKE DUPLI	CATE: 2989	445 MS	MSD	2989446							
Parameter	Units	92493089001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Barium	mg/L	216 ug/L	0.05	0.05	0.27	0.27	109	113	75-125	1	20	 E
Beryllium	mg/L	ND	0.01	0.01	0.0098	0.0098	98	97	75-125	1	20	
Boron	mg/L	32.5 ug/L	0.05	0.05	0.079	0.084	93	104	75-125	7	20	E
Cadmium	mg/L	ND	0.01	0.01	0.010	0.010	100	101	75-125	1	20	
Chromium	mg/L	0.60 ug/L	0.05	0.05	0.052	0.052	102	103	75-125	1	20	
Cobalt	mg/L	10.5 ug/L	0.01	0.01	0.022	0.023	117	123	75-125	3	20	
Lead	mg/L	0.17 ug/L	0.05	0.05	0.050	0.051	99	101	75-125	2	20	
Lithium	mg/L	0.50J ug/L	0.05	0.05	0.050	0.049	99	97	75-125	2	20	
Molybdenum	mg/L	ND	0.05	0.05	0.050	0.051	101	102	75-125	1	20	
Selenium	mg/L	0.091J ug/L	0.05	0.05	0.050	0.050	100	100	75-125	0	20	
Thallium	mg/L	ŇD	0.01	0.01	0.010	0.010	100	102	75-125	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

QC Batch: 566587 Analysis Method: EPA 6020B
QC Batch Method: EPA 3010A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92493014001, 92493014002, 92493014003, 92493014004, 92493014005, 92493014006, 92493014007,

92493014008, 92493014009, 92493014010, 92493014011, 92493014012, 92493014013, 92493014014,

92493014015, 92493014016, 92493014017, 92493014018

METHOD BLANK: 3002724 Matrix: Water

Associated Lab Samples: 92493014001, 92493014002, 92493014003, 92493014004, 92493014005, 92493014006, 92493014007,

92493014008, 92493014009, 92493014010, 92493014011, 92493014012, 92493014013, 92493014014,

92493014015, 92493014016, 92493014017, 92493014018

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
				IVIDL		
Antimony	mg/L	ND	0.0030	0.00012	09/16/20 17:45	
Arsenic	mg/L	ND	0.0050	0.000087	09/16/20 17:45	
Barium	mg/L	ND	0.010	0.00021	09/16/20 17:45	
Beryllium	mg/L	ND	0.0030	0.000050	09/16/20 17:45	
Boron	mg/L	ND	0.025	0.0062	09/16/20 17:45	
Cadmium	mg/L	ND	0.0025	0.000060	09/16/20 17:45	
Chromium	mg/L	ND	0.010	0.00050	09/16/20 17:45	
Cobalt	mg/L	ND	0.0050	0.000050	09/16/20 17:45	
Lead	mg/L	ND	0.0050	0.000077	09/16/20 17:45	
Lithium	mg/L	ND	0.030	0.00039	09/16/20 17:45	
Molybdenum	mg/L	ND	0.010	0.00011	09/16/20 17:45	
Selenium	mg/L	ND	0.010	0.000061	09/16/20 17:45	
Thallium	mg/L	ND	0.0010	0.000050	09/16/20 17:45	

LABORATORY CONTROL SAMPLE:	3002725					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.05	0.052	104	80-120	
Arsenic	mg/L	0.01	0.010	102	80-120	
Barium	mg/L	0.05	0.052	105	80-120	
Beryllium	mg/L	0.01	0.010	101	80-120	
Boron	mg/L	0.05	0.053	106	80-120	
Cadmium	mg/L	0.01	0.010	105	80-120	
Chromium	mg/L	0.05	0.052	104	80-120	
Cobalt	mg/L	0.01	0.010	104	80-120	
Lead	mg/L	0.05	0.052	104	80-120	
Lithium	mg/L	0.05	0.051	101	80-120	
Molybdenum	mg/L	0.05	0.052	105	80-120	
Selenium	mg/L	0.05	0.051	101	80-120	
Thallium	mg/L	0.01	0.010	104	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

MATRIX SPIKE & MATRIX	SPIKE DUPLIC	CATE: 3002	726 MS	MSD	3002727							
	9	2493014001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	ND	0.05	0.05	0.052	0.052	102	102	75-125	0	20	
Arsenic	mg/L	0.0079	0.01	0.01	0.018	0.018	98	99	75-125	1	20	
Barium	mg/L	0.056	0.05	0.05	0.11	0.11	99	101	75-125	1	20	
Beryllium	mg/L	ND	0.01	0.01	0.010	0.010	99	102	75-125	3	20	
Boron	mg/L	ND	0.05	0.05	ND	ND	81	78	75-125		20	
Cadmium	mg/L	ND	0.01	0.01	0.011	0.010	105	103	75-125	2	20	
Chromium	mg/L	ND	0.05	0.05	0.051	0.050	102	101	75-125	1	20	
Cobalt	mg/L	ND	0.01	0.01	0.010	0.010	103	103	75-125	0	20	
Lead	mg/L	ND	0.05	0.05	0.052	0.052	102	103	75-125	0	20	
Lithium	mg/L	ND	0.05	0.05	0.051	0.052	99	101	75-125	2	20	
Molybdenum	mg/L	ND	0.05	0.05	0.052	0.052	102	103	75-125	1	20	
Selenium	mg/L	ND	0.05	0.05	0.050	0.051	101	102	75-125	1	20	
Thallium	mg/L	ND	0.01	0.01	0.010	0.010	100	101	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

QC Batch: 563524 Analysis Method: SM 2540C-2011

QC Batch Method: SM 2540C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92493014001, 92493014002, 92493014003, 92493014004

METHOD BLANK: 2987922 Matrix: Water

Associated Lab Samples: 92493014001, 92493014002, 92493014003, 92493014004

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L ND 25.0 25.0 08/31/20 18:31

LABORATORY CONTROL SAMPLE: 2987923

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 251 242 97 90-110

SAMPLE DUPLICATE: 2987924

92492931002 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 690 **Total Dissolved Solids** 3 mg/L 668 25

SAMPLE DUPLICATE: 2988155

Date: 09/23/2020 08:13 AM

92493054001 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 91.0 2 mg/L 93.0 25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

QC Batch: 563688 Analysis Method: SM 2540C-2011

QC Batch Method: SM 2540C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92493014005, 92493014006, 92493014007, 92493014008, 92493014009, 92493014010, 92493014011,

92493014012, 92493014013, 92493014014, 92493014015, 92493014016, 92493014017

METHOD BLANK: 2988407 Matrix: Water

Associated Lab Samples: 92493014005, 92493014006, 92493014007, 92493014008, 92493014009, 92493014010, 92493014011,

92493014012, 92493014013, 92493014014, 92493014015, 92493014016, 92493014017

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L ND 25.0 25.0 09/01/20 13:12

LABORATORY CONTROL SAMPLE: 2988408

LCS LCS % Rec Spike % Rec Limits Qualifiers Parameter Units Conc. Result **Total Dissolved Solids** mg/L 251 246 98 90-110

SAMPLE DUPLICATE: 2988409

92492906001 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 232000 ug/L 226 3 25 **Total Dissolved Solids** mg/L

SAMPLE DUPLICATE: 2988410

Date: 09/23/2020 08:13 AM

92493014008 Dup Max RPD Parameter Units Result Result RPD Qualifiers **Total Dissolved Solids** mg/L 14700 16200 10 25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

QC Batch: 563802 Analysis Method: SM 2540C-2011

QC Batch Method: SM 2540C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92493014018, 92493014019

METHOD BLANK: 2988946 Matrix: Water

Associated Lab Samples: 92493014018, 92493014019

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L ND 25.0 25.0 09/01/20 16:19

LABORATORY CONTROL SAMPLE: 2988947

Parameter Units Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 251 232 93 90-110

SAMPLE DUPLICATE: 2988948

Date: 09/23/2020 08:13 AM

92493014018 Dup Max **RPD** Parameter Units Result Result **RPD** Qualifiers 12600 **Total Dissolved Solids** mg/L 12900 2 25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

QC Batch: 563275 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92493014001, 92493014002, 92493014003, 92493014004, 92493014005

METHOD BLANK: 2986725 Matrix: Water

Associated Lab Samples: 92493014001, 92493014002, 92493014003, 92493014004, 92493014005

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	08/29/20 12:40	
Fluoride	mg/L	ND	0.10	0.050	08/29/20 12:40	
Sulfate	mg/L	ND	1.0	0.50	08/29/20 12:40	

LABORATORY CONTROL SAMPLE:	2986726					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		48.8	98	90-110	
Fluoride	mg/L	2.5	2.4	97	90-110	
Sulfate	mg/L	50	49.0	98	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2986	727		2986728							
		00400705004	MS	MSD		1405		1400	0/ D			
		92492795001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	3.8	50	50	52.8	54.0	98	100	90-110	2	10	
Fluoride	mg/L	ND	2.5	2.5	2.5	2.6	99	102	90-110	3	10	
Sulfate	mg/L	1.7	50	50	50.9	52.0	98	101	90-110	2	10	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2986	729		2986730							
			MS	MSD								
		92492903002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	ND	50	50	49.6	50.3	99	101	90-110	1	10	
Fluoride	mg/L	ND	2.5	2.5	2.4	2.4	98	96	90-110	2	10	
Sulfate	mg/L	ND	50	50	49.6	50.1	99	100	90-110	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

QC Batch: 563276 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92493014006, 92493014007, 92493014008, 92493014009, 92493014010, 92493014011, 92493014012,

92493014013, 92493014014, 92493014015, 92493014016, 92493014017, 92493014018, 92493014019

METHOD BLANK: 2986731 Matrix: Water

Associated Lab Samples: 92493014006, 92493014007, 92493014008, 92493014009, 92493014010, 92493014011, 92493014012,

92493014013, 92493014014, 92493014015, 92493014016, 92493014017, 92493014018, 92493014019

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	08/30/20 23:37	
Fluoride	mg/L	ND	0.10	0.050	08/30/20 23:37	
Sulfate	mg/L	ND	1.0	0.50	08/30/20 23:37	

LABORATORY CONTROL SAMPLE:	2986732	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	50.2	100	90-110	
Fluoride	mg/L	2.5	2.5	99	90-110	
Sulfate	mg/L	50	50.0	100	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPLI	CATE: 2986	733		2986734							
			MS	MSD								
	!	92493014006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	13.3	50	50	62.7	63.8	99	101	90-110	2	10	
Fluoride	mg/L	0.097J	2.5	2.5	3.4	3.4	133	133	90-110	0	10	M1
Sulfate	mg/L	21.8	50	50	71.5	72.2	99	101	90-110	1	10	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2986	735		2986736							
			MS	MSD								
		92493014016	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	ND	50	50	49.6	50.1	99	100	90-110	1	10	
Fluoride	mg/L	ND	2.5	2.5	3.1	2.6	122	103	90-110	17	10	M1,R1
Sulfate	mg/L	ND	50	50	49.4	49.9	99	100	90-110	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 09/23/2020 08:13 AM

E Analyte concentration exceeded the calibration range. The reported result is estimated.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92493014001	MCM-01			_	
92493014002	MCM-02				
2493014003	MCM-04				
2493014004	MCM-05				
2493014005	MCM-07				
2493014006	MCM-11				
2493014007	MCM-12				
2493014008	MCM-14				
2493014009	MCM-15				
2493014010	MCM-16				
2493014011	MCM-17				
2493014012	MCM-18				
2493014013	MCM-19				
2493014014	MCM-20				
2493014019	MCM-06				
2493014001	MCM-01	EPA 3010A	563604	EPA 6010D	563623
2493014002	MCM-02	EPA 3010A	563907	EPA 6010D	563931
2493014003	MCM-04	EPA 3010A	563907	EPA 6010D	563931
2493014004	MCM-05	EPA 3010A	563907	EPA 6010D	563931
2493014005	MCM-07	EPA 3010A	563907	EPA 6010D	563931
2493014006	MCM-11	EPA 3010A	563907	EPA 6010D	563931
2493014007	MCM-12	EPA 3010A	563907	EPA 6010D	563931
2493014008	MCM-14	EPA 3010A	563907	EPA 6010D	563931
2493014009	MCM-15	EPA 3010A	563907	EPA 6010D	563931
2493014010	MCM-16	EPA 3010A	563907	EPA 6010D	563931
2493014011	MCM-17	EPA 3010A	563907	EPA 6010D	563931
2493014012	MCM-18	EPA 3010A	563907	EPA 6010D	563931
2493014013	MCM-19	EPA 3010A	563907	EPA 6010D	563931
2493014014	MCM-20	EPA 3010A	563907	EPA 6010D	563931
2493014015	FBL082620	EPA 3010A	563907	EPA 6010D	563931
2493014016	EQBL082620	EPA 3010A	563907	EPA 6010D	563931
2493014017	DUP-1	EPA 3010A	563907	EPA 6010D	563931
2493014018	DUP-2	EPA 3010A	563907	EPA 6010D	563931
2493014019	MCM-06	EPA 3010A	563907	EPA 6010D	563931
2493014001	MCM-01	EPA 3010A	566587	EPA 6020B	566664
2493014002	MCM-02	EPA 3010A	566587	EPA 6020B	566664
2493014003	MCM-04	EPA 3010A	566587	EPA 6020B	566664
2493014004	MCM-05	EPA 3010A	566587	EPA 6020B	566664
493014005	MCM-07	EPA 3010A	566587	EPA 6020B	566664
2493014006	MCM-11	EPA 3010A	566587	EPA 6020B	566664
2493014007	MCM-12	EPA 3010A	566587	EPA 6020B	566664
493014008	MCM-14	EPA 3010A	566587	EPA 6020B	566664
2493014009	MCM-15	EPA 3010A	566587	EPA 6020B	566664
2493014010	MCM-16	EPA 3010A	566587	EPA 6020B	566664
2493014011	MCM-17	EPA 3010A	566587	EPA 6020B	566664
2493014012	MCM-18	EPA 3010A	566587	EPA 6020B	566664
2493014013	MCM-19	EPA 3010A	566587	EPA 6020B	566664

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92493014014	MCM-20	EPA 3010A	566587	EPA 6020B	566664
92493014015	FBL082620	EPA 3010A	566587	EPA 6020B	566664
2493014016	EQBL082620	EPA 3010A	566587	EPA 6020B	566664
2493014017	DUP-1	EPA 3010A	566587	EPA 6020B	566664
2493014018	DUP-2	EPA 3010A	566587	EPA 6020B	566664
2493014019	MCM-06	EPA 3010A	563910	EPA 6020B	563924
2493014001	MCM-01	EPA 7470A	563861	EPA 7470A	563890
2493014002	MCM-02	EPA 7470A	563861	EPA 7470A	563890
2493014003	MCM-04	EPA 7470A	563861	EPA 7470A	563890
2493014004	MCM-05	EPA 7470A	563861	EPA 7470A	563890
2493014005	MCM-07	EPA 7470A	563861	EPA 7470A	563890
2493014006	MCM-11	EPA 7470A	563861	EPA 7470A	563890
2493014007	MCM-12	EPA 7470A	563861	EPA 7470A	563890
2493014008	MCM-14	EPA 7470A	563861	EPA 7470A	563890
2493014009	MCM-15	EPA 7470A	563861	EPA 7470A	563890
2493014010	MCM-16	EPA 7470A	563861	EPA 7470A	563890
2493014011	MCM-17	EPA 7470A	563861	EPA 7470A	563890
2493014012	MCM-18	EPA 7470A	563861	EPA 7470A	563890
2493014013	MCM-19	EPA 7470A	563861	EPA 7470A	563890
2493014014	MCM-20	EPA 7470A	563861	EPA 7470A	563890
2493014015	FBL082620	EPA 7470A	563861	EPA 7470A	563890
2493014016	EQBL082620	EPA 7470A	563861	EPA 7470A	563890
2493014017	DUP-1	EPA 7470A	563861	EPA 7470A	563890
2493014018	DUP-2	EPA 7470A	563861	EPA 7470A	563890
2493014019	MCM-06	EPA 7470A	563861	EPA 7470A	563890
2493014001	MCM-01	SM 2540C-2011	563524		
2493014002	MCM-02	SM 2540C-2011	563524		
2493014003	MCM-04	SM 2540C-2011	563524		
2493014004	MCM-05	SM 2540C-2011	563524		
2493014005	MCM-07	SM 2540C-2011	563688		
2493014006	MCM-11	SM 2540C-2011	563688		
2493014007	MCM-12	SM 2540C-2011	563688		
2493014008	MCM-14	SM 2540C-2011	563688		
2493014009	MCM-15	SM 2540C-2011	563688		
2493014010	MCM-16	SM 2540C-2011	563688		
2493014011	MCM-17	SM 2540C-2011	563688		
2493014012	MCM-18	SM 2540C-2011	563688		
2493014013	MCM-19	SM 2540C-2011	563688		
2493014014	MCM-20	SM 2540C-2011	563688		
2493014015	FBL082620	SM 2540C-2011	563688		
2493014016	EQBL082620	SM 2540C-2011	563688		
2493014017	DUP-1	SM 2540C-2011	563688		
2493014018	DUP-2	SM 2540C-2011	563802		
92493014019	MCM-06	SM 2540C-2011	563802		
2493014001	MCM-01	EPA 300.0 Rev 2.1 1993	563275		
92493014002	MCM-02	EPA 300.0 Rev 2.1 1993	563275		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: MCMANUS ASH POND SCAN

Pace Project No.: 92493014

Date: 09/23/2020 08:13 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92493014003	MCM-04	EPA 300.0 Rev 2.1 1993	563275		
92493014004	MCM-05	EPA 300.0 Rev 2.1 1993	563275		
92493014005	MCM-07	EPA 300.0 Rev 2.1 1993	563275		
92493014006	MCM-11	EPA 300.0 Rev 2.1 1993	563276		
92493014007	MCM-12	EPA 300.0 Rev 2.1 1993	563276		
92493014008	MCM-14	EPA 300.0 Rev 2.1 1993	563276		
92493014009	MCM-15	EPA 300.0 Rev 2.1 1993	563276		
92493014010	MCM-16	EPA 300.0 Rev 2.1 1993	563276		
92493014011	MCM-17	EPA 300.0 Rev 2.1 1993	563276		
92493014012	MCM-18	EPA 300.0 Rev 2.1 1993	563276		
92493014013	MCM-19	EPA 300.0 Rev 2.1 1993	563276		
92493014014	MCM-20	EPA 300.0 Rev 2.1 1993	563276		
92493014015	FBL082620	EPA 300.0 Rev 2.1 1993	563276		
92493014016	EQBL082620	EPA 300.0 Rev 2.1 1993	563276		
92493014017	DUP-1	EPA 300.0 Rev 2.1 1993	563276		
92493014018	DUP-2	EPA 300.0 Rev 2.1 1993	563276		
92493014019	MCM-06	EPA 300.0 Rev 2.1 1993	563276		

Pace Analytical*

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.06

Document Revised: February 7, 2018
Page 1 of 2
Issuing Authority:
Pace Carolinas Quality Office

Laboratory receiving samples:				× = ===	NOTE OF THE PROPERTY.
Asheville 🔀 Eden 🗌	Greenwood 🗌	Hunter	sville 🗌	Raleigh	Mechanicsville
Courier: Client Name: Client Na	Powco	Proje		: 9249	
Custody Seal Present? Yes No Sea	als Intact? Yes	□No	Date/In	114 Itials Person Examining C	Contents: 3 - 25 - 20MA
Packing Material: Bubble Wrap Bubble Wrap Thermometer: 3-706 Cooler Temp (°C): 19,09,12, Correction Fact Cooler Temp Corrected (°C): 19,09,12,13,13,14 SDA Regulated Soil (K) N/A, water sample) Joid Samples originate in a quarantine zone within the Ur		0	□None Temp should □Simples has begun	Biological Tissue ☐Yes ☐No 任	e Frozen?]N/A °C aples on ice, cooling process
Yes No	inted States: CA, NY, or SC (c	песк тарку	including Hawa	ii and Puerto Rico)? 🔲 Yo	es No
	***************************************			Comments/Discrepa	ncy:
Chain of Custody Present?]N/A 1.			
Samples Arrived within Hold Time?	⊠Yes □No []N/A 2.			
Short Hold Time Analysis (<72 hr.)?]N/A 3.			
Rush Turn Around Time Requested?	☐Yes XNo [□N/A 4.			
Sufficient Volume?	`Z]Yes □No []N/A 5.			
Correct Containers Used? -Pace Containers Used?	March 1975	□N/A 6. □N/A			
Containers Intact?	. ∭Yes □No. [IN/A Z			
Dissolved analysis: Samples Field Filtered?	□Yes □No ₽	N/A 8.			
Sample Labels Match COC?	XYes □No □]N/A 9.			,
-Includes Date/Time/ID/Analysis Matrix:	W'T				
Headspace in VOA Vials (>5-6mm)?		₫N/A 10.			
Trip Blank Present?		ĮN/A 11.			
Trip Blank Custody Seals Present?	□Yes □No 2	IN/A			
COMMENTS/SAMPLE DISCREPANCY				Field Data R	equired? Yes No
		1-	+ ID -f lit		
CLIENT NOTIFICATION/RESOLUTION		LO	t ID of split cor	itainers:	
				3	
Person contacted:	-	Date/Time:			
Project Manager SCURF Review:			Date:		
Project Manager SRF Review:	* *		Date:		X 0000 107 10 30 8070

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.06 Document Revised: February 7, 2018

Page 1 of 2
Issuing Authority:
Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottle

Project #

WO#:92493014

PM: KLH1

Due Date: 09/14/20

CLIENT: GA-GA Power

I tema	BP4U-125 mL Plastic Unpreserved (N/A) (Cl-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) (Cl-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass Jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 viəls per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)	BPIN	BP3A-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AG0U-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
2		1	1	_	1																			1				
3	\angle	1	<u> </u>				/				7		1	1										1	V			
3	1		ĺ		1		1	V																2				
4		1	1		X								1	7							7	7		1	1			
5		8	1		X		1	1			1		1	1	7				7		\neg	\dashv		1	7			
8		1	7	-	Ż	1	7	1	-	:\	7		7	17	7		-	7	+	+		1		1/2/	1			
7	1	i	 		1	1	1	1	7	-	/	-	1	7	1		\dashv	+	-	+	+	+		-	7		-	
8	1	1	<u>'</u>		1	7	1	1	+		7	-	1	7	7	-	-	+	+	\dashv	+	\dashv		77	+			
9	1	1	1		W	1	7	+	-		4	-	1	1	4		+	+	+	\dashv	4	-	-	57	4			
10	4	-	1	_	A	1	X	1	-	_	1		X	X	4	-		_	_		_	_		<u> </u>	1			
11	1	1	1		A	1	1	1			1		1	\bigvee	7									7				
	1				X		V,			ľ			V,	V										7				
12	1		İ		X	V	1	J					1											1	1			

T.		pH Ad	ljustment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #
	=			2-12		

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.06 Document Revised: February 7, 2018 Page 1 of 2

> Issuing Authority: Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottle

Project #

WO#:92493014

PM: KLH1

Due Date: 09/14/20

CLIENT: GA-GA Power

1	BP4U-125 mL Plastic Unpreserved (N/A) (Cl-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) (Cl-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP42-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)	BPIN	BP3A-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AG0U-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
						X																		2				
2			1			JY.																		2				
3		1	1			1																		7	1			
4		1	1			X		7			1		1							1			\exists	X	1	_		
5		i	1			K	1	1			1		7	7	1			\forall	1	\dashv	7	1		7	7		\exists	
6		T	ï		1	K	7	1			7		1	7	/				7					X.	1	-		
7							1	1		1	1		1	1	1		\dashv	\dashv	\dashv		\dashv	\dashv		Sand	1	+	1	\dashv
8					1	1	1	7	7	\neg	7	-	1	7	1	1	7	+	\neg	1	+	+	-	1	1		+	-
9					7	1	1	1	\dashv	_	7		1	1	7	\dashv	-	+	\dashv	+	+	+	-	1	7	+	-	\dashv
10					1	7	1	1	\neg		1	_	1	1	1	\dashv		+	+		-	+	\rightarrow	4	7	\dashv		-
11					1	7	1	7	\dashv	-	7		1	1	1			+	+	+		+	-	1	+	+	-	_
12	1	-	\neg		1	4	1	+	-	-	+	-	+	1	+	+	_	\dashv	+	-	-	+	_	1	4	4	_	_
		\perp			1		7	7			V		1	7	1									1	/			

		pH Ac	ljustment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #
4/		1				

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

quired Client Information: rpany: Georgia Power ress: 1003 Weatherstone Parkway re 320, Woodstock, GA 30188 all: verbnica.fay@resoluteenv.com HEM# アントアンド MOM としてとして スのスー MCM-14 HCM-1CM-12 スつスー CM くつ メー のユーの一 (404)358-8469 SAMPLE ID Sample Ids must be unique 10 ADDITIONAL COMMENTS 20 0 ir ¢ 1 ٢ .1. Fax MATRIXCI Densions Water CI Waste Waste Waste Waste Waste Waste Waste CI Soll/Solid21 Out CI Wripe CI Wripe CI Tissue Report To: Veronica Fay Copy To: Stepmen . W. 1500 @ Resolute nv. com Required Project Information: Purchase Order #: SEC SEC WALL DAME RELINQUISHED BY I AFFILIATION DIN E La NT 6 WT G 21 ズー MATRIX CCDE (see valid codes to left) @ 812W20 115B D G 5/26/20 1/21 D SAMPLE TIPE (G=GRAD C=COMP) 9 G SIZUZ 0 9 McManus Ash Pond Scan 3/26/20 8/26/20 81261201247 8/24/20 1425 3/26/20 8/24/20 1652 8/26/20 115% Bizelze 9/26/20 START 1556 िमम् 1026 3111 1336 1029 SAMPLER NAME AND SIGNATURE TIME COLLECTED PRINT Name of SAMPLER: SIGNATURE of SAMPLER: The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. DATE END 8/27/20 TIME DATE SAMPLE TEMP AT COLLECTION Section C Invoice Information: Attention: Company Name: Address: S in S S S S S S 5 # OF CONTAINERS 0430 Pace Profile #: Pace Quote: Pace Project Manager Voronico 2 12 N 2 3 1 2 2 1 2 N N Unpreserved Bucth H2SO4 (3) (;) A (y) 130 (1) (J) V vi S S HNO3 Us U Preservatives Ruckar HCI 10768 Will Leaker NaOH ACCEPTED BY A AFFILIATION Na2S2O3 Methanol Other : Kevin Stepienson Ve Analyses Test Y/N X × RAD 9315/9320 × X X X X X X X Metals App 1 2 IV X X × X × X X X X TOS X × × X X X CI, F, SO4 X 8-28-20113 Vennica DATE 8/26/20 Fay Page: 0.9 TEMP In C Regulatory Agency 0 5 Residual Chlorine (Y/N) Received on SAMPLE CONDITIONS 6.32 4、ダナ 6.50 12467011 Ice 🗆 5.79 PH 4.92 6.65 Ptl いった 5.03 (Y/N) 0, 000 W Custody 2002 N Sealedo 4. VH HOH マ土 ð CoolerD PH PH HG PH 777 PH (Y/N) Samples 0 Intacl© (Y/N) V

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document

ress: J003 Weatherstone Parkway le 320, Woodstock, GA 30188 all: veronica fay@resoluteenv.com ITEM# Cilent Information: EQB L 082620 FBL08262 スつスー MCM - 20 DUP -DURY (404)358-8469 Sample lds must be unique One Character per box. SAMPLE ID ADDITIONAL COMMENTS 10 7 0 Fax MATRIXE Denoising Water© Water© Waste Water© Product© SeuSoid© ONE ONE Other© Areo Tissue Copy To: Sit phenopolison @ Revoluterouter Required Project Information: Report To: Veronica Fay irchase Order #: RELINOUISHED BY JAFFLIATION MATRIX CODE (see valid codes to left) SAMPLE TYPE (G=GRAB C=COMP) McManus Ash Pond Scan 8121/20 1548 8/24/20 1212c \$ 124120 27/2218 8/26/20 START SAMPLER NAME AND SIGNATURE 1649 1430 1655 COLLECTED SIGNATURE of SAMPLER: PRINT Name of SAMPLER: The Chain-of-Custody is a LEGAL DOCUMENT: All relevant fields must be completed accurately. MND 8/27/20 DATE TIME SAMPLE TEMPAT COLLECTION Verance Jee Bosth. 0930 S 5 S তা S VI # OF CONTAINERS Pace Project Manager: Pace Profile #: 1076 Company Name: invoice information: Section C 5 2 17 10 2 1, Unpreserved H2SO4 W W 63 S S UJ HNO3 Kucker Will Laaker HCI NaOH ACCEPTED BY LAFFILLATION Na2S2O3 Methanol Other Analyses Test Y/N X RAD 9315/9320 Terris DATE Signed: X X X × X X Metals App II & II X X X X X X TOS Stylenson X X X X X CI, F, SO4 8/26/20 ~~~~ DATE Veronica 1135 F Page: 2 TEMP in C 2 Regulatory Agency Residual Chlorine (Y/N) Received on SAMPLE CONDITIONS V 5,25 PH 3.78 Icen 4245014 (Y/N) Custody 8-28-20 SealedD CoolerD マエ ð (Y/N) Samples IntactO (Y/N)

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document

ruparty: Georgia Power fress: 1003 Weatherstone Parkway le 320, Woodstock, GA 30188 all: velronica.lay@resoluteenv.com nne: (404)358-8469 Fax juested Due Date: ITEM# NON-0 Sample lds must be unique One Character per box. SAMPLE ID ADDITIONAL COMMENTS 0 MATRIXED Denising Water© Water© Water© Product© Sout/SoutcO One Other© Tessue Project #: Report To: Veronica Fay Copy To: Site The Chylol Son (だいいにた だい しょっ Purchase Order #: Required Project Information: OUT OUT OUT OUT RELINQUISHED BY AFFILIATION MATRIX CODE (see valid codes to left) 0 SAMPLE TYPE (G=GRAB C=COMP) McManus Ash Pond Scan 8/24/2 START SAMPLER NAME AND SIGNATURE 3091 TIME SIGNATURE OF SAMPLER: MOTORICO. PRINT Name of SAMPLER: COLLECTED END 8/27/20 DATE TIME SAMPLE TEMPAT COLLECTION Joe Buckin Will Lancer Kovin 0830 S Attention: Company Name: Address: # OF CONTAINERS Pace Project Manager: Pace Profile #: 107 TIME Pace Quote: Invoice information: Section C 4 Unpreserved H2SO4 A.Kuchar/IACE/AV درا HNO3 HCI NaOH ACCEPTED BY / AFFILIATION Na2S2O3 kevin.herring@pacelabs.com Methanol Other Analyses Test ... YIN DATE Signed: 8 RAD 9315/9320 X Melals App III & III TDS X X CI, F, SO4 8/26/20 8282 Veronica Fan DATE: W/V TIME Page : TEMP in C 2 Regulatory Agency Residual Chlorine (Y/N) Received on SAMPLE CONDITIONS 6.88 PH MOCHAZY (Y/N) Custody Sealedo CoolerD Q (Y/N) Samples Intactio (Y/N)

Pace Analytical

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

CHAIN-OF-CUSTODY / Analytical Request Document

September 22, 2020

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on August 28, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring

kevin.herring@pacelabs.com

Kein Slern

1(704)875-9092

HORIZON Database Administrator

Enclosures

cc: Veronica Fay

Trent Godwin, Resolute Environmental & Water Resources

Kristen Jurinko

Ms. Lauren Petty, Southern Co. Services

Kevin Stephenson, Resolute Environmental & Water

Resources Consulting, LLC

Stephen Wilson, Resolute Environmental & Water

Resources Consulting, LLC

(770)734-4200

CERTIFICATIONS

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14

Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051

New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92493016001	MCM-01	Water	08/26/20 13:38	08/28/20 11:35
92493016002	MCM-02	Water	08/26/20 14:25	08/28/20 11:35
92493016003	MCM-04	Water	08/26/20 11:58	08/28/20 11:35
92493016004	MCM-05	Water	08/26/20 12:47	08/28/20 11:35
92493016005	MCM-07	Water	08/26/20 11:21	08/28/20 11:35
92493016006	MCM-11	Water	08/26/20 10:26	08/28/20 11:35
2493016007	MCM-12	Water	08/26/20 10:29	08/28/20 11:35
2493016008	MCM-14	Water	08/26/20 11:48	08/28/20 11:35
2493016009	MCM-15	Water	08/26/20 14:49	08/28/20 11:35
2493016010	MCM-16	Water	08/26/20 16:52	08/28/20 11:35
2493016011	MCM-17	Water	08/26/20 15:56	08/28/20 11:35
2493016012	MCM-18	Water	08/26/20 11:58	08/28/20 11:35
92493016013	MCM-19	Water	08/26/20 14:30	08/28/20 11:35
92493016014	MCM-20	Water	08/26/20 15:48	08/28/20 11:35
92493016015	FBL082620	Water	08/26/20 16:49	08/28/20 11:35
2493016016	EQBL082620	Water	08/26/20 16:55	08/28/20 11:35
2493016017	DUP-1	Water	08/26/20 00:00	08/28/20 11:35
2493016018	DUP-2	Water	08/26/20 00:00	08/28/20 11:35
2493016019	MCM-06	Water	08/26/20 16:08	08/28/20 11:35

SAMPLE ANALYTE COUNT

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92493016001	MCM-01	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
92493016002	MCM-02	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
92493016003	MCM-04	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
92493016004	MCM-05	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
92493016005	MCM-07	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
2493016006	MCM-11	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2493016007	MCM-12	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2493016008	MCM-14	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
2493016009	MCM-15	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
92493016010	MCM-16	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
2493016011	MCM-17	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92493016012	MCM-18	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92493016013	MCM-19	EPA 9315	LAL	1	PASI-PA

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE ANALYTE COUNT

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92493016014	MCM-20	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92493016015	FBL082620	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92493016016	EQBL082620	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92493016017	DUP-1	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92493016018	DUP-2	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92493016019	MCM-06	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

SUMMARY OF DETECTION

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92493016001	MCM-01					
EPA 9315	Radium-226	0.491 ± 0.342 (0.598) C:91% T:NA	pCi/L		09/11/20 08:55	
EPA 9320	Radium-228	-0.676 ± 0.474 (1.19) C:60% T:88%	pCi/L		09/15/20 15:05	
Total Radium Calculation	Total Radium	0.491 ± 0.816 (1.79)	pCi/L		09/16/20 10:12	
92493016002	MCM-02					
EPA 9315	Radium-226	0.470 ± 0.151 (0.169) C:88% T:NA	pCi/L		09/10/20 18:20	
EPA 9320	Radium-228	0.00000000 000000044 5 ± 0.513 (1.18) C:67% T:76%	pCi/L		09/15/20 15:06	
Total Radium Calculation	Total Radium	0.470 ± 0.664 (1.35)	pCi/L		09/16/20 10:12	
92493016003	MCM-04					
EPA 9315	Radium-226	3.63 ± 0.624 (0.268) C:90% T:NA	pCi/L		09/10/20 18:20	
EPA 9320	Radium-228	1.65 ± 0.714 (1.19) C:64% T:73%	pCi/L		09/15/20 15:06	
Total Radium Calculation	Total Radium	5.28 ± 1.34 (1.46)	pCi/L		09/16/20 10:12	
92493016004	MCM-05					
EPA 9315	Radium-226	0.690 ± 0.202 (0.201)	pCi/L		09/10/20 18:20	
EPA 9320	Radium-228	C:69% T:NA 0.151 ± 0.495 (1.11) C:65%	pCi/L		09/15/20 15:06	
Total Radium Calculation	Total Radium	T:83% 0.841 ± 0.697 (1.31)	pCi/L		09/16/20 10:12	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Lab Sample ID	Client Sample ID					
Method	Parameters —	Result	Units	Report Limit	Analyzed	Qualifiers
2493016005	MCM-07					
EPA 9315	Radium-226	5.35 ± 0.937 (0.255)	pCi/L		09/21/20 07:31	
EPA 9320	Radium-228	C:87% T:NA 6.49 ± 1.44 (1.05) C:66% T:81%	pCi/L		09/15/20 15:03	
Total Radium Calculation	Total Radium	11.8 ± 2.38 (1.31)	pCi/L		09/21/20 10:18	
2493016006	MCM-11					
EPA 9315	Radium-226	0.424 ± 0.267 (0.371) C:90% T:NA	pCi/L		09/11/20 07:02	
EPA 9320	Radium-228	-0.184 ± 0.421 (1.00) C:65% T:90%	pCi/L		09/15/20 15:06	
Total Radium Calculation	Total Radium	0.424 ± 0.688 (1.37)	pCi/L		09/16/20 10:12	
2493016007	MCM-12					
EPA 9315	Radium-226	1.11 ± 0.413 (0.390) C:99% T:NA	pCi/L		09/11/20 07:03	
EPA 9320	Radium-228	1.03 ± 0.567 (1.03) C:62% T:82%	pCi/L		09/15/20 15:06	
Total Radium Calculation	Total Radium	2.14 ± 0.980 (1.42)	pCi/L		09/16/20 10:12	
2493016008	MCM-14					
EPA 9315	Radium-226	3.76 ± 0.852 (0.356) C:98% T:NA	pCi/L		09/11/20 07:04	
EPA 9320	Radium-228	5.84 ± 1.35 (1.08) C:66% T:78%	pCi/L		09/15/20 15:06	
Total Radium Calculation	Total Radium	9.60 ± 2.20 (1.44)	pCi/L		09/16/20 10:12	
2493016009	MCM-15					
EPA 9315	Radium-226	0.865 ± 0.422 (0.607) C:90% T:NA	pCi/L		09/11/20 07:04	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92493016009	MCM-15					
EPA 9320	Radium-228	0.425 ± 0.557 (1.19) C:62% T:80%	pCi/L		09/15/20 15:06	
Total Radium Calculation	Total Radium	1.29 ± 0.979 (1.80)	pCi/L		09/16/20 10:12	
92493016010	MCM-16					
EPA 9315	Radium-226	0.643 ± 0.320 (0.368) C:95% T:NA	pCi/L		09/11/20 07:04	
EPA 9320	Radium-228	-0.250 ± 0.434 (1.05) C:62% T:90%	pCi/L		09/15/20 15:06	
Total Radium Calculation	Total Radium	0.643 ± 0.754 (1.42)	pCi/L		09/17/20 14:22	
92493016011	MCM-17					
EPA 9315 EPA 9320	Radium-226 Radium-228	4.39 ± 0.877 (0.277) C:82% T:NA 4.12 ± 1.01	pCi/L pCi/L		09/14/20 11:38 09/16/20 11:37	
Total Dadium Calaulatian	Total Dadius	(0.820) C:63% T:75% 8.51 ± 1.89			00/47/00 4 4:00	
Total Radium Calculation	Total Radium	(1.10)	pCi/L		09/17/20 14:22	
2493016012	MCM-18					
EPA 9315	Radium-226	4.73 ± 0.928 (0.315) C:85% T:NA	pCi/L		09/14/20 11:38	
EPA 9320	Radium-228	5.77 ± 1.29 (0.833) C:62% T:81%	pCi/L		09/16/20 11:37	
Total Radium Calculation	Total Radium	10.5 ± 2.22 (1.15)	pCi/L		09/17/20 14:22	
2493016013	MCM-19					
EPA 9315	Radium-226	5.81 ± 1.02 (0.209) C:84% T:NA	pCi/L		09/21/20 07:29	
EPA 9320	Radium-228	16.8 ± 3.23 (0.765) C:62% T:84%	pCi/L		09/16/20 11:37	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2493016013	MCM-19					
Total Radium Calculation	Total Radium	22.6 ± 4.25 (0.974)	pCi/L	C	09/21/20 10:18	
2493016014	MCM-20					
EPA 9315	Radium-226	6.00 ± 1.04 (0.193) C:84% T:NA	pCi/L	C	09/21/20 07:29	
EPA 9320	Radium-228	30.7 ± 5.71 (0.761) C:63% T:81%	pCi/L	C	09/16/20 11:37	
Total Radium Calculation	Total Radium	36.7 ± 6.75 (0.954)	pCi/L	C	09/21/20 10:18	
2493016015	FBL082620					
EPA 9315	Radium-226	0.0158 ± 0.121 (0.324) C:86% T:NA	pCi/L	C	09/14/20 07:28	
EPA 9320	Radium-228	1.09 ± 0.541 (0.913) C:57%	pCi/L	C	09/16/20 11:37	
Total Radium Calculation	Total Radium	T:75% 1.11 ± 0.662 (1.24)	pCi/L	O	09/17/20 14:22	
2493016016	EQBL082620					
EPA 9315	Radium-226	0.108 ± 0.142 (0.294)	pCi/L	C	09/14/20 07:28	
EPA 9320	Radium-228	C:86% T:NA 1.56 ± 0.640 (1.02) C:61%	pCi/L	C	09/16/20 11:37	
Total Radium Calculation	Total Radium	T:75% 1.67 ± 0.782 (1.31)	pCi/L	C	09/17/20 14:22	
2493016017	DUP-1	, ,				
EPA 9315	Radium-226	3.74 ± 0.806 (0.445)	pCi/L	O	09/14/20 07:28	
EPA 9320	Radium-228	C:80% T:NA 2.76 ± 0.795 (0.880) C:64% T:70%	pCi/L	C	09/16/20 11:37	
Total Radium Calculation	Total Radium	6.50 ± 1.60 (1.33)	pCi/L	C	09/17/20 14:22	

REPORT OF LABORATORY ANALYSIS

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92493016018	DUP-2		Office			Quamoro
	DUP-2					
EPA 9315	Radium-226	6.17 ± 1.07 (0.262)	pCi/L		09/21/20 07:31	
		C:83% T:NA				
EPA 9320	Radium-228	33.9 ± 6.30 (0.840) C:61%	pCi/L		09/16/20 11:37	
		T:79%				
Total Radium Calculation	Total Radium	40.1 ± 7.37 (1.10)	pCi/L		09/21/20 10:18	
92493016019	MCM-06					
EPA 9315	Radium-226	4.83 ± 0.958 (0.337) C:81% T:NA	pCi/L		09/14/20 07:28	
EPA 9320	Radium-228	3.23 ± 0.991 (1.24) C:64%	pCi/L		09/16/20 11:37	
Total Radium Calculation	Total Radium	T:57% 8.06 ± 1.95 (1.58)	pCi/L		09/17/20 14:22	

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Sample: MCM-01 PWS:	Lab ID: 9249301 Site ID:	6001 Collected: 08/26/20 13:38 Sample Type:	Received:	08/28/20 11:35	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	vices - Greensburg				
Radium-226	EPA 9315	0.491 ± 0.342 (0.598) C:91% T:NA	pCi/L	09/11/20 08:55	5 13982-63-3	
	Pace Analytical Ser	vices - Greensburg				
Radium-228	EPA 9320	-0.676 ± 0.474 (1.19) C:60% T:88%	pCi/L	09/15/20 15:05	5 15262-20-1	
	Pace Analytical Ser	vices - Greensburg				
Total Radium	Total Radium Calculation	0.491 ± 0.816 (1.79)	pCi/L	09/16/20 10:12	2 7440-14-4	

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Sample: MCM-02 PWS:	Lab ID: 92493 Site ID:	3016002 Collected: 08/26/20 14:25 Sample Type:	Received:	08/28/20 11:35	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.470 ± 0.151 (0.169) C:88% T:NA	pCi/L	09/10/20 18:20	0 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.00000000000000445 ± 0.513 (1.18) C:67% T:76%	pCi/L	09/15/20 15:00	6 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.470 ± 0.664 (1.35)	pCi/L	09/16/20 10:12	2 7440-14-4	

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Sample: MCM-04 PWS:	Lab ID: 924930 Site ID:	16003 Collected: 08/26/20 11:58 Sample Type:	Received:	08/28/20 11:35	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	ervices - Greensburg				
Radium-226	EPA 9315	3.63 ± 0.624 (0.268) C:90% T:NA	pCi/L	09/10/20 18:20	13982-63-3	
	Pace Analytical Se	ervices - Greensburg				
Radium-228	EPA 9320	1.65 ± 0.714 (1.19) C:64% T:73%	pCi/L	09/15/20 15:06	6 15262-20-1	
	Pace Analytical Se	ervices - Greensburg				
Total Radium	Total Radium Calculation	5.28 ± 1.34 (1.46)	pCi/L	09/16/20 10:12	2 7440-14-4	

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Sample: MCM-05 PWS:	Lab ID: 9249 Site ID:	3016004 Collected: 08/26/20 12:47 Sample Type:	Received:	08/28/20 11:35	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.690 ± 0.202 (0.201) C:69% T:NA	pCi/L	09/10/20 18:20	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.151 ± 0.495 (1.11) C:65% T:83%	pCi/L	09/15/20 15:06	6 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.841 ± 0.697 (1.31)	pCi/L	09/16/20 10:12	2 7440-14-4	

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Sample: MCM-07 PWS:	Lab ID: 9249 Site ID:	3016005 Collected: 08/26/20 11:21 Sample Type:	Received:	08/28/20 11:35	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg			_	
Radium-226	EPA 9315	5.35 ± 0.937 (0.255) C:87% T:NA	pCi/L	09/21/20 07:31	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	6.49 ± 1.44 (1.05) C:66% T:81%	pCi/L	09/15/20 15:03	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	11.8 ± 2.38 (1.31)	pCi/L	09/21/20 10:18	7440-14-4	

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Sample: MCM-11 PWS:	Lab ID: 9249 Site ID:	3016006 Collected: 08/26/20 10:26 Sample Type:	Received:	08/28/20 11:35	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.424 ± 0.267 (0.371) C:90% T:NA	pCi/L	09/11/20 07:02	2 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	-0.184 ± 0.421 (1.00) C:65% T:90%	pCi/L	09/15/20 15:06	5 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.424 ± 0.688 (1.37)	pCi/L	09/16/20 10:12	2 7440-14-4	

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Sample: MCM-12 PWS:	Lab ID: 9249 Site ID:	3016007 Collected: 08/26/20 10:29 Sample Type:	Received:	08/28/20 11:35	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	1.11 ± 0.413 (0.390) C:99% T:NA	pCi/L	09/11/20 07:03	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	1.03 ± 0.567 (1.03) C:62% T:82%	pCi/L	09/15/20 15:06	6 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	2.14 ± 0.980 (1.42)	pCi/L	09/16/20 10:12	2 7440-14-4	

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Sample: MCM-14 PWS:	Lab ID: 9249 Site ID:	3016008 Collected: 08/26/20 11:48 Sample Type:	Received:	08/28/20 11:35	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	3.76 ± 0.852 (0.356) C:98% T:NA	pCi/L	09/11/20 07:04	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	5.84 ± 1.35 (1.08) C:66% T:78%	pCi/L	09/15/20 15:06	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	9.60 ± 2.20 (1.44)	pCi/L	09/16/20 10:12	2 7440-14-4	

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Sample: MCM-15 PWS:	Lab ID: 9249301 Site ID:	6009 Collected: 08/26/20 14:49 Sample Type:	Received:	08/28/20 11:35	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	vices - Greensburg				
Radium-226	EPA 9315	0.865 ± 0.422 (0.607) C:90% T:NA	pCi/L	09/11/20 07:04	13982-63-3	
	Pace Analytical Ser	vices - Greensburg				
Radium-228	EPA 9320	0.425 ± 0.557 (1.19) C:62% T:80%	pCi/L	09/15/20 15:06	6 15262-20-1	
	Pace Analytical Ser	vices - Greensburg				
Total Radium	Total Radium Calculation	1.29 ± 0.979 (1.80)	pCi/L	09/16/20 10:12	2 7440-14-4	

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Sample: MCM-16 PWS:	Lab ID: 9249301 Site ID:	Collected: 08/26/20 16:52 Sample Type:	Received:	08/28/20 11:35	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	rvices - Greensburg				
Radium-226	EPA 9315	0.643 ± 0.320 (0.368) C:95% T:NA	pCi/L	09/11/20 07:04	13982-63-3	
	Pace Analytical Ser	rvices - Greensburg				
Radium-228	EPA 9320	-0.250 ± 0.434 (1.05) C:62% T:90%	pCi/L	09/15/20 15:06	6 15262-20-1	
	Pace Analytical Ser	rvices - Greensburg				
Total Radium	Total Radium Calculation	0.643 ± 0.754 (1.42)	pCi/L	09/17/20 14:22	2 7440-14-4	

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Sample: MCM-17 PWS:	Lab ID: 9249 Site ID:	3016011 Collected: 08/26/20 15:56 Sample Type:	Received:	08/28/20 11:35	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	4.39 ± 0.877 (0.277) C:82% T:NA	pCi/L	09/14/20 11:38	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	4.12 ± 1.01 (0.820) C:63% T:75%	pCi/L	09/16/20 11:37	7 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	8.51 ± 1.89 (1.10)	pCi/L	09/17/20 14:22	2 7440-14-4	

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Sample: MCM-18 PWS:	Lab ID: 92493 Site ID:	016012 Collected: 08/26/20 11:58 Sample Type:	Received:	08/28/20 11:35	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	ervices - Greensburg				
Radium-226	EPA 9315	4.73 ± 0.928 (0.315) C:85% T:NA	pCi/L	09/14/20 11:38	3 13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 9320	5.77 ± 1.29 (0.833) C:62% T:81%	pCi/L	09/16/20 11:37	7 15262-20-1	
	Pace Analytical S	ervices - Greensburg				
Total Radium	Total Radium Calculation	10.5 ± 2.22 (1.15)	pCi/L	09/17/20 14:22	2 7440-14-4	

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Sample: MCM-19 PWS:	Lab ID: 9249 Site ID:	3016013 Collected: 08/26/20 14:30 Sample Type:	Received:	08/28/20 11:35	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	5.81 ± 1.02 (0.209) C:84% T:NA	pCi/L	09/21/20 07:29	9 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	16.8 ± 3.23 (0.765) C:62% T:84%	pCi/L	09/16/20 11:37	7 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	22.6 ± 4.25 (0.974)	pCi/L	09/21/20 10:18	3 7440-14-4	

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Sample: MCM-20 PWS:	Lab ID: 92493 Site ID:	3016014 Collected: 08/26/20 15:48 Sample Type:	Received:	08/28/20 11:35	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	6.00 ± 1.04 (0.193) C:84% T:NA	pCi/L	09/21/20 07:29	9 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	30.7 ± 5.71 (0.761) C:63% T:81%	pCi/L	09/16/20 11:37	7 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	36.7 ± 6.75 (0.954)	pCi/L	09/21/20 10:18	3 7440-14-4	

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Sample: FBL082620 PWS:	Lab ID: 9249 : Site ID:	3016015 Collected: 08/26/20 16:49 Sample Type:	Received:	08/28/20 11:35	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0158 ± 0.121 (0.324) C:86% T:NA	pCi/L	09/14/20 07:28	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	1.09 ± 0.541 (0.913) C:57% T:75%	pCi/L	09/16/20 11:37	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.11 ± 0.662 (1.24)	pCi/L	09/17/20 14:22	2 7440-14-4	

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Sample: EQBL082620 PWS:	Lab ID: 92493 0 Site ID:	016016 Collected: 08/26/20 16:55 Sample Type:	Received:	08/28/20 11:35	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Services - Greensburg				
Radium-226	EPA 9315	0.108 ± 0.142 (0.294) C:86% T:NA	pCi/L	09/14/20 07:28	8 13982-63-3	
	Pace Analytical S	Services - Greensburg				
Radium-228	EPA 9320	1.56 ± 0.640 (1.02) C:61% T:75%	pCi/L	09/16/20 11:37	7 15262-20-1	
	Pace Analytical S	Services - Greensburg				
Total Radium	Total Radium Calculation	1.67 ± 0.782 (1.31)	pCi/L	09/17/20 14:22	2 7440-14-4	

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Sample: DUP-1 PWS:	Lab ID: 92493 Site ID:	8016017 Collected: 08/26/20 00:00 Sample Type:	Received:	08/28/20 11:35	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	3.74 ± 0.806 (0.445) C:80% T:NA	pCi/L	09/14/20 07:28	8 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	2.76 ± 0.795 (0.880) C:64% T:70%	pCi/L	09/16/20 11:37	7 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	6.50 ± 1.60 (1.33)	pCi/L	09/17/20 14:22	2 7440-14-4	

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Sample: DUP-2 PWS:	Lab ID: 92493 Site ID:	3016018 Collected: 08/26/20 00:00 Sample Type:	Received:	08/28/20 11:35	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Services - Greensburg				
Radium-226	EPA 9315	6.17 ± 1.07 (0.262) C:83% T:NA	pCi/L	09/21/20 07:3	1 13982-63-3	
	Pace Analytical S	Services - Greensburg				
Radium-228	EPA 9320	33.9 ± 6.30 (0.840) C:61% T:79%	pCi/L	09/16/20 11:3	7 15262-20-1	
	Pace Analytical S	Services - Greensburg				
Total Radium	Total Radium Calculation	40.1 ± 7.37 (1.10)	pCi/L	09/21/20 10:1	8 7440-14-4	

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Sample: MCM-06 PWS:	Lab ID: 92493 Site ID:	016019 Collected: 08/26/20 16:08 Sample Type:	Received:	08/28/20 11:35	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	ervices - Greensburg				
Radium-226	EPA 9315	4.83 ± 0.958 (0.337) C:81% T:NA	pCi/L	09/14/20 07:28	3 13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 9320	3.23 ± 0.991 (1.24) C:64% T:57%	pCi/L	09/16/20 11:37	15262-20-1	
	Pace Analytical S	ervices - Greensburg				
Total Radium	Total Radium Calculation	8.06 ± 1.95 (1.58)	pCi/L	09/17/20 14:22	2 7440-14-4	

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

QC Batch: 412356 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92493016011, 92493016012, 92493016013, 92493016014, 92493016015, 92493016016, 92493016017,

92493016018, 92493016019

METHOD BLANK: 1994515 Matrix: Water

Associated Lab Samples: 92493016011, 92493016012, 92493016013, 92493016014, 92493016015, 92493016016, 92493016017,

92493016018, 92493016019

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.0596 ± 0.133 (0.265) C:74% T:NA
 pCi/L
 09/11/20 18:17

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

QC Batch: 412345 Analysis Method: EPA 9320 QC Batch Method: EPA 9320

Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

92493016001, 92493016002, 92493016003, 92493016004, 92493016005, 92493016006, 92493016007, Associated Lab Samples:

92493016008, 92493016009, 92493016010

METHOD BLANK: 1994499 Matrix: Water

92493016001, 92493016002, 92493016003, 92493016004, 92493016005, 92493016006, 92493016007, Associated Lab Samples:

92493016008, 92493016009, 92493016010

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers Radium-228 0.357 ± 0.355 (0.727) C:71% T:84% pCi/L 09/15/20 15:02

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

QC Batch: 412352 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92493016001, 92493016002, 92493016003, 92493016004, 92493016005, 92493016006, 92493016007,

92493016008, 92493016009, 92493016010

METHOD BLANK: 1994514 Matrix: Water

Associated Lab Samples: 92493016001, 92493016002, 92493016003, 92493016004, 92493016005, 92493016006, 92493016007,

92493016008, 92493016009, 92493016010

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.206 ± 0.102 (0.149) C:95% T:NA
 pCi/L
 09/10/20 19:37

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

QC Batch: 412346 Analysis Method: EPA 9320
QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92493016011, 92493016012, 92493016013, 92493016014, 92493016015, 92493016016, 92493016017,

92493016018, 92493016019

METHOD BLANK: 1994501 Matrix: Water

Associated Lab Samples: 92493016011, 92493016012, 92493016013, 92493016014, 92493016015, 92493016016, 92493016017,

92493016018, 92493016019

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.749 ± 0.397 (0.699) C:71% T:81%
 pCi/L
 09/16/20 11:37

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 09/22/2020 11:21 AM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Date: 09/22/2020 11:21 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92493016001	MCM-01	EPA 9315	412352		
2493016002	MCM-02	EPA 9315	412352		
2493016003	MCM-04	EPA 9315	412352		
2493016004	MCM-05	EPA 9315	412352		
2493016005	MCM-07	EPA 9315	412352		
2493016006	MCM-11	EPA 9315	412352		
2493016007	MCM-12	EPA 9315	412352		
2493016008	MCM-14	EPA 9315	412352		
2493016009	MCM-15	EPA 9315	412352		
2493016010	MCM-16	EPA 9315	412352		
2493016011	MCM-17	EPA 9315	412356		
2493016012	MCM-18	EPA 9315	412356		
2493016013	MCM-19	EPA 9315	412356		
2493016014	MCM-20	EPA 9315	412356		
2493016015	FBL082620	EPA 9315	412356		
2493016016	EQBL082620	EPA 9315	412356		
2493016017	DUP-1	EPA 9315	412356		
2493016018	DUP-2	EPA 9315	412356		
2493016019	MCM-06	EPA 9315	412356		
2493016001	MCM-01	EPA 9320	412345		
2493016002	MCM-02	EPA 9320	412345		
2493016003	MCM-04	EPA 9320	412345		
2493016004	MCM-05	EPA 9320	412345		
2493016005	MCM-07	EPA 9320	412345		
2493016006	MCM-11	EPA 9320	412345		
2493016007	MCM-12	EPA 9320	412345		
2493016008	MCM-14	EPA 9320	412345		
2493016009	MCM-15	EPA 9320	412345		
2493016010	MCM-16	EPA 9320	412345		
2493016011	MCM-17	EPA 9320	412346		
2493016012	MCM-18	EPA 9320	412346		
2493016013	MCM-19	EPA 9320	412346		
2493016014	MCM-20	EPA 9320	412346		
2493016015	FBL082620	EPA 9320	412346		
2493016016	EQBL082620	EPA 9320	412346		
2493016017	DUP-1	EPA 9320	412346		
2493016018	DUP-2	EPA 9320	412346		
2493016019	MCM-06	EPA 9320	412346		
2493016001	MCM-01	Total Radium Calculation	414090		
2493016002	MCM-02	Total Radium Calculation	414090		
2493016003	MCM-04	Total Radium Calculation	414090		
2493016004	MCM-05	Total Radium Calculation	414090		
2493016005	MCM-07	Total Radium Calculation	414777		
2493016006	MCM-11	Total Radium Calculation	414090		
2493016007	MCM-12	Total Radium Calculation	414090		
2493016008	MCM-14	Total Radium Calculation	414090		

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: MCMANUS ASH POND SCAN RADS

Pace Project No.: 92493016

Date: 09/22/2020 11:21 AM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92493016009	MCM-15	Total Radium Calculation	414090		
2493016010	MCM-16	Total Radium Calculation	414422		
92493016011	MCM-17	Total Radium Calculation	414422		
92493016012	MCM-18	Total Radium Calculation	414422		
92493016013	MCM-19	Total Radium Calculation	414777		
92493016014	MCM-20	Total Radium Calculation	414777		
92493016015	FBL082620	Total Radium Calculation	414422		
92493016016	EQBL082620	Total Radium Calculation	414422		
92493016017	DUP-1	Total Radium Calculation	414422		
92493016018	DUP-2	Total Radium Calculation	414777		
92493016019	MCM-06	Total Radium Calculation	414422		

Pace Analytical*

Project Manager SRF Review:

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.06 Document Revised: February 7, 2018 Page 1 of 2
Issuing Authority:
Pace Carolinas Quality Office

Laboratory receiving samples:	. —	27	🗂	Raleigh	Mechanicsville
Asheville 🔀 🛮 Eden 🗌 🔾	ireenwood 🔲	Hunters			
Sample Condition Client Name:	10.00	Proje	ct # WO:	#:9249	3016
Courier:	USPS Other:	Client	92493		
Custody Seal Present?	Intact? ☑Yes	□No	Date/Ini	tials Person Examining (Contents: 8-28-20AR
Packing Material: Bubble Wrap Bub	ble Bags None	Other		Biological Tissue	
Thermometer	Type of Ice: 🔣 W	et 🗆 Blue	None	□Yes □No 4]N/A
MIR Gun ID: 93-706)	Type of ice: [5]	er Moine	Пион		
Cooler Temp (°C): [.9, 0.9, 1.2, 1 Correction Factor: Cooler Temp Corrected (°C): [.9, 0.9, 1.2, 1.4]	Add/Subtract (°C)	0	Temp should Semples has begun	be above freezing to 6 out of temp criteria. San	°C nples on ice, cooling process
USDA Regulated Soil (K N/A, water sample) Did samples originate in a quarantine zone within the Unite ☐ Yes No	ed States: CA, NY, or SC (check maps)?	Did samples or including Hawa	iginate from a foreign so	es No
				Comments/Discrepa	incy:
Chain of Custody Present?	∑ Yes □No	□N/A 1.			
Samples Arrived within Hold Time?	⊠Yes □No	□N/A 2.			
Short Hold Time Analysis (<72 hr.)?	□Yes ☑No	□N/A 3.			
Rush Turn Around Time Requested?	□Yes 🖾 No	□N/A 4.			
Sufficient Volume?	`⊠Yes □No	□N/A 5.			
Correct Containers Used?	⊠ Yes □No	□N/A 6.			
-Pace Containers Used?	XYes □No	□N/A			
Containers Intact?	∑ Yes No	□N/A 7.			
Dissolved analysis: Samples Field Filtered?	□Yes □No	⊠ N/A 8.			
Sample Labels Match COC?	∑Yes □No	□N/A 9.			
-Includes Date/Time/ID/Analysis Matrix:	WT				
Headspace in VOA Vials (>5-6mm)?		⊠N/A 10.			
Trip Blank Present?	□Yes □No	⊠N/A 11.			
Trip Blank Custody Seals Present?	□Yes □No	Ì N/A			
COMMENTS/SAMPLE DISCREPANCY				Field Data	Required? Yes No
		L	ot ID of split co	ntainers:	
CLIENT NOTIFICATION/RESOLUTION				1	
Person contacted:		Date/Time:			
2 - spored - 400 (400 (400 (400 (400 (400 (400 (40					
Project Manager SCURF Review:			Date	:	
Project Manager SRF Review:			Date	:	

Document Name: Sample Condition Upon Receipt(SCUR) Document No.:

F-CAR-CS-033-Rev.06

Document Revised: February 7, 2018 Page 1 of 2

> Issuing Authority: Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottle

Project # W0#: 92493016

PM: KLH1

Due Date: 09/14/20

CLIENT: GA-GA Power

ltem#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) (Cl-)	BP3N- 250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)	BPIN	BP3A-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1		1	1		X																			2				
2		-1	1		X																			2				
3		1	İ		N																			2				
4		1	1		X																			2				
5		İ	1		X	/																		2				
6		j	1		X																			2				
7		1	1		X																			2/				
8		1	İ		X																			2	/			
9		1	1		X						1													2				
10		1	1		X	/																		2				
11		1	1		X																No. 22. F. S. September C.			2	7			
12		1	İ		X																			1				

		pH Ac	ljustment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot#
•						
					ALL ALL ALL AND AND AND AND AND AND AND AND AND AND	_

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.06 Document Revised: February 7, 2018 Page 1 of 2

> Issuing Authority: Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottle

Project # WO#: 92493016

PM: KLH1

Due Date: 09/14/20

CLIENT: GA-GA Power

ltem#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG15-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4CI (N/A)(CI-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A - lab)	BPIN	BP3A-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AG0U-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1		1	1			X																		2				
2		1	İ			Y																		2				
3		1	1			K																		2				
4		1	1			X	/	/					/	/	/									X				
5		1	i			K	/	/	-				/	/	/									2				
6		Ī	1			X	1	/					/	/	/									2				
7							/	/						/														
8	7						/	/			/		/	/	/													
9	7						/	/			/		/	/	/													
10	7				7	/	1	/					/	/	/									/				
11						/	/	/			/		/	/	/													
12	\sum					/	/																					

		pH Ac	ljustment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Pace Analytical*

Document Name: Sample Condition Upon Receipt(SCUR) Document No.:

F-CAR-CS-033-Rev.06

Document Revised: February 7, 2018 Page 1 of 2 Issuing Authority:

Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottle

Project #

WO#: 92493016

Due Date: 09/14/20

CLIENT: GA-GA Power

Item#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 ml. Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HG (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A - lab)	BP IN	BP3A-250 mL Plastic (NH2)25O4 (9.3-9.7)	AG0U-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)	
1			1			K																	_	1	1	-		-	
2													1	7	7								_	7	7	-	-		-
3																							_		7	<u> </u>	-	-	-
4	1																			<u></u>	_				1		-	 	-
5	/				1	1		1	la .		1													1	/	_	1		-
6	/				1	1					1		1	1											1	1	_		-
7	/				1	1		1			1		1	1	1										1	1	_	1	-
8	/				1						1		1		1								_		1	-	_		
9	/				1		X				1		1									1		1	1	-		-	_
10	/	1			1	1	/	X			1			1											1	_	_	_	_
11	1				1	1	1	X			1			1	1										1	1		_	1
12							1								1							1			1	1			

Lot #		CI &Ca Sampics	justment Log for Pres	ph Ad		
LOUR	Amount of Preservative added	Time preservation adjusted	Date preservation adjusted	pH upon receipt	Type of Preservative	Sample ID
	-					

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

						12	1	6	9	8	7	6	(1	3	36210		IIEM#		passant	one:	ail: ve	iress:	:vnedt	quired (
					ADDITIONAL COMMENTS	MCM-18	スペス・レン	スのエーフ	MCM-18	MCM-14	MCM-12	MCM-11	MCM- OF	MCM- OS	MCM 104	MCM - 02	707-01	SAMPLE ID One Character per box. (A-Z, 0-91 Sample lds must be unique		quested Due Date:	(404)358-8469 Fax	te 320, Woodstock, GA 30188 all: verbnica fav@resoluteenv.com	1003 Weatherstone Parkway	Georgia Power	quired Client Information:
				111														Onnong Water DWC Water WTD Water WHO PROJUCT PI Sout Sout Sout OLC OUT ONT WIPE WIPE AND OTHER OTT Tissue TS	MATRIXE CODED	Project #:	Project Name:	Purchase Order #:		Report To:	Required Project Information:
			1	M	RELINO	M G	NTG.	₩.T	기	WT 0	<u> </u>	5	٤.	Z.	7. C	17	V-1	MATRIX CODE (see valid code				der #:	tepne	Veronica Fay	oject in
				h	7 ANSHE	G 81		18 E	G 3;	18 5	ভ	18.5	15 5	8	e 21	18 5	G 3/	SAMPLE TYPE (G: GRAI) C:	GOMP)		AcMan		7	ca Fa	forma
				()	рвуга	8126120	26/20	8/26/20	3jaulao	8/20/20	عداناداه	34/35	5/26/20	26/20	26/20	8/21/20	3/26/20	START			us Ash		2150		tion:
SAMPI					RELINQUISHED BY I AFFILIATION	1158	8/26/20 1556	1652	1449	3111	1029	8124120 1026	1121	8124126 1247	8/26/20 1158	52.HI	1350	TIME	COL		McManus Ash Pond Scan		いのの		
PRINT Name of SAMPLER:	The property				MOI	00	G	12	20	20	20	e.	-	7	0,	-	Ca	DATE	COLLECTED		can		esclu		
PLER NAME AND SIGNATI			_	OQ.			_						-						O				tes		
SAMPL			Ī	127/20	DATE													TIME					N CC		
NATU				3					(0)	Ĺ					.0	. 0	, n	SAMPLE TEMP AT COLLECTION	N	P	D	D >	-	2	5
c 2			Į	0430	711	2	5 2	S 2	5 2	5	5 2	5 2	2	2	5 2	5 2	5 2	# OF CONTAINERS Unpreserved		Pace Profile #:	Pace Project Manager:	Address: Pace Quote:	Company Name:	Attention:	invoice information:
10.26.2				8,	TIME	<u>, </u>	1	1 -	10	7	1-3	1 4	-	13	- 19	·	-	H2SO4		rofile	roject	s: uote:	ny Na	ž	Into
Ac+4				1	2/1	(i)	(3)	(1)	17.1	()	()s	()	()	0,	2,	Λη	S	HNO3	Pre		Mana		ne:		Matic
5				6														нсі	Preservatives	10768	ger:				ň
Will Leaker			1	١				_		_			_					NaOH	ative	"	8				
Lao		4		6	CCE	_						_						Na2S2O3	Se		evin.		П		
K I			1	3	ŒTS	_				_			-					Methanol Other			kevin.herring				
teriff	Circum.			70	ACCEPTED BY I AFFILIATION	_		L										Analyses Test	Y/N	35					
î li			-	(ii)	題	×	×	×	×	X	×	X	×	×	×	×	×	RAD 9315/9320	21-1-1-12	Sales	aceta				
<u>خ</u>			Ì	B	АПО	×	×	×	X	×	×	X	×	×	X	X .	X	Metals App 1 2 IV		70	pacelabs.com				
र्दे		1		5		Х.	Х	×	×	×	X	×	×	X	×	×	X	TDS		eque	3				
Kevin Otto ranson				`		×	×	×	×	×	×	×	×	×	×	×	×	CI, F, SO4		sted A					
3,124		-	\dashv	00																 Requested Analysis Filtered (Y/N)					
Vennica			1	9-32-3	DATE	_	_	_	_	_	_						_			Filtere	Ru	22.5	\vdash	Ш	J
				1	AND STATES															d (Y/N)	125435	100000			
ia l			ĺ	50	TIME					-	_	_		_						2000	19x517	4623345			Γ,
IP in C	1,4	2	0,9	6.1	が対象													Desides Obtain Man	25522400		Sta	Regu			rage.
eived on		~	77	_	ş	_	T			1.								Residual Chlorine (Y/N)		GA	te / Lo	latory			
1)	1.	1	V	7	SAMPLE CONDITIONS	4.24	6	4	٥٠ أي	++	6.32	.1.	6.3	5.0	50.7	5.	Ω	azkso6		XOI	State / Location	Regulatory Agency			-
lody edil	7.	10	1	1	CONDIT		6.65ptl	20	V)	9.9	4	50	12	0		23	ا ا	き			KAKETEK	Y			2
lerD I)		`		0.5V)	SNO	マエ	7+	PH	PH	န	H	PH	マゴ	PH	H	pth	マエ	0				NATURAL SALES			
ples	1.	1	1	1						マエ		منہ				.5		0			E855	1000			K

te 320, Woodstock, GA 30188 all: veronica.fay@resoluteenv.com quired Client Information: npany: Georgia Power fress: 1003 Weatherstone Parkway MCM. FBL08262 MCM - 20 DURY QBL08262 0000 (404)358-8469 Sample Ids must be unique One Character per box. (A-Z, 0-91, -SAMPLE ID ADDITIONAL COMMENTS -0 7 0 Fax Ö Project Name: Required Project Information: Report To: Veronica Fay Copy To: 今日からのできる。 Section B Purchase Order #: SE CHAME OF COMMAND CO RELINOUISHED BY AFFILIATION MATRIX CODE (see valid codes to left) SAMPLE TYPE (G=GRAB C=COMP) McManus Ash Pond Scan 8/24/20 42612c 8421/20 IS 48 8/24/20 21/25/18 3/26/20 DATE 3 START 18491 1430 SAMPLER NAME AND SIGNATURE 1655 TIME PRINT Name of SAMPLER: SIGNATURE of SAMPLER: LECTED DATE The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. END DATE 8/27/20 SAMPLE TEMPAT COLLECTION Voronos Company Name: Address: 0930 5 Jee Beath. S 5 S J # OF CONTAINERS Pace Project Manager: Pace Quote: Attention: Invoice information: TIME 4 ۲, 17 2 12 6, Unpreserved H2SO4 HACULBUL PHCL U S 6 S VJ S ниоз 10768 Will Laaker HCI NaOH ACCEPTED BY I AFFILIATION Na2S2O3 kevin.herring@pacelabs.com Methanol Other 5 Analyses Test Y/N X X X X RAD 9315/9320 X DATE Signed: IHIC X X × × X X Melals App II 3 I X X X × X TOS Stokenson X X X X X CI, F, SO4 8/26/20 アーペーとうないと DATE Version For 1135 Ç TEMP In C Regulatory Agency 2 2 Residual Chlorine (Y/N) State / Location Received on SAMPLE CONDITIONS ... 5:25 PH S IceD (Y/N) D . 18 1/0/1/1/ Custody 8-28-20 SealedD 2 7 CoolerD 잋 マエ (Y/N) Samples Intacto N (Y/N)

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document

MAN SECTION COM

Tipany: Georgia Power fress: 1003 Weatherstone Parkway le 320, Woodstock, GA 30188 all: veronica.fay@jessourieenv.com ITEM# quired Cilent Information: 25 (404)358-8469 25 Pue Date: MOM-0 Pace Analytical Sample Ids must be unique One Character per box. (A-Z, 0-9/, -SAMPLE ID ADDITIONAL COMMENTS 5 MATRIXE Dening Water© Waste Water© Product© SolitSolit© OIIC OIIC Other© Tissue Copy To: Stepheniuly son O Passinte Environ Project Name: Required Project Information: Report To: Veronica Fay ırchase Order #: A STAND OFF SEE MAND DAME OF COORD RELINGUISHED BY AFFILIATION MATRIX CODE (see valid codes to left) 0 SAMPLE TYPE (G=GRAB C=COMP) McManus Ash Pond Scan 8001 7/17/8 START SAMPLER NAME AND SIGNATURE TIME COLLECTED SIGNATURE OF SAMPLER: VOTO NICO. PRINT Name of SAMPLER: The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately CHAIN-OF-CUSTODY / Analytical Request Document DATE END DATE 8/21/20 TIME SAMPLE TEMPAT COLLECTION Address: Joe Bucin Will Lawer U # OF CONTAINERS 0830 Pace Profile #: Pace Quote: Invoice information: Section C Pace Project Manager: Attention: ME 4 Unpreserved H2SO4 Preservatives A.Kicher/THOE/AV ()) HNO3 HCI NaOH ACCEPTED BY / AFFILIATION Na2S2O3 kevin.herring@pacelabs.com Methanol Other プロシュ Analyses Test: YIN RAD 9315/9320 DATE Signed: 8 × X Metals Apr エンロ TDS × × CI, F, SO4 8/26/20 , Verenica Fay 8282 DATE Page: TEMP in C Regulatory Agency 2 State / Location Residual Chlorine (Y/N) Received on SAMPLE CONDITIONS 6.88 PH lceD (Y/N) Custody Sealedo CoolerD ð (Y/N) Samples Intact() 1 (Y/N)

Quality Control Sample Performance Assessment

Ra-226 LAL 9/10/2020 55959 DW

Test Analyst Date: Worklist Matrix:

Face Analytical"

MB Sample ID
MB concentration:
M/B Counting Uncertainty:
M/B MDC:

Method Blank Assessment

MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC:

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment
MS/MSD Decay Corrected Spike Concentration (pCi/mL):
Matrix Spike Result Counting Uncertainty (pCi/L., g, F):
Matrix Spike Duplicate Result Counting Uncertainty (pCirl., g. F):

			•
Laboratory Control Sample Assessment	TCSD (Y or N)?	z	¥W .
	LCS55959	LCSD55959	
Count Date:	9/11/2020		Sample Result (
Spike I.D.:	19-033		
Decay Corrected Spike Concentration (pCi/mL):	24.045		Matrix Spike Resuft (
Volume Used (mL):	0.10		Sam
Aliquot Volume (L, g, F):			Matrix Spike Duplicate Result (
Target Conc. (pCi/L, g, F):	4.740		WIS
Uncertainty (Calculated):			OSM
Result (pCI/L, g, F):	4.372		
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	0.792		
Numerical Performance Indicator:	-0.91		
Percent Recovery:	92,23%		Z
Status vs Numerical Indicator:	N/A		
Status vs Recovery:	Pass		
Upper % Recovery Limits:	125%		.M
Lower % Recovery Limits:	75%		W
Duplicate Sample Assessment			Matrix Spike/Matrix Spike Dupli
		3,00	
Sample I.D.:	97492039000	Tiller Duplicate	
Duplicate Sample I.D. 92492559006DUP	92492559006DUP	samble IDs if	
Sample Result (pCi/L, g, F):		other than	
Sample Result Counting Uncertainty (pCi/L, g, F):		LCS/LCSD in	
Sample Duplicate Result (pCi/l., g, F):	0.063	the space below.	Matrix Spike Result
Sample Duplicate Result Counting Uncertainty (pCi/L, g, F):			Sam
Are sample and/or duplicate results below RL?	See Below #		Matrix Spike Duplicate Result
Duplicate Numerical Performance Indicator:	2.147	92492559006	Duplicate
Duplicate RPD:	•	32492559006DUP	(Based on the Percent Reco
Duplicate Status vs Numerical Indicator:	N/A		MS/ MSD Duplic
Duplicate Status vs RPD:	/		M
RPD-Limit	25%	Annual transferred by the second seco	

s Sample Assessment	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pCif., g, F):	Sample Matrix Spike Duplicate Result:	inting Uncertainty (pCi/L, g, F):	Duplicate Numerical Performance Indicator:	ies) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator;	MS/ MSD Duplicate Status vs RPD:	% PDD imit
Matrix Spike/Matrix Spike Duplicate Sample Assessment				Sar	Matrix Spike Result Counting	Sample Matri	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	Duplicate Numeric	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Statu	MS/ MSD	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

*The method blank result is below the reporting limit for this analysis and is acceptable.

unacceptable precision: NIA WAYN 9111 | 1820

0007/11/pwy

TAR_55959_W.xls Total Alpha Radium (R104-3 11Feb2019).xls

TAR DW QC Printed: 9/11/2020 12:18 PM

Quality Control Sample Performance Assessment Pace Analytical

Analyst Must Manually Enter All Fields Highlighted in Yellow.

MS/MSD 2

MS/MSD 1

Sample I.D. Sample MS I.D. Sample MSD I.D. Spike 1.D.:

Sample Collection Date

Sample Matrix Spike Control Assessment

	lest Analyst	Ka-226 LAL
	Date:	9/10/2020
	Worklist	55959
	Matrix:	2
Method Blank Assessment		
	MB Sample ID	1994514
	MB concentration:	0.206
	M/B Counting Uncertainty:	0.098
	MB MDC:	0.149
	MB Numerical Performance Indicator:	4.13
	MB Status vs Numerical Indicator:	Υ/X

MB Status vs. MDC: See Comment*

19-033 24.045

Count Date: Spike I.D.:

Laboratory Control Sample Assessment

Decay Corrected Spike Concentration (pCi/mL):

Volume Used (mL): Aliquot Volume (L, g, F): Target Conc. (pCi/L, g, F): Uncertainty (Calculated):

Spike Volume Used in MS (mL):
Spike Volume Used in MSD (mL):
MS Aranget Conc. (pc)iv.
MS Target Conc. (pc)iv.
MSD Target Conc. (pc)iv.
MSD Target Conc. (pc)iv. g, F):

MS/MSD Decay Corrected Spike Concentration (pCi/mL.):

		MS Spike Uncertainty (calculated):	
_	z	MSD Spike Uncertainty (calculated):	
-	LCSD55959	Sample Result:	
		Sample Result Counting Uncertainty (pCiil., g, F):	
		Sample Matrix Spike Result:	
	•	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	
*****		Sample Matrix Spike Duplicate Result:	
		Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	
		MS Numerical Performance Indicator:	
		MSD Numerical Performance Indicator:	
		MS Percent Recovery:	
		MSD Percent Recovery:	
		MS Status vs Numerical Indicator:	
		MSD Status vs Numerical Indicator:	
		MS Status vs Recovery:	
		MSD Status vs Recovery:	
		MS/MSD Upper % Recovery Limits:	
_		MS/MSD Lower % Recovery Limits:	

0.10 0.507 4.740 0.057 4.372 0.792 -0.91 92.23% N/A Pass 125%

Result (pCI/L, g, F):
LCS/LCSD Counting Uncertainty (pCi/L, g, F):
Numerical Performance Indicator;

Percent Recovery: Status vs Numerical Indicator:

Upper % Recovery Limits: Lower % Recovery Limits:

Duplicate Sample Assessment

Status vs Recovery

Enter Duplicate sample IDs if other than LCS/LCSD in the space below. 92492559007 92492559007	Matrix Spike/Matrix Spike Duplicate Sample Assessment Sample I.D. Sample MS I.D. Sample MS I.D. Sample MS I.D. Sample MS I.D. Sample MS I.D. Sample MS I.D. Sample MS I.D. Sample MS I.D. Sample MS I.D. Sample MS I.D. Sample MS I.D. Sample MS I.D. Sample Matrix Spike Puplicate Result: Matrix Spike Duplicate Result Counting Uncertainty (pCif., g. F): Duplicate Result Counting Uncertainty (pCif., g. F): Duplicate Result Counting Uncertainty (pCif., g. F): Couplicate Numerical Performance Indicator (Based on the Percent Recoveries) MS/ MSD Duplicate RPD:
	MS/ MSD Duplicate Status vs Numerical Indicator:
	MS/ MSD Duplicate Status vs RPD:

0.269 0.118 0.234 0.201 See Below ## 13.77%

Sample Result (pCi/L, g, F):
Sample Result Counting Uncertainty (pCi/L, g, F):
Sample Duplicate Result (pCi/L, g, F):
Sample Duplicate Result Counting Uncertainty (pCi/L, g, F):
Are sample and/or duplicate results below RL?

Duplicate Numerical Performance Indicator: Duplicate RPD; Duplicate Status vs Numerical Indicator:

92492559007DUP

Sample I.D.: Duplicate Sample I.D.

92492559007

Ó
ᢓ
4
₹
3
용
σ.
ä
ts
Ę
ĕ
ā
8
Ē
ಕ
5
흦
Ĕ
S
ø
ŧ
욛
픙
⊭
용
8
춢
аb
ਰ
c
~~
.₫
.53
ĕ
ē
ਲ
품
쥥
É
Ē
ğ
ä
Š
Ü
#

N/A Pass 25%

Duplicate Status vs RPD: % RPD Limit:

Comments:

"The method biank result is below the reporting limit for this analysis and is acceptable.

and Illamor

TAR_55959_W.xls Total Alpha Radium (R104-3 11Feb2019).xls

Face Analytical mm.pamble.com

Quality Control Sample Performance Assessment

ahted in Yellow.

MS/MSD 2

MS/MSD 1

Sample Collection Date:

Sample I.D. Sample MS I.D. Sample MSD I.D. Spike I.D.:

Fields Highlic
A!
Enter,
ually
Man
Musi
Λst
Anal

Ra-226

Test

	1050550	10055060	
MSD Spike Un	Z	FCSD (X or N)3	Laboratory Control Sample Assessment
MS Spike Uni			
MSD Targe		Pass	MB Status vs. MDC:
		A/A	MB Status vs Numerical Indicator:
MS Targ		0.88	MB Numerical Performance Indicator:
		0.265	MB MDC:
Spike Volum		0.133	M/B Counting Uncertainty:
Spike Volui		0.060	MB concentration;
MS/MSD Decay Corrected Spike Co		1994515	MB Sample ID
			Method Blank Assessment
		DW	Matrix:
		55960	Worklist
Sar		9/11/2020	Date:
Sample Matrix Spike Control Assessment		3	Analyst

																							~~~		
:: :: :: ::	Concentration (pCi/mL):	Spike Volume Used in MS (mL):	Spike Volume Used in MSD (mL):	MS Aliquot (L, g, F):	MS Target Conc.(pCi/L, g, F):	MSD Aliquot (L, g, F):	MSD Target Conc. (pCi/L, g, F):	MS Spike Uncertainty (calculated):	MSD Spike Uncertainty (calculated):	Sample Result:	Sample Result Counting Uncertainty (pCl/L, g, F):	Sample Matrix Spike Result:	Uncertainty (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Uncertainty (pCl/L, g, F):	MS Numerical Performance Indicator:	MSD Numerical Performance Indicator:	MS Percent Recovery:	MSD Percent Recovery:	MS Status vs Numerical Indicator:	MSD Status vs Numerical Indicator.	MS Status vs Recovery:	MSD Status vs Recovery:	MS/MSD Upper % Recovery Limits:	MS/MSD Lower % Recovery Limits:
	MS/MSD Decay Corrected Spike Concentration (pCi/mL):	Spike V	Spike Vol		MST		T DSM MSD Ta	MS Spike	MSD Spike		Sample Result Counting	San	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	Sample Matrix	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	MS Numerica	MSD Numerica			MS Status	MSD Status			n dsm/sm	MS/MSD Fo
									z	SD55960										***			-		

1CS55860 9/14/2020 9/14/2020 0.033 24.044 0.10 0.505 4.759 0.057 5.322 0.057 5.322 1.60 1.11.84% N/A Pass 125% 75%

Uncertainty (Calculated):
Result (pCi/L, g, F):
LCS/LCSD Counting Uncertainty (pCi/L, g, F):

Percent Recovery: Status vs Numerical Indicator: Status vs Recovery: Upper % Recovery Limits: Lower % Recovery Limits:

Numerical Performance Indicator

Volume Used (mL): Aliquot Volume (L, g, F): Target Conc. (pCl/L, g, F):

Count Date: Spike I.D.: Decay Corrected Spike Concentration (pCl/mL):

Duplicate Sample Assessment			Matrix Spike/Matrix
Sample I.D.:	Sample I.D.: 92493016012	Enter Duplicate	
Duplicate Sample I.D. 92493016012DUP	92493016012DUP	sample IDs if	
Sample Result (pCi/L, g, F):	4.731	other than	
Sample Result Counting Uncertainty (pCift, g, F):	0.626	LCS/LCSD in	
Sample Duplicate Result (pCi/L, g, F):	5.414	the space below.	Matrix S
Sample Duplicate Result Counting Uncertainty (pCi/L, g, F):	0.692		
Are sample and/or duplicate results below RL?	See Below 推		Matrix Spike Dupli
Duplicate Numerical Performance Indicator:	-1.435	92493016012	
Duplicate RPD:	13.47%	92493016012DUP	(Based on the P
Duplicate Status vs Numerical Indicator:	N/A		/SW
Duplicate Status vs RPD;	Pass		
% RPD Limit:	25%		

Matrix Spike/Matrix Spike Duplicate Sample Assessment	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pCiff. g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	Duplicate Numerical Performance Indicator:	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD:	timi I Caa %

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:



Quality Control Sample Performance Assessment

Ra-226

Pace Analytical"

Analyst Must Manually Enter All Fields Highlighted in Yellow.

MS/MSD 2

MS/MSD 1

Sample I.D.

Sample Collection Date:

Sample MSD I.D.

Spike I.D.:

MS/MSD Decay Corrected Spike Concentration (pCi/mL.);

Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL) MSD Aliquot (L, g, F): MSD Target Conc. (pCi/L, g, F):

MS Spike Uncertainty (calculated) **MSD Spike Uncertainty (calculated)**  Sample Result:

Sample Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Result Matrix Spike Result Counting Uncertainty (pCi/L, g, F):

Sample Matrix Spike Duplicate Result:

Matrix Spike Duplicate Result Counting Uncertainty (pCl/L, g, F): MS Numerical Performance Indicator:

MS Aliquot (L, g, F): MS Target Conc. (pCi/L, g, F):

Sample Matrix Spike Control Assessment

LAL 9/11/2020 55960 DW Date: Worklist: Matrix: Analyst

994515 0.133 0.265 0.88 0.060 N/A Pass MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC: MB Sample ID MB concentration: M/B Counting Uncertainty: MB MDC

Method Blank Assessmen

LCSD55960 (V or N) Count Date: Volume Used (mL): Spike I.D. Laboratory Control Sample Assessment

1.60 111.84% 19-033 24.044 0.10 0.505 4.759 0.057 5.322 0.689 Decay Corrected Spike Concentration (pCi/mL): Aliquot Volume (L, g, F): Target Conc. (pCi/L, g, F): Uncertainty (Calculated): Result (pCI/L, g, F): LCS/LCSD Counting Uncertainty (pCi/L, g, F): Numerical Performance Indicator: Percent Recovery: Status vs Recovery: Upper % Recovery Limits: Lower % Recovery Limits: Status vs Numerical Indicator

Enter Duplicate the space below 92493016013 2493016013DI LCS/LCSD in sample IDs if other than 92493016013 92493016013DUP See Below 推 0.759 5.852 0.718 1,050 9,13% Pass ۷ ۲ Sample LD.

Duplicate Sample LD.

Sample Result (DOLL, g, F):

Sample Result (DOLL, g, F):

Sample Duplicate Result (DOLL, g, F):

Sample Duplicate Result (DOLL, g, F): Are sample and/or duplicate results below RL? Duplicate Numerical Performance Indicator: Duplicate RPD: Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD: % RPD Limit **Duplicate Sample Assessment** 

											*****
Sample I.D.	Sample MS i.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	Duplicate Numerical Performance Indicator:	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD:	% RPD Limit

MS/MSD Upper % Recovery Limits:

MS/MSD Lower % Recovery Limits:

Matrix Spike/Matrix Spike Duplicate Sample Assessment

MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator:

MS Status vs Recovery MSD Status vs Recovery

MS Percent Recovery MSD Percent Recovery

MSD Numerical Performance indicator

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:



Cost Inland

TAR_55960_W.xls Total Alpha Radium (R104-3 11Feb2019).xls

Quality Control Sample Performance Assessment

Pace Analytical

VAL 9/9/2020 Ra-228 55954 WT Analyst: Date: Worklist: Matrix: Test

MS/MSD 2

MS/MSD 1

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment

0.357 0.355 0.727 1.97 Pass Pass MB Sample ID MB concentration: M/B 2 Sigma CSU: MB MDC: MB Numerical Performance Indicator: MB Status vs Numerical Indicator. Method Blank Assessment

MB Status vs. MDC Laboratory Control Sample Assessmen

Count Date:

Spike I.D.

Sample I.D. Sample MS I.D. Sample MSD I.D. MSD Target Conc. (pCi/L, g, F): Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): MS Numerical Performance Indicator: MS/MSD Decay Corrected Spike Concentration (pCi/mL): MS Aliquot (L, g, F): MS Target Conc.(pCi/L, g, F): MS Spike Uncertainty (calculated): MSD Spike Uncertainty (calculated): Sampie Result 2 Sigma CSU (pCi/L, g, F): Sample Matrix Spike Result. MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator: MS/MSD Upper % Recovery Limits: MS/MSD Lower % Recovery Limits: Sample Collection Date: Spike I.D. Spike Volume Used in MS (mL) Spike Volume Used in MSD (ml.) Sample Result Matrix Spike Result 2 Sigma CSU (pCi/L, g, F) Sample Matrix Spike Duplicate Result MSD Numerical Performance Indicator. MS Percent Recovery MSD Status vs Recovery MSD Percent Recovery MS Status vs Recovery

20-030 38.394 0.10 0.829 4.632 0.227 4.838 1.149 0.34 104.44% N/A Pass 136% 60% 0.46 106.10% 9/15/202( 20-030 38.394 0.10 0.808 4.752 0.233 5.042 1.200 ž

Aliquot Volume (L, g, F): Target Conc. (pCl/L, g, F):

Uncertainty (Calculated):

Volume Used (mL):

Decay Corrected Spike Concentration (pCi/mL):

Result (pCi/L, g, F): LCS/LCSD 2 Sigma CSU (pCi/L, g, F):

Numerical Performance Indicator

Percent Recovery: Status vs Recovery: Upper % Recovery Limits: Lower % Recovery Limits:

Status vs Numerical Indicator

Duplicate Sample Assessmen

Matrix Spike/Matrix Spike Duplicate Sample Assessment Enter Duplicate sample IDs if other than LCS/LCSD in the space below. LCS55954 LCSD55954 5.042 1.200 4.838 1.149 NO 0.241 1.57% Sample Result (pCi/l., g, F):
Sample Result 2 Sigma CSU (pCi/l., g, F):
Sample Duplicate Result (pCi/l., g, F):
Sample Duplicate Result 2 Sigma CSU (pCi/l., g, F): Sample I.D.: Duplicate Sample I.D. Are sample and/or duplicate results below RL? Duplicate Numerical Performance Indicator (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD: Duplicate Status vs Numerical Indicator. Ouplicate Status vs RPD; % RPD Limit:

Sample I.D. Sample MS I.D.

Sample MSD I.D. Sample Matrix Spike Result: Matrix Spike Result 2 Sigma CSU (pCi/L, g, F): Sample Matrix Spike Duplicate Result: Duplicate Numerical Performance Indicator. MS/ MSD Duplicate Status vs Numerical Indicator:

(Based on the Percent Recoveries) MS/ MSD Duplicate RPD: Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): Pass Pass 36%

MS/ MSD Duplicate Status vs RPD: % RPD Limit. ## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

6 of 10

Ra-228 NELAC DW2 Printed: 9/16/2020 8:15 AM

## Ra-228_55955_Wxls Ra-228 (R086-8 04Sep2019).xls

## Quality Control Sample Performance Assessment

VAL 9/10/2020 55955 WT Worklist: Matrix: Date: Analyst

Face Analytical

MS/MSD 2

MS/MSD 1

Sample Collection Date

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment 0.397 0.699 3.70 Fall* See Comment* MB concentration: M/B 2 Sigma CSU: MB Status vs Numerical Indicator: MB Status vs. MDC: MB Sample ID MB MDC: MB Numerical Performance Indicator:

Method Blank Assessmen

Sample I.D. Sample MS I.D. MSD Aliquot (L, g, F): Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result 2 Sigma CSU (pCif., g. F): MS Numerical Performance Indicator: Sample MSD i.D. Spike I.D.: MS/MSD Decay Corrected Spike Concentration (pCi/mL): MS Aliquot (L, g, F); MS Target Conc.(pCi/L, g, F): MSD Target Conc. (pCi/L, g, F): Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Matrix Spike Result: Matrix Spike Result 2 Sigma CSU (pCi/L, g, F): Spike Volume Used in MS (mL) Spike Volume Used in MSD (ml.) MS Spike Uncertainty (calculated) **ASD Spike Uncertainty (calculated)** Sample Result MSD Numerical Performance Indicator MS Percent Recovery MS Status vs Numerical Indicator MSD Status vs Numerical Indicator MS Status vs Recovery MSD Status vs Recovery MS/MSD Upper % Recovery Limits MS/MSD Lower % Recovery Limits MSD Percent Recovery

9/16/2020 20-030 38.383 0.10 0.800 4.796 0.235 6.376 1.417 2.16 132.93% N/A Pass 135% 60% 9/16/2020 20-030 38.383 0.10 0.811 4.730 0.232 5.530 1.18 N/A N/A Pass 135% 60% Aliquot Volume (L, g, F): Target Conc. (pCi/L, g, F): Result (pCi/L, g, F): Percent Recovery: Status vs Numerical Indicator: Upper % Recovery Limits: Lower % Recovery Limits: Decay Corrected Spike Concentration (pCi/mL): Uncertainty (Calculated): LCS/LCSD 2 Sigma CSU (pCi/L, g, F): Status vs Recovery:

Numerical Performance Indicator

Volume Used (mL)

Spike I.D.

Laboratory Control Sample Assessmen

Sample I.D. Matrix Spike/Matrix Spike Duplicate Sample Assessment

Sample Result (pCi/L, g, F): Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F):

Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F): Are sample and/or duplicate results below RL?

LCS55955 LCSD55955

Duplicate Sample I.D.

Duplicate Sample Assessment

Sample I.D. Sample MS I.D.	Sample MSD I.D. Sample Marrix Solke Result	Matrix Spike Result 2 Signa CSU (PCI/L, g, F): Sample Matrix Soike Publicate Result:	Matrix Spike Duplicate Result 2 Sigma CSU (pCift, 9, F): Duplicate Numerical Performance Indicator:	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD:	% RPD Limit:
			Matrix	(Based on		
s ate	_ <u>:</u>	Now.				
Enter Duplicate sample IDs if	other than	the space below.				

1.417 NO -0.860 12.84% 6.376 5.530

Duplicate Numerical Performance Indicator: (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:

Pass

Duplicate Status vs RPD: % RPD Limit:

Duplicate Status vs Numerical Indicator:

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

### Comments:

"The method blank result is below the reporting limit for this analysis and is acceptable

6 of 10

Ra-228 NELAC DW2 Printed: 9/17/2020 10:58 AM

### **APPENDIX F**

**Technical Memo: Surface Water Sampling Results, Georgia Power Plant McManus** 



1003 Weatherstone Parkway, Suite 320 Woodstock, GA 30188 Telephone: 678-398-9942

Fax: 888-881-8219

May 8, 2020

**Memorandum:** Surface Water Sampling Results

Georgia Power Company Plant McManus Crispen Island Drive, Brunswick, Georgia

**To:** Ben Hodges, Environmental Affairs

Georgia Power Company

From: Stephen K. Wilson, P.G.

Resolute Environmental & Water Resources Consulting

### 1.0 PROJECT BACKGROUND

### Site Location and Background

The Site is located at 1 Crispen Island Drive in Glynn County, Georgia, approximately 5 miles northwest of the city of Brunswick. The former ash pond 1 (AP-1) is located on the northeastern portion of the plant property (Figure 1). The former AP-1 was constructed in the late 1950's and encompassed approximately 80 acres. Coal ash sluicing operations at former AP-1 commenced in 1959 and ceased in 1972. Excavation and removal of ash from AP-1 commenced in 2016 and was completed in 2019. Since the completion of closure activities, the former AP-1 has filled with water, and the free water elevation within the footprint is currently approximately 2 (two) feet (NAVD88).

Preliminary statistics on the results from background groundwater monitoring, the first annual Appendix IV scan event (August 2019), and the first semiannual assessment monitoring event (November 2019) indicated one or more potentially-elevated levels of arsenic, cobalt, and lithium in groundwater detection monitoring network wells either adjacent to (MCM-05, MCM-06, MCM-07, and MCM-14) or near (MCM-04 and MCM-08) the tidal marshes located on and adjoining the site. On April 10, 2020, pursuant to the Coal Combustion Residuals (CCR) Rule, Georgia Power completed a statistical analysis of the groundwater results, which indicates that cobalt does not exceed the site-specific groundwater protection standard (GWPS) and arsenic and lithium exceed the GWPS in monitoring well MCM-06.

At the request of Georgia Power, Resolute Environmental & Water Resources Consulting, LLC (Resolute) collected surface water and groundwater samples to evaluate concentrations of arsenic, cobalt and lithium in surface water in the tidal salt marsh, free water in the footprint

of former AP-1, and in groundwater monitoring wells MCM-04, MCM-05, MCM-06, MCM-07, MMC-08, and MCM-14. Samples were collected to evaluate nature and extent at the Site. To support this evaluation, samples were collected from locations shown in Figure 1. This memorandum presents the assessment approach, sampling methodology, and results and conclusions of the sampling activities in surface water and groundwater at the Site.

### 2.0 ASSESSMENT APPROACH

Due to space limitations on the dikes, additional monitoring wells could not be installed between the existing detection monitoring network wells (MCM-04, MCM-05, MCM-06, MCM-07, MCM-08, and MCM-14) and the tidal marsh to evaluate the nature and extent of arsenic, cobalt, and lithium. Consistent with Georgia Power's proactive and comprehensive monitoring approach, additional sampling was completed to assess concentrations of arsenic, cobalt, and lithium in surface water in the tidal salt marsh. Resolute developed 16 sampling points divided equally among four transects (T1 through T4) adjacent to wells MCM-05, MCM-06, MCM-07, and MCM-14. Samples were also collected from groundwater monitoring wells MCM-04, MCM-05, MCM-06, MCM-07, MCM-08, and MCM-14, free water from the top of the water column in the former AP-1 adjacent to these wells, and two upstream surface water sample locations to establish background or natural conditions. To account for potential variability in water quality from tides, samples were collected at both high and low tide. Sampling locations are shown on Figure 1.

Surface water samples collected along transects T1 through T4 were collected from the top of the water column, approximately zero to six inches below the surface of the water, at both high and low tides and also from the bottom of the water column, approximately 12 inches above the marsh bottom, at high tide for the second, third, and fourth locations along each transect (e.g., T1-2, T1-3, T1-4 for transect T1).

Two background surface water sampling locations were identified and sampled to establish a dataset of naturally occurring levels of arsenic, cobalt, and lithium in surface water in the tidal marsh. The low tide background sample location (BG-1LT) was selected in Cowpen Creek, at a point which is hydraulically upgradient of both the junction with Burnett Creek and Crispen Island. At low tide, surface water flow is south from Cowpen Creek, toward the junctions with Burnett Creek and the Turtle River. The high tide background sample location (BG-2HT) was selected in the Turtle River, at a point which is upstream of Crispen Island during the incoming high tide.

Samples were initially submitted under Chain-of-Custody (COC) protocol to Pace Laboratories in Atlanta, Georgia on February 3, 2020, except for samples from transect T4, which were collected at a later date. Pace subsequently transferred the initial samples to their Asheville, North Carolina laboratory as further explained in Section 4.0 below, and the samples from transect T4, which were collected on March 18, 2020 were submitted directly to Pace's Ashville, North Carolina laboratory on March 20, 2020. Samples were analyzed for total and dissolved arsenic, cobalt, and lithium using EPA SW-846 Method 6020B.



To evaluate the data, surface water sample results for arsenic were compared to Georgia's In-Stream Water Quality Standard (ISWQS) for marine estuary environments, and groundwater samples were compared to the USEPA Maximum Contaminant Level (MCL) and the site-specific Groundwater Protection Standard (GWPS). Cobalt and lithium do not have ISWQS or recommended national ambient water quality criteria to compare surface water sample results or an MCL to compare groundwater results. Due to lack of surface water screening criteria for cobalt, surface water sample results were compared to both the observed background concentrations in surface water and the USEPA Regional Screening Level (RSL), which is a conservative approach for surface water comparison and is typically used to evaluate groundwater results.. Groundwater sample results for cobalt and lithium were compared to the RSL and site-specific GWPS since neither have an MCL.

### 3.0 SAMPLING METHODOLOGY

Surface water and groundwater samples were collected in accordance with the *Work Plan for Surface Water Sampling, Georgia Power Company Plant McManus, Former Ash Pond AP-1, Brunswick, Georgia*, dated January 2020, and prepared by Resolute (Work Plan) (Appendix 1). The Work Plan referenced USEPA Region 4 *Science and Ecosystem Support Division (SESD), Operating Procedure, Surface Water Sampling* SESDPROC-201-R3 (February 28, 2013) as a guide for surface water sampling.

The fourth surface water location in each transect (e.g., T1-4) was generally the farthest point from the ash pond dike along each transect that contained sufficient water for sampling at low tide. The first three surface water locations on each transect (e.g., T1-1 through T1-3) had insufficient water for sampling at low tide, and the samples from these locations were collected when the minimum level of surface water sufficient for sampling and access was present (approximately six inches to one foot) near low tide.

At each surface water sample location (tidal salt marsh, background, and free water in former AP-1), one bottle preserved with nitric acid was collected for total metals analysis, and a separate unpreserved bottle was collected for dissolved metals analysis. The unpreserved sample was filtered by the laboratory prior to analysis.

Groundwater sampling was conducted using the site Groundwater Monitoring Plan (GWMP) and USEPA Region 4 Field Quality and Technical Procedures as guides. Groundwater samples were collected for total metals analysis, and a sample for dissolved metals analysis was collected if sample turbidity exceeded 10 Nephelometric Turbidity Units (NTUs), in accordance with the site GWMP. Groundwater samples were collected at low and high tides in wells which were immediately adjacent to corresponding transects (MCM-05, -06, -07, and -14) and were collected at low tide in wells which were not immediately adjacent to transects (MCM-04 and -08). The latter were collected at low tide as a conservative approach based on groundwater flow toward the tidal marsh at low tide.



### 4.0 RESULTS

The total and dissolved metals samples were analyzed by Pace Atlanta in separate batches. Surface water samples contained high concentrations of total dissolved solids (TDS) (i.e., high concentrations of non-target ions such as sodium and chloride) because the surface water in the marsh is brackish. The laboratory reported that the high concentrations of non-target ions in the samples caused instrumentation interference problems and presented difficulty in reading the low concentrations of the arsenic, lithium, and cobalt target analytes for the instrumentation available in Pace's Atlanta laboratory.

The initial laboratory analytical results also showed the dissolved (filtered) concentrations being several times greater than the total concentrations. The elevated concentrations observed in the dissolved (filtered) results were not accurate, as the total samples collected at the same time were collected into an acidified bottle designed to preserve metals concentrations, including those potentially adsorbed to suspended solids in water. The turbidities of the samples were low, with many less than 10 NTUs; therefore, the total and dissolved concentrations should have been similar. For these reasons, the initial laboratory results were deemed to be suspect, but could not be checked by data validation procedures because the total and dissolved samples had been analyzed as separate laboratory batches. As a result, the remaining volumes of the samples were sent to Pace's laboratory in Asheville, NC for analysis using Method 6020B/3010A on a new mass spectrometer instrument which utilizes both collision cell technology and dual gas mode to make it less susceptible to interference caused by the high concentrations of non-target ions (e.g., salts) in the samples.

Samples collected along transect T4 submitted to Pace's laboratory in Asheville, NC on March 20, 2020 and did not require reanalysis.

The results of the analysis from Pace's Asheville laboratory are summarized on Tables 1 and 2, and the laboratory analytical reports are provided in Appendix 2. The total and dissolved concentrations are similar, as would be expected for samples with low turbidities such as these.

### Arsenic

Arsenic was detected at low levels ranging from 0.0013 J to 0.0035 milligrams per liter (mg/L) in surface water samples, including both background samples. These results are well below the Georgia ISWQS chronic standard for dissolved arsenic (0.036 mg/L) for marine estuary environments. Arsenic in samples collected from background surface water sample locations ranged from 0.0014 J to 0.0023 mg/L. Surface water concentrations along transects T1 through T4 ranged from not detected (<0.0012 mg/L) to 0.0035 mg/L. Similar concentrations were detected in the free water samples in former AP-1 at both high and low tides ranging from 0.0013 J to 0.0025 mg/L.

Arsenic was detected in groundwater samples collected from MCM-06 (0.400 to 0.480 mg/L), above the MCL (0.010 mg/L) and site-specific GWPS (0.031 mg/L), and in MCM-07 (0.016 to



0.020 mg/L), above the MCL, but below the site-specific GWPS. Arsenic was detected at trace values between the laboratory method detection and reporting limit in MCM-04, MCM-05, and MCM-08, well below the MCL and site-specific GWPS. Arsenic was not detected in MCM-14. Concentrations in each well do not appear to be significantly affected by tidal stage.

### Cobalt

Cobalt was detected at concentrations ranging from 0.0013 J to 0.0049 mg/L in surface water samples, which are slightly above background (<0.0010 mg/L), but below the RSL of 0.006 mg/L. As stated above the RSL is typically used to evaluate groundwater results and is a conservative approach for surface water comparison.

Cobalt detections in groundwater ranged from 0.0015 J to 0.0031 mg/L, which are below the RSL and site-specific GWPS of 0.031 mg/L. Concentrations in each well do not appear to be significantly affected by tidal stage. As documented in the introduction, cobalt is not an SSL in groundwater. Observed surface water data is substantially lower than cobalt in background groundwater (0.031 mg/L) and below the RSL; therefore, cobalt is no longer a constituent of interest in surface water.

### Lithium

Lithium in background surface water samples ranged from 0.090 to 0.099 mg/L, which is higher than the RSL of 0.040 mg/L, which is typically used to evaluate groundwater results and is a conservative approach for surface water comparison. Lithium was detected at concentrations from 0.019 J to 0.11 mg/L in surface water samples, with the highest dissolved analysis at 0.10 mg/L in T3-4HT, which is above the RSL, but consistent with background. In comparing the 0.099 mg/L background to the 0.10 mg/L detection, the results are almost identical with a 1% difference. The laboratory reported a Relative Percent Difference (RPD) of 10% in their quality control samples for this batch of samples. Therefore, the sole detection exceeding background by 1% is well within the laboratory's repeatability range of 10%.

Lithium was detected at trace values ranging from 0.012 J to 0.022 J mg/L in free water samples in the former AP-1 and did not appear to vary at high and low tides.

In general, observed lithium concentration in background and transect surface water samples at high tide were greater than those observed at low tide. Lithium is a naturally-occurring element in seawater, and concentrations of lithium in seawater are documented to range from 0.1 to 0.2 mg/L¹. The increased concentrations observed at high tide in surface water are likely attributable to natural variability from the influx of seawater at high tide.

Lithium was detected in groundwater samples collected from MCM-06 (0.094 to 0.11 mg/L), MCM-07 (0.044 J to 0.062 mg/L), and MCM-14 (0.035 J to 0.055 mg/L), above the RSL (0.04 mg/L). Lithium was detected at trace values (between the laboratory method detection and

_



¹ "Lithium Occurrence", Institute of Ocean Energy, Saga University, Japan

reporting limit) in MCM-05, below the RSL. Lithium was not detected in MCM-04 or MCM-08. Concentrations in MCM-06 well appear to exhibit higher concentrations at high tide and lower concentrations at low tide. Other wells do not appear to be significantly affected by tidal stage. Lithium results in groundwater are generally consistent with previous sampling results.

### 5.0 CONCLUSIONS

Preliminary statistics on results from background groundwater monitoring and subsequent groundwater monitoring events (August and November 2019) indicated one or more potentially-elevated levels of arsenic, cobalt, and lithium in groundwater detection monitoring network wells adjacent to (MCM-05, MCM-06, MCM-07, and MCM-14) or near (MCM-08 and MCM-14) the tidal marshes located on and adjoining the site. Due to space limitations on the dikes, additional monitoring wells could not be installed between the existing detection monitoring network wells (MCM-04, MCM-05, MCM-06, MCM-07, MCM-08, and MCM-14) and the tidal marsh to evaluate the nature and extent of arsenic, cobalt, and lithium. Consistent with Georgia Power's proactive and comprehensive monitoring approach, surface water, groundwater, and free water sampling was completed to assess concentrations of arsenic, cobalt, and lithium in surface water in the tidal salt marsh.

Surface water sampling provided data that arsenic, cobalt, and lithium concentrations are below surface water comparison criteria or within the range of background levels observed in background surface water samples. Arsenic, cobalt, and lithium concentrations in free water samples from within the pond are below surface water comparison criteria and below levels observed in background surface water samples. On April 10, 2020, pursuant to the CCR Rule, Georgia Power completed a statistical analysis of the groundwater results, which indicates that cobalt does not exceed the site-specific GWPS and arsenic and lithium exceed the site-specific GWPS in monitoring well MCM-06. Based on the data collected, groundwater exceeding the site-specific GWPS in MCM-06 does not indicate impacts to free water quality in former AP-1 or surface water quality adjacent to Georgia Power's Plant McManus property.





Table 1
Surface Water and Pond Water Sample Results
Georgia Power Company Plant McManus, Brunswick, Georgia

Location	Arsenic (mg/l)	Dissolved Arsenic (mg/l)	Cobalt (mg/l)	Dissolved Cobalt	Lithium (mg/l)	Dissolved Lithium
Surface Water Samples				(mg/l)		(mg/l)
ISWQS (Non-drinking water uses)	N/A	0.050	N/A	N/A	N/A	N/A
ISWQS (Estuarine Waters)	N/A	0.069 (Acute) 0.036 (Chronic)	N/A	N/A	N/A	N/A
Site Specific Background (highest of BG-1LT and BG-2HT)	0.0023	0.0016J	<0.0010	<0.0010	0.099	0.099
Background Surface Water						ı
BG-1LT	0.0019J	0.0014J	<0.0010	<0.0010	0.09	0.098
BG-2HT	0.0023	0.0016J	<0.0010	<0.0010	0.099	0.099
Surface Water Transects						
T1-1HT	0.0016J	<0.0012	<0.0010	<0.0010	0.039J	0.038J
T1-1LT	<0.0012	<0.0012	<0.0010	<0.0010	0.024J	0.022J
T1-2HT	<0.0012	0.0015J	<0.0010	<0.0010	0.11	0.088
T1-2HTS	<0.0012	0.0015J	<0.0010	<0.0010	0.055	0.061
T1-2LT	<0.0012	<0.0012	<0.0010	<0.0010	0.022J	0.024J
T1-3HT	<0.0012	0.0016J	<0.0010	<0.0010	0.092	0.08
T1-3HTS	<0.0012	0.0015J	<0.0010	<0.0010	0.067	0.072
T1-3LT	<0.0012	<0.0012	<0.0010	<0.0010	0.022J	0.019J
T1-4HT	<0.0012	0.0019J	<0.0010	<0.0010	0.08	0.086
T1-4HTS	0.0014J	0.0016J	<0.0010	<0.0010	0.081	0.083
T1-4LT	0.0016J	0.0016J	<0.0010	<0.0010	0.09	0.09
T2-1HT	0.0014	0.0014J	<0.00050	<0.0010	0.052	0.059
T2-2HT	0.0019	0.0015J	<0.00050	<0.0010	0.1	0.084
T2-2HTS	0.0019	0.0014J	<0.00050	<0.0010	0.073	0.06
T2-2LT	0.0018	0.0016J	<0.00050	<0.0010	0.063	0.057
T2-3HT	0.0016J	0.0015J	<0.0010	<0.0010	0.099	0.093
T2-3HTS	0.0018J	0.0015J	<0.0010	<0.0010	0.11	0.094
T2-3LT	0.002	0.0012J	<0.0010	<0.0010	0.049J	0.041J
T2-4HT	0.0016J	0.0020J	<0.0010	<0.0010	0.091	0.092
T2-4HTS	0.0015J	0.0016J	<0.0010	<0.0010	0.085	0.088
T2-4LT	0.0015J	0.0015J	<0.0010	<0.0010	0.075	0.077
T3-1HT	0.0018J	0.0016J	<0.0010	<0.0010	0.076	0.075
T3-2HT	0.0015J	0.0017J	<0.0010	<0.0010	0.097	0.087
T3-2HTS	0.0013J	0.0017J	<0.0010	<0.0010	0.075	0.078
T3-2LT	0.0029	0.0017J	<0.0010	<0.0010	0.077	0.079
T3-3HT	0.0021	0.0017J	<0.0010	<0.0010	0.081	0.088
T3-3HTS	0.0018J	0.0019J	<0.0010	<0.0010	0.08	0.081
T3-3LT	0.0018J	0.0016J	<0.0010	<0.0010	0.084	0.078
T3-4HT	0.0018J	0.0019J	<0.0010	<0.0010	0.087	0.1
T3-4HTS	0.0014J	0.0016J	<0.0010	<0.0010	0.085	0.09
T3-4LT	0.0012J	0.0015J	<0.0010	<0.0010	0.072	0.072
T4-1L	0.0034	0.0018J	<0.0010	<0.0010	0.076	0.056
T4-2L	0.0014J	0.0012J	<0.0010	<0.0010	0.043J	0.061
T4-3L	0.0035	0.0021	0.002	<0.0010	0.053	0.037J

Location	Arsenic (mg/l)	Dissolved Arsenic (mg/l)	Cobalt (mg/l)	Dissolved Cobalt (mg/l)	Lithium (mg/l)	Dissolved Lithium (mg/l)
T4-4L	0.0031	<0.0012	<0.0010	<0.0010	0.062	0.036J
T4-1HS	0.0012J	<0.0012	<0.0010	<0.0010	0.042J	0.058
T4-2HS	<0.0012	0.0013J	<0.0010	<0.0010	0.043J	0.064
T4-3HS	<0.0012	<0.0012	<0.0010	<0.0010	0.035J	0.051
T4-4HS	<0.0012	<0.0012	<0.0010	<0.0010	0.047J	0.041J
T4-1HB	<0.0012	<0.0012	<0.0010	<0.0010	0.036J	0.033J
T4-2HB	0.0015J	<0.0012	<0.0010	<0.0010	0.048J	0.042J
T4-3HB	<0.0012	0.0023	<0.0010	0.0049	0.036J	0.064
T4-4HB	<0.0012	0.0017J	<0.0010	0.0036	0.035J	0.066
Ash Pond Water						
MCM-05HT ASHPOND	0.0019J	0.0013J	<0.0010	<0.0010	0.018J	0.020J
MCM-05LT ASHPOND	0.0017J	<0.0012	<0.0010	<0.0010	0.012J	0.021J
MCM-06HT ASHPOND	0.0025	0.0012J	<0.0010	<0.0010	0.020J	0.021J
MCM-06LT ASHPOND	0.0017J	0.0013J	<0.0010	<0.0010	0.012J	0.022J
MCM-07HT ASHPOND	0.0019J	<0.0012	<0.0010	<0.0010	0.020J	0.020J
MCM-07LT ASHPOND	0.0022	<0.0012	<0.0010	<0.0010	0.019J	0.019J
POND 4L	0.0015J	0.0013J	<0.0010	0.0013J	0.022J	0.022J
POND 4H	0.0012J	0.0013J	<0.0010	0.0016J	0.016J	0.020J

Notes: N/A - Not Applicable or Not Available

**GWPS - Groundwater Protection Standard** 

ISWQS - Georgia In-Stream Water Quality Standard

Results shown in milligrams per liter (mg/l)

[&]quot;<" - Not detected at the laboratory's Method Detection Limit (MDL) shown

[&]quot;J" - Estimated concentration greater than the laboratory's MDL, but less than the laboratory's Reporting Limit

Table 2
Groundwater Wells Sample Results
Georgia Power Company Plant McManus, Brunswick, Georgia

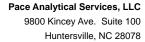
Location	Arsenic (mg/l)	Dissolved Arsenic (mg/l)	Cobalt (mg/l)	Dissolved Cobalt (mg/l)	Lithium (mg/l)	Dissolved Lithium (mg/l)
Groundwater Samples						
MCL or RSL GWPS	0.010 MCL	N/A	0.006 RSL	N/A	0.04 RSL	N/A
Site Specific Background GWPS	0.031	N/A	0.031	N/A	<rsl< td=""><td>N/A</td></rsl<>	N/A
MCM-04LT	0.0016J	<0.0012	0.003	0.0026	<0.0084	<0.0084
MCM-05HT	0.0013J	<0.0012	<0.0010	<0.0010	0.017J	0.024J
MCM-05LT	0.0016J	<0.0012	<0.0010	<0.0010	0.023J	0.021J
MCM-06HT	0.4	0.48	<0.0010	<0.0010	0.096	0.11
MCM-06LT	0.44	0.47	<0.0010	<0.0010	0.094	0.094
MCM-07HT	0.018	0.02	<0.0010	<0.0010	0.047J	0.048J
MCM-07LT	0.016	0.018	<0.0010	<0.0010	0.044J	0.062
MCM-08LT	0.0019J	0.0013J	0.0020J	0.0020J	<0.0084	<0.0084
MCM-14L	<0.0012	<0.0012	<0.0010	0.0015J	0.040J	0.055
MCM-14H	<0.0012	<0.0012	<0.0010	0.0031	0.035J	0.044J

Notes: N/A - Not Applicable or Not Available

**GWPS - Groundwater Protection Standard** 

ISWQS - Georgia In-Stream Water Quality Standard

Results shown in milligrams per liter (mg/l)


[&]quot;<" - Not detected at the laboratory's Method Detection Limit (MDL) shown

[&]quot;J" - Estimated concentration greater than the laboratory's MDL, but less than the laboratory's Reporting Limit



APPENDIX: LABORATORY ANALYTICAL REPORTS





(704)875-9092



March 31, 2020

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: Plant McManus

Pace Project No.: 92466089

### Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on February 04, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Asheville

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring

kevin.herring@pacelabs.com

Kan Slary

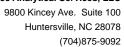
1(704)875-9092

HORIZON Database Administrator

Enclosures

cc: Trent Godwin, Resolute Environmental & Water Resources

Kristen Jurinko


Ms. Lauren Petty, Southern Co. Services Kevin Stephenson, Resolute Environmental & Water

Resources Consulting, LLC

Stephen Wilson, Resolute Environmental & Water

Resources Consulting, LLC





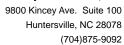


### **CERTIFICATIONS**

Project: Plant McManus
Pace Project No.: 92466089

### **Pace Analytical Services Asheville**

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 Massachusetts Certification #: M-NC030 North Carolina Drinking Water Certification #: 37712 North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

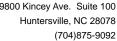

(704)875-9092



### **SAMPLE SUMMARY**

Project: Plant McManus
Pace Project No.: 92466089

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92466089001	T2-1HT	Water	02/01/20 13:55	02/04/20 08:00
92466089002	T2-2HT	Water	02/01/20 14:32	02/04/20 08:00
92466089003	T2-2HTS	Water	02/01/20 14:28	02/04/20 08:00
92466089004	T2-2LT	Water	02/02/20 13:38	02/04/20 08:00
92466089005	T2-3HT	Water	02/01/20 14:50	02/04/20 08:00
92466089006	T2-3HTS	Water	02/01/20 14:46	02/04/20 08:00
92466089007	T2-3LT	Water	02/02/20 11:20	02/04/20 08:00
92466089008	T2-4HT	Water	02/01/20 15:14	02/04/20 08:00
92466089009	T2-4HTS	Water	02/01/20 15:00	02/04/20 08:00
92466089010	T2-4LT	Water	02/02/20 09:46	02/04/20 08:00
92466089011	T1-1HT	Water	02/01/20 14:08	02/04/20 08:00
92466089012	T1-1LT	Water	02/01/20 09:50	02/04/20 08:00
92466089013	T1-2HT	Water	02/01/20 14:20	02/04/20 08:00
92466089014	T1-2HTS	Water	02/01/20 14:16	02/04/20 08:00
92466089015	T1-2LT	Water	02/01/20 10:16	02/04/20 08:00
92466089016	T1-3HT	Water	02/01/20 13:56	02/04/20 08:00
92466089017	T1-3HTS	Water	02/01/20 13:52	02/04/20 08:00
92466089018	T1-3LT	Water	02/01/20 10:06	02/04/20 08:00
92466089019	T1-4HT	Water	02/01/20 13:40	02/04/20 08:00
92466089020	T1-4HTS	Water	02/01/20 13:34	02/04/20 08:00
92466089021	T1-4LT	Water	02/01/20 09:56	02/04/20 08:00
92466089022	T3-1HT	Water	02/02/20 14:35	02/04/20 08:00
92466089023	T3-2HT	Water	02/02/20 14:34	02/04/20 08:00
92466089024	T3-2HTS	Water	02/02/20 14:28	02/04/20 08:00
92466089025	T3-2LT	Water	02/03/20 13:30	02/04/20 08:00
92466089026	T3-3HT	Water	02/02/20 14:10	02/04/20 08:00
92466089027	T3-3HTS	Water	02/02/20 14:08	02/04/20 08:00
92466089028	T3-3LT	Water	02/03/20 12:12	02/04/20 08:00
92466089029	T3-4HT	Water	02/02/20 13:50	02/04/20 08:00
92466089030	T3-4HTS	Water	02/02/20 13:44	02/04/20 08:00
92466089031	T3-4LT	Water	02/03/20 10:40	02/04/20 08:00
92466089032	MCM-05HT	Water	02/02/20 14:46	02/04/20 08:00
92466089033	MCM-05LT	Water	02/03/20 09:47	02/04/20 08:00
92466089034	MCM-06HT	Water	02/01/20 13:55	02/04/20 08:00
92466089035	MCM-06LT	Water	02/02/20 09:00	02/04/20 08:00
92466089036	MCM-07HT	Water	02/01/20 14:20	02/04/20 08:00
92466089037	MCM-07LT	Water	02/01/20 10:15	02/04/20 08:00

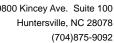





### **SAMPLE SUMMARY**

Project: Plant McManus
Pace Project No.: 92466089

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92466089038	DUP-01	Water	02/03/20 00:00	02/04/20 08:00
92466089039	MCM-05HT ASHPOND	Water	02/02/20 14:30	02/04/20 08:00
92466089040	MCM-06LT ASHPOND	Water	02/02/20 08:50	02/04/20 08:00
92466089041	MCM-05LT ASHPOND	Water	02/03/20 09:45	02/04/20 08:00
92466089042	MCM-07HT ASHPOND	Water	02/01/20 14:20	02/04/20 08:00
92466089043	MCM-07LT ASHPOND	Water	02/01/20 09:40	02/04/20 08:00
92466089044	MCM-06HT ASHPOND	Water	02/01/20 13:55	02/04/20 08:00
92466089045	BG-1LT	Water	02/02/20 08:58	02/04/20 08:00
92466089046	BG-2HT	Water	02/02/20 15:04	02/04/20 08:00
92466089047	MCM-04LT	Water	02/03/20 11:35	02/04/20 10:48
92466089048	MCM-08LT	Water	02/03/20 12:41	02/04/20 10:48






### **SAMPLE ANALYTE COUNT**

Project: Plant McManus
Pace Project No.: 92466089

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92466089001	T2-1HT	EPA 6020B	BG2	3	PASI-A
		EPA 6020B	BG2	3	PASI-A
92466089002	T2-2HT	EPA 6020B	BG2	3	PASI-A
		EPA 6020B	BG2	3	PASI-A
92466089003	T2-2HTS	EPA 6020B	BG2	3	PASI-A
		EPA 6020B	BG2	3	PASI-A
92466089004	T2-2LT	EPA 6020B	BG2	3	PASI-A
		EPA 6020B	BG2	3	PASI-A
92466089005	T2-3HT	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	BG2	3	PASI-A
92466089006	T2-3HTS	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	BG2	3	PASI-A
92466089007	T2-3LT	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	BG2	3	PASI-A
92466089008	T2-4HT	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	BG2	3	PASI-A
92466089009	T2-4HTS	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	BG2	3	PASI-A
92466089010	T2-4LT	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	BG2	3	PASI-A
92466089011	T1-1HT	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	BG2	3	PASI-A
92466089012	T1-1LT	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	BG2	3	PASI-A
92466089013	T1-2HT	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	BG2	3	PASI-A
92466089014	T1-2HTS	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	BG2	3	PASI-A
92466089015	T1-2LT	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92466089016	T1-3HT	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92466089017	T1-3HTS	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92466089018	T1-3LT	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92466089019	T1-4HT	EPA 6020B	JOR	3	PASI-A





### **SAMPLE ANALYTE COUNT**

Project: Plant McManus
Pace Project No.: 92466089

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 6020B	JOR	3	PASI-A
92466089020	T1-4HTS	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92466089021	T1-4LT	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92466089022	T3-1HT	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92466089023	T3-2HT	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92466089024	T3-2HTS	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92466089025	T3-2LT	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92466089026	ТЗ-ЗНТ	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92466089027	T3-3HTS	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92466089028	T3-3LT	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92466089029	T3-4HT	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92466089030	T3-4HTS	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92466089031	T3-4LT	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92466089032	MCM-05HT	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92466089033	MCM-05LT	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92466089034	MCM-06HT	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92466089035	MCM-06LT	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92466089036	MCM-07HT	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92466089037	MCM-07LT	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A

800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092



### **SAMPLE ANALYTE COUNT**

Project: Plant McManus
Pace Project No.: 92466089

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92466089038	DUP-01	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92466089039	MCM-05HT ASHPOND	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92466089040	MCM-06LT ASHPOND	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92466089041	MCM-05LT ASHPOND	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
2466089042	MCM-07HT ASHPOND	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	BG2, JOR	3	PASI-A
92466089043	MCM-07LT ASHPOND	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	BG2, JOR	3	PASI-A
92466089044	MCM-06HT ASHPOND	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	BG2, JOR	3	PASI-A
92466089045	BG-1LT	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	BG2, JOR	3	PASI-A
92466089046	BG-2HT	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	BG2, JOR	3	PASI-A
2466089047	MCM-04LT	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	BG2, JOR	3	PASI-A
92466089048	MCM-08LT	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	BG2	3	PASI-A

PASI-A = Pace Analytical Services - Asheville



Project: Plant McManus
Pace Project No.: 92466089

Lab Sample ID	Client Sample ID					
Method	Parameters —	Result	Units	Report Limit	Analyzed	Qualifiers
2466089001	T2-1HT					
EPA 6020B	Arsenic	0.0014	mg/L	0.0010	02/25/20 10:30	
EPA 6020B	Lithium	0.052	mg/L	0.025	02/25/20 10:30	
EPA 6020B	Arsenic, Dissolved	0.0014J	mg/L	0.0020	02/26/20 15:45	D3
EPA 6020B	Lithium, Dissolved	0.059	mg/L	0.050	02/26/20 15:45	
2466089002	T2-2HT					
EPA 6020B	Arsenic	0.0019	mg/L	0.0010	02/25/20 10:39	
EPA 6020B	Lithium	0.10	mg/L	0.025	02/25/20 10:39	
EPA 6020B	Arsenic, Dissolved	0.0015J	mg/L	0.0020	02/26/20 18:39	D3
EPA 6020B	Lithium, Dissolved	0.084	mg/L	0.050	02/26/20 18:39	
2466089003	T2-2HTS					
EPA 6020B	Arsenic	0.0019	mg/L	0.0010	02/25/20 10:52	
EPA 6020B	Lithium	0.073	mg/L	0.025	02/25/20 10:52	
EPA 6020B	Arsenic, Dissolved	0.0014J	mg/L	0.0020	02/26/20 18:53	D3
EPA 6020B	Lithium, Dissolved	0.060	mg/L	0.050	02/26/20 18:53	
2466089004	T2-2LT					
EPA 6020B	Arsenic	0.0018	mg/L	0.0010	02/25/20 11:01	
EPA 6020B	Lithium	0.063	mg/L	0.025	02/25/20 11:01	
EPA 6020B	Arsenic, Dissolved	0.0016J	mg/L	0.0020	02/26/20 19:06	D3
EPA 6020B	Lithium, Dissolved	0.057	mg/L	0.050	02/26/20 19:06	
2466089005	T2-3HT					
EPA 6020B	Arsenic	0.0016J	mg/L	0.0020	03/05/20 23:55	
EPA 6020B	Lithium	0.099	mg/L	0.050	03/05/20 23:55	
EPA 6020B	Arsenic, Dissolved	0.0015J	mg/L	0.0020	02/26/20 19:15	D3
EPA 6020B	Lithium, Dissolved	0.093	mg/L	0.050	02/26/20 19:15	
2466089006	T2-3HTS					
EPA 6020B	Arsenic	0.0018J	mg/L	0.0020	03/06/20 00:16	
EPA 6020B	Lithium	0.11	mg/L	0.050	03/06/20 00:16	
EPA 6020B	Arsenic, Dissolved	0.0015J	mg/L	0.0020	02/26/20 19:23	D3
EPA 6020B	Lithium, Dissolved	0.094	mg/L	0.050	02/26/20 19:23	
2466089007	T2-3LT					
EPA 6020B	Arsenic	0.0020	mg/L	0.0020	03/06/20 00:42	
EPA 6020B	Lithium	0.049J	mg/L	0.050	03/06/20 00:42	
EPA 6020B	Arsenic, Dissolved	0.0012J	mg/L	0.0020	02/26/20 19:32	D3
EPA 6020B	Lithium, Dissolved	0.041J	mg/L	0.050	02/26/20 19:32	
2466089008	T2-4HT					
EPA 6020B	Arsenic	0.0016J	mg/L	0.0020	03/06/20 00:48	
EPA 6020B	Lithium	0.091	mg/L	0.050	03/06/20 00:48	
EPA 6020B	Arsenic, Dissolved	0.0020J	mg/L	0.0020	02/26/20 20:15	D3
EPA 6020B	Lithium, Dissolved	0.092	mg/L	0.050	02/26/20 20:15	
2466089009	T2-4HTS					
PA 6020B	Arsenic	0.0015J	mg/L	0.0020	03/06/20 00:58	
EPA 6020B	Lithium	0.085	mg/L	0.050	03/06/20 00:58	

### **REPORT OF LABORATORY ANALYSIS**



Project: Plant McManus
Pace Project No.: 92466089

ab Sample ID	Client Sample ID					
Method	Parameters —	Result	Units	Report Limit	Analyzed	Qualifier
2466089009	T2-4HTS					
EPA 6020B	Arsenic, Dissolved	0.0016J	mg/L	0.0020	02/26/20 20:24	D3
EPA 6020B	Lithium, Dissolved	0.088	mg/L	0.050	02/26/20 20:24	
2466089010	T2-4LT					
PA 6020B	Arsenic	0.0015J	mg/L	0.0020	03/06/20 01:03	
PA 6020B	Lithium	0.075	mg/L	0.050	03/06/20 01:03	
PA 6020B	Arsenic, Dissolved	0.0015J	mg/L	0.0020	02/26/20 20:37	D3
PA 6020B	Lithium, Dissolved	0.077	mg/L	0.050	02/26/20 20:37	
2466089011	T1-1HT					
PA 6020B	Arsenic	0.0016J	mg/L	0.0020	03/06/20 01:19	
PA 6020B	Lithium	0.039J	mg/L	0.050	03/06/20 01:19	
PA 6020B	Lithium, Dissolved	0.038J	mg/L	0.050	02/26/20 20:46	
2466089012	T1-1LT					
PA 6020B	Lithium	0.024J	mg/L	0.050	03/06/20 01:51	
PA 6020B	Lithium, Dissolved	0.022J	mg/L	0.050	02/26/20 20:59	
2466089013	T1-2HT					
PA 6020B	Lithium	0.11	mg/L	0.050	03/06/20 01:56	
PA 6020B	Arsenic, Dissolved	0.0015J	mg/L	0.0020	02/26/20 21:04	D3
PA 6020B	Lithium, Dissolved	0.088	mg/L	0.050	02/26/20 21:04	
2466089014	T1-2HTS					
PA 6020B	Lithium	0.055	mg/L	0.050	03/06/20 02:01	
PA 6020B	Arsenic, Dissolved	0.0015J	mg/L	0.0020	02/26/20 21:17	D3
PA 6020B	Lithium, Dissolved	0.061	mg/L	0.050	02/26/20 21:17	
2466089015	T1-2LT					
PA 6020B	Lithium	0.022J	mg/L	0.050	03/06/20 02:06	
PA 6020B	Lithium, Dissolved	0.024J	mg/L	0.050	02/26/20 21:39	
2466089016	T1-3HT					
PA 6020B	Lithium	0.092	mg/L	0.050	03/06/20 02:12	
PA 6020B	Arsenic, Dissolved	0.0016J	mg/L	0.0020	02/26/20 21:48	D3
PA 6020B	Lithium, Dissolved	0.080	mg/L	0.050	02/26/20 21:48	
2466089017	T1-3HTS					
PA 6020B	Lithium	0.067	mg/L	0.050	03/06/20 02:17	
PA 6020B	Arsenic, Dissolved	0.0015J	mg/L	0.0020	02/26/20 22:01	D3
PA 6020B	Lithium, Dissolved	0.072	mg/L	0.050	02/26/20 22:01	
2466089018	T1-3LT					
PA 6020B	Lithium	0.022J	mg/L	0.050	03/06/20 02:22	
PA 6020B	Lithium, Dissolved	0.019J	mg/L	0.050		
2466089019	T1-4HT					
PA 6020B	Lithium	0.080	mg/L	0.050	03/06/20 02:27	
PA 6020B	Arsenic, Dissolved	0.0019J	mg/L	0.0020	02/26/20 22:40	D3
PA 6020B	Lithium, Dissolved	0.086	mg/L	0.050		-

### **REPORT OF LABORATORY ANALYSIS**



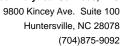
Project: Plant McManus
Pace Project No.: 92466089

Lab Sample ID	Client Sample ID		Units	Report Limit	Analyzed	Qualifiers
Method	Parameters	Result				
2466089020	T1-4HTS					
EPA 6020B	Arsenic	0.0014J	mg/L	0.0020	03/06/20 02:33	
EPA 6020B	Lithium	0.081	mg/L	0.050	03/06/20 02:33	
EPA 6020B	Arsenic, Dissolved	0.0016J	mg/L	0.0020	02/26/20 22:56	D3
EPA 6020B	Lithium, Dissolved	0.083	mg/L	0.050	02/26/20 22:56	
2466089021	T1-4LT					
EPA 6020B	Arsenic	0.0016J	mg/L	0.0020	03/06/20 02:48	
PA 6020B	Lithium	0.090	mg/L	0.050	03/06/20 02:48	
EPA 6020B	Arsenic, Dissolved	0.0016J	mg/L	0.0020	02/26/20 23:01	D3
EPA 6020B	Lithium, Dissolved	0.090	mg/L	0.050	02/26/20 23:01	
2466089022	T3-1HT					
EPA 6020B	Arsenic	0.0018J	mg/L	0.0020	03/06/20 02:54	
EPA 6020B	Lithium	0.076	mg/L	0.050	03/06/20 02:54	
EPA 6020B	Arsenic, Dissolved	0.0016J	mg/L	0.0020	02/27/20 00:09	D3
EPA 6020B	Lithium, Dissolved	0.075	mg/L	0.050	02/27/20 00:09	
2466089023	T3-2HT					
EPA 6020B	Arsenic	0.0015J	mg/L	0.0020	03/06/20 02:59	
EPA 6020B	Lithium	0.097	mg/L	0.050	03/06/20 02:59	
EPA 6020B	Arsenic, Dissolved	0.0017J	mg/L	0.0020	02/27/20 00:14	D3
EPA 6020B	Lithium, Dissolved	0.087	mg/L	0.050	02/27/20 00:14	
2466089024	T3-2HTS					
EPA 6020B	Arsenic	0.0013J	mg/L	0.0020	03/06/20 03:04	
EPA 6020B	Lithium	0.075	mg/L	0.050	03/06/20 03:04	
EPA 6020B	Arsenic, Dissolved	0.0017J	mg/L	0.0020	02/27/20 00:18	D3
PA 6020B	Lithium, Dissolved	0.078	mg/L	0.050	02/27/20 00:18	
2466089025	T3-2LT					
PA 6020B	Arsenic	0.0029	mg/L	0.0020	03/06/20 03:20	BC
PA 6020B	Lithium	0.077	mg/L	0.050	03/06/20 03:20	
EPA 6020B	Arsenic, Dissolved	0.0017J	mg/L	0.0020	02/27/20 00:27	D3
PA 6020B	Lithium, Dissolved	0.079	mg/L	0.050	02/27/20 00:27	
2466089026	T3-3HT					
PA 6020B	Arsenic	0.0021	mg/L	0.0020	03/06/20 03:25	BC
EPA 6020B	Lithium	0.081	mg/L	0.050	03/06/20 03:25	
EPA 6020B	Arsenic, Dissolved	0.0017J	mg/L		02/27/20 00:31	D3
EPA 6020B	Lithium, Dissolved	0.088	mg/L	0.050	02/27/20 00:31	
2466089027	T3-3HTS					
EPA 6020B	Arsenic	0.0018J	mg/L	0.0020	03/06/20 04:02	BC
EPA 6020B	Lithium	0.080	mg/L	0.050		
PA 6020B	Arsenic, Dissolved	0.0019J	mg/L	0.0020	02/27/20 00:36	D3
EPA 6020B	Lithium, Dissolved	0.081	mg/L	0.050	02/27/20 00:36	
2466089028	T3-3LT					
PA 6020B	Arsenic	0.0018J	mg/L	0.0020	03/06/20 04:07	BC
PA 6020B	Lithium	0.084	mg/L	0.050	03/06/20 04:07	

### **REPORT OF LABORATORY ANALYSIS**



Project: Plant McManus
Pace Project No.: 92466089


Lab Sample ID  Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
EPA 6020B	Arsenic, Dissolved	0.0016J	mg/L	0.0020	02/27/20 00:44	D3
EPA 6020B	Lithium, Dissolved	0.078	mg/L	0.050	02/27/20 00:44	
2466089029	T3-4HT					
EPA 6020B	Arsenic	0.0018J	mg/L	0.0020	03/06/20 04:12	ВС
EPA 6020B	Lithium	0.087	mg/L	0.050	03/06/20 04:12	
EPA 6020B	Arsenic, Dissolved	0.0019J	mg/L	0.0020	02/27/20 00:49	D3
EPA 6020B	Lithium, Dissolved	0.10	mg/L	0.050	02/27/20 00:49	
2466089030	T3-4HTS					
PA 6020B	Arsenic	0.0014J	mg/L	0.0020	03/06/20 04:18	ВС
EPA 6020B	Lithium	0.085	mg/L	0.050	03/06/20 04:18	
EPA 6020B	Arsenic, Dissolved	0.0016J	mg/L	0.0020	02/27/20 00:58	D3
PA 6020B	Lithium, Dissolved	0.090	mg/L	0.050	02/27/20 00:58	
2466089031	T3-4LT					
EPA 6020B	Arsenic	0.0012J	mg/L	0.0020	03/06/20 04:23	ВС
EPA 6020B	Lithium	0.072	mg/L	0.050	03/06/20 04:23	
EPA 6020B	Arsenic, Dissolved	0.0015J	mg/L	0.0020	02/27/20 01:02	D3
PA 6020B	Lithium, Dissolved	0.072	mg/L	0.050	02/27/20 01:02	
2466089032	MCM-05HT					
EPA 6020B	Arsenic	0.0013J	mg/L	0.0020	03/06/20 04:28	ВС
EPA 6020B	Lithium	0.017J	mg/L	0.050	03/06/20 04:28	
EPA 6020B	Lithium, Dissolved	0.024J	mg/L	0.050	02/27/20 01:20	
2466089033	MCM-05LT					
EPA 6020B	Arsenic	0.0016J	mg/L	0.0020	03/06/20 04:34	ВС
EPA 6020B	Lithium	0.023J	mg/L	0.050	03/06/20 04:34	
EPA 6020B	Lithium, Dissolved	0.021J	mg/L	0.050	02/27/20 01:24	
2466089034	MCM-06HT					
PA 6020B	Arsenic	0.40	mg/L	0.0020	03/06/20 04:39	ВС
PA 6020B	Lithium	0.096	mg/L	0.050	03/06/20 04:39	
EPA 6020B	Arsenic, Dissolved	0.48	mg/L	0.0020	02/27/20 01:28	
PA 6020B	Lithium, Dissolved	0.11	mg/L	0.050	02/27/20 01:28	
2466089035	MCM-06LT					
EPA 6020B	Arsenic	0.44	mg/L	0.0020	03/06/20 05:00	BC
EPA 6020B	Lithium	0.094	mg/L		03/06/20 05:00	
EPA 6020B	Arsenic, Dissolved	0.47	mg/L		02/27/20 01:37	
EPA 6020B	Lithium, Dissolved	0.094	mg/L	0.050	02/27/20 01:37	
2466089036	MCM-07HT					
EPA 6020B	Arsenic	0.018	mg/L		03/06/20 05:05	BC
EPA 6020B	Lithium	0.047J	mg/L	0.050	03/06/20 05:05	
EPA 6020B	Arsenic, Dissolved	0.020	mg/L	0.0020		
EPA 6020B	Lithium, Dissolved	0.048J	mg/L	0.050	02/27/20 01:42	
2466089037	MCM-07LT					
EPA 6020B	Arsenic	0.016	mg/L	0.0020	03/06/20 05:10	ВС

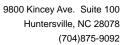
### **REPORT OF LABORATORY ANALYSIS**



Project: Plant McManus
Pace Project No.: 92466089

Lab Sample ID  Method	Client Sample ID	Result	Units	Report Limit	Analyzed	Qualifiers
	Parameters					
92466089037	MCM-07LT					
EPA 6020B	Lithium	0.044J	mg/L	0.050	03/06/20 05:10	
EPA 6020B	Arsenic, Dissolved	0.018	mg/L	0.0020	02/27/20 01:46	
EPA 6020B	Lithium, Dissolved	0.062	mg/L	0.050	02/27/20 01:46	
2466089038	DUP-01					
EPA 6020B	Arsenic	0.0018J	mg/L	0.0020	03/06/20 05:15	BC
EPA 6020B	Lithium	0.073	mg/L	0.050	03/06/20 05:15	
EPA 6020B	Arsenic, Dissolved	0.0018J	mg/L	0.0020	02/27/20 01:51	D3
EPA 6020B	Lithium, Dissolved	0.080	mg/L	0.050	02/27/20 01:51	
2466089039	MCM-05HT ASHPOND					
EPA 6020B	Arsenic	0.0019J	mg/L	0.0020	03/06/20 05:21	BC
EPA 6020B	Lithium	0.018J	mg/L	0.050	03/06/20 05:21	
EPA 6020B	Arsenic, Dissolved	0.0013J	mg/L	0.0020	02/27/20 01:59	D3
EPA 6020B	Lithium, Dissolved	0.020J	mg/L	0.050	02/27/20 01:59	
2466089040	MCM-06LT ASHPOND					
EPA 6020B	Arsenic	0.0017J	mg/L	0.0020	03/06/20 05:26	ВС
EPA 6020B	Lithium	0.012J	mg/L	0.050	03/06/20 05:26	
EPA 6020B	Arsenic, Dissolved	0.0013J	mg/L	0.0020	02/27/20 02:04	D3
EPA 6020B	Lithium, Dissolved	0.022J	mg/L	0.050	02/27/20 02:04	
2466089041	MCM-05LT ASHPOND					
EPA 6020B	Arsenic	0.0017J	mg/L	0.0020	03/06/20 05:31	ВС
EPA 6020B	Lithium	0.012J	mg/L	0.050	03/06/20 05:31	
EPA 6020B	Lithium, Dissolved	0.021J	mg/L	0.050	02/27/20 02:08	
2466089042	MCM-07HT ASHPOND					
EPA 6020B	Arsenic	0.0019J	mg/L	0.0020	03/06/20 05:37	ВС
EPA 6020B	Lithium	0.020J	mg/L	0.050		
PA 6020B	Lithium, Dissolved	0.020J	mg/L	0.050	02/27/20 02:48	
2466089043	MCM-07LT ASHPOND					
EPA 6020B	Arsenic	0.0022	mg/L	0.0020	03/06/20 05:42	ВС
EPA 6020B	Lithium	0.019J	mg/L	0.050	03/06/20 05:42	
EPA 6020B	Lithium, Dissolved	0.019J	mg/L	0.050	02/27/20 02:52	
2466089044	MCM-06HT ASHPOND					
EPA 6020B	Arsenic	0.0025	mg/L	0.0020	03/06/20 05:47	BC
EPA 6020B	Lithium	0.020J	mg/L	0.050	03/06/20 05:47	
EPA 6020B	Arsenic, Dissolved	0.0012J	mg/L	0.0020	02/27/20 15:55	D3
EPA 6020B	Lithium, Dissolved	0.021J	mg/L	0.050	02/27/20 02:57	
2466089045	BG-1LT					
EPA 6020B	Arsenic	0.0019J	mg/L	0.0020	03/06/20 06:45	
EPA 6020B	Lithium	0.090	mg/L	0.050	03/06/20 06:45	
PA 6020B	Arsenic, Dissolved	0.0014J	mg/L	0.0020	02/27/20 16:00	D3
EPA 6020B	Lithium, Dissolved	0.098	mg/L	0.050	02/27/20 03:06	
2466089046	BG-2HT					
EPA 6020B	Arsenic	0.0023	mg/L	0.0020	03/06/20 07:06	






# **SUMMARY OF DETECTION**

Project: Plant McManus
Pace Project No.: 92466089

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92466089046	BG-2HT					
EPA 6020B	Lithium	0.099	mg/L	0.050	03/06/20 07:06	
EPA 6020B	Arsenic, Dissolved	0.0016J	mg/L	0.0020	02/27/20 16:08	D3
EPA 6020B	Lithium, Dissolved	0.099	mg/L	0.050	02/27/20 03:10	
92466089047	MCM-04LT					
EPA 6020B	Arsenic	0.0016J	mg/L	0.0020	03/06/20 06:13	
EPA 6020B	Cobalt	0.0030	mg/L	0.0020	03/06/20 06:13	
EPA 6020B	Cobalt, Dissolved	0.0026	mg/L	0.0020	02/27/20 16:17	
92466089048	MCM-08LT					
EPA 6020B	Arsenic	0.0019J	mg/L	0.0020	03/06/20 06:19	
EPA 6020B	Cobalt	0.0020J	mg/L	0.0020	03/06/20 06:19	
EPA 6020B	Arsenic, Dissolved	0.0013J	mg/L	0.0020	02/27/20 16:22	D3
EPA 6020B	Cobalt, Dissolved	0.0020J	mg/L	0.0020	02/27/20 16:22	

## **REPORT OF LABORATORY ANALYSIS**

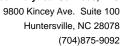




## **ANALYTICAL RESULTS**

Sample: T2-1HT	Lab ID:	92466089001	Collecte	d: 02/01/20	13:55	Received: 02/	/04/20 08:00 Ma	atrix: Water		
			Report							
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A				
	Pace Anal	ytical Services	- Asheville							
Arsenic	0.0014	mg/L	0.0010	0.00060	10	02/25/20 02:03	02/25/20 10:30	7440-38-2		
Cobalt	ND	mg/L	0.0010	0.00050	10	02/25/20 02:03	02/25/20 10:30	7440-48-4		
Lithium	0.052	mg/L	0.025	0.0042	10	02/25/20 02:03	02/25/20 10:30	7439-93-2		
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A				
	Pace Anal	ytical Services	- Asheville							
Arsenic, Dissolved	0.0014J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/26/20 15:45	7440-38-2	D3	
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/26/20 15:45	7440-48-4		
Lithium, Dissolved	0.059	mg/L	0.050	0.0084	20	02/26/20 11:47	02/26/20 15:45	7439-93-2		




Project: Plant McManus
Pace Project No.: 92466089

Sample: T2-2HT	Lab ID:	92466089002	Collecte	d: 02/01/20	14:32	Received: 02/	/04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	paration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0019	mg/L	0.0010	0.00060	10	02/25/20 02:03	02/25/20 10:39	7440-38-2	
Cobalt	ND	mg/L	0.0010	0.00050	10	02/25/20 02:03	02/25/20 10:39	7440-48-4	
Lithium	0.10	mg/L	0.025	0.0042	10	02/25/20 02:03	02/25/20 10:39	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	paration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0015J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/26/20 18:39	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/26/20 18:39	7440-48-4	
Lithium, Dissolved	0.084	mg/L	0.050	0.0084	20	02/26/20 11:47	02/26/20 18:39	7439-93-2	



Project: Plant McManus
Pace Project No.: 92466089

Sample: T2-2HTS	Lab ID:	92466089003	Collecte	d: 02/01/20	14:28	Received: 02/	/04/20 08:00 Ma	atrix: Water		
			Report							
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A				
	Pace Anal	ytical Services	- Asheville							
Arsenic	0.0019	mg/L	0.0010	0.00060	10	02/25/20 02:03	02/25/20 10:52	7440-38-2		
Cobalt	ND	mg/L	0.0010	0.00050	10	02/25/20 02:03	02/25/20 10:52	7440-48-4		
Lithium	0.073	mg/L	0.025	0.0042	10	02/25/20 02:03	02/25/20 10:52	7439-93-2		
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A				
	Pace Anal	ytical Services	- Asheville							
Arsenic, Dissolved	0.0014J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/26/20 18:53	7440-38-2	D3	
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/26/20 18:53	7440-48-4		
Lithium, Dissolved	0.060	mg/L	0.050	0.0084	20	02/26/20 11:47	02/26/20 18:53	7439-93-2		





Project: Plant McManus
Pace Project No.: 92466089

Sample: T2-2LT	Lab ID:	92466089004	Collecte	d: 02/02/20	13:38	Received: 02/	/04/20 08:00 Ma	atrix: Water		
			Report							
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	paration Met	hod: E	PA 3010A				
	Pace Ana	lytical Services	- Asheville							
Arsenic	0.0018	mg/L	0.0010	0.00060	10	02/25/20 02:03	02/25/20 11:01	7440-38-2		
Cobalt	ND	mg/L	0.0010	0.00050	10	02/25/20 02:03	02/25/20 11:01	7440-48-4		
Lithium	0.063	mg/L	0.025	0.0042	10	02/25/20 02:03	02/25/20 11:01	7439-93-2		
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	paration Met	hod: E	PA 3010A				
	Pace Ana	lytical Services	- Asheville							
Arsenic, Dissolved	0.0016J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/26/20 19:06	7440-38-2	D3	
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/26/20 19:06	7440-48-4		
Lithium, Dissolved	0.057	mg/L	0.050	0.0084	20	02/26/20 11:47	02/26/20 19:06	7439-93-2		



Project: Plant McManus
Pace Project No.: 92466089

Sample: T2-3HT	Lab ID:	92466089005	Collected	d: 02/01/20	14:50	Received: 02/	02/04/20 08:00 Matrix: Water		
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0016J	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/05/20 23:55	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/05/20 23:55	7440-48-4	
Lithium	0.099	mg/L	0.050	0.0084	2	03/04/20 02:26	03/05/20 23:55	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0015J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/26/20 19:15	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/26/20 19:15	7440-48-4	
Lithium, Dissolved	0.093	mg/L	0.050	0.0084	20	02/26/20 11:47	02/26/20 19:15	7439-93-2	



Project: Plant McManus
Pace Project No.: 92466089

Sample: T2-3HTS	Lab ID:	92466089006	Collected	d: 02/01/20	14:46	Received: 02/	04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0018J	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 00:16	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 00:16	7440-48-4	
Lithium	0.11	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 00:16	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0015J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/26/20 19:23	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/26/20 19:23	7440-48-4	
Lithium, Dissolved	0.094	mg/L	0.050	0.0084	20	02/26/20 11:47	02/26/20 19:23	7439-93-2	



Project: Plant McManus
Pace Project No.: 92466089

Sample: T2-3LT	Lab ID:	92466089007	Collecte	d: 02/02/20	11:20	Received: 02/	/04/20 08:00 Ma	atrix: Water	·
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0020	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 00:42	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 00:42	7440-48-4	
Lithium	0.049J	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 00:42	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0012J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/26/20 19:32	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/26/20 19:32	7440-48-4	
Lithium, Dissolved	0.041J	mg/L	0.050	0.0084	20	02/26/20 11:47	02/26/20 19:32	7439-93-2	



## **ANALYTICAL RESULTS**

Sample: T2-4HT	Lab ID:	92466089008	Collecte	d: 02/01/20	15:14	Received: 02/	/04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0016J	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 00:48	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 00:48	7440-48-4	
Lithium	0.091	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 00:48	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0020J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/26/20 20:15	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/26/20 20:15	7440-48-4	
Lithium, Dissolved	0.092	mg/L	0.050	0.0084	20	02/26/20 11:47	02/26/20 20:15	7439-93-2	



Project: Plant McManus
Pace Project No.: 92466089

Sample: T2-4HTS	Lab ID:	92466089009	Collecte	d: 02/01/20	15:00	Received: 02/	/04/20 08:00 Ma	atrix: Water		
			Report							
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A				
	Pace Anal	ytical Services	- Asheville							
Arsenic	0.0015J	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 00:58	7440-38-2		
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 00:58	7440-48-4		
Lithium	0.085	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 00:58	7439-93-2		
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A				
	Pace Anal	ytical Services	- Asheville							
Arsenic, Dissolved	0.0016J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/26/20 20:24	7440-38-2	D3	
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/26/20 20:24	7440-48-4		
Lithium, Dissolved	0.088	mg/L	0.050	0.0084	20	02/26/20 11:47	02/26/20 20:24	7439-93-2		



Project: Plant McManus
Pace Project No.: 92466089

Date: 03/31/2020 03:53 PM

Sample: T2-4LT	Lab ID:	92466089010	Collected	d: 02/02/20	09:46	Received: 02/	/04/20 08:00 Ma	atrix: Water		
			Report							
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A				
	Pace Anal	ytical Services	- Asheville							
Arsenic	0.0015J	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 01:03	7440-38-2		
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 01:03	7440-48-4		
Lithium	0.075	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 01:03	7439-93-2		
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A				
	Pace Anal	ytical Services	- Asheville							
Arsenic, Dissolved	0.0015J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/26/20 20:37	7440-38-2	D3	
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/26/20 20:37	7440-48-4		
Lithium, Dissolved	0.077	mg/L	0.050	0.0084	20	02/26/20 11:47	02/26/20 20:37	7439-93-2		

## **REPORT OF LABORATORY ANALYSIS**



## **ANALYTICAL RESULTS**

Sample: T1-1HT	Lab ID:	92466089011	Collecte	d: 02/01/20	14:08	Received: 02/	/04/20 08:00 Ma	atrix: Water	
			Report						
Parameters —	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0016J	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 01:19	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 01:19	7440-48-4	
Lithium	0.039J	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 01:19	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	ND	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/26/20 20:46	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/26/20 20:46	7440-48-4	
Lithium, Dissolved	0.038J	mg/L	0.050	0.0084	20	02/26/20 11:47	02/26/20 20:46	7439-93-2	



Project: Plant McManus
Pace Project No.: 92466089

Sample: T1-1LT	Lab ID:	92466089012	Collecte	d: 02/01/20	09:50	Received: 02/	/04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 01:51	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 01:51	7440-48-4	
Lithium	0.024J	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 01:51	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	ND	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/26/20 20:59	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/26/20 20:59	7440-48-4	
Lithium, Dissolved	0.022J	mg/L	0.050	0.0084	20	02/26/20 11:47	02/26/20 20:59	7439-93-2	



Project: Plant McManus
Pace Project No.: 92466089

Sample: T1-2HT	Lab ID:	92466089013	Collecte	d: 02/01/20	14:20	Received: 02/	/04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 01:56	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 01:56	7440-48-4	
Lithium	0.11	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 01:56	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0015J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/26/20 21:04	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/26/20 21:04	7440-48-4	
Lithium, Dissolved	0.088	mg/L	0.050	0.0084	20	02/26/20 11:47	02/26/20 21:04	7439-93-2	



Project: Plant McManus
Pace Project No.: 92466089

Sample: T1-2HTS	Lab ID:	92466089014	Collecte	d: 02/01/20	14:16	Received: 02/	/04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 02:01	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 02:01	7440-48-4	
Lithium	0.055	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 02:01	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0015J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/26/20 21:17	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/26/20 21:17	7440-48-4	
Lithium, Dissolved	0.061	mg/L	0.050	0.0084	20	02/26/20 11:47	02/26/20 21:17	7439-93-2	



Project: Plant McManus
Pace Project No.: 92466089

Sample: T1-2LT	Lab ID:	92466089015	Collecte	d: 02/01/20	10:16	Received: 02/	/04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 02:06	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 02:06	7440-48-4	
Lithium	0.022J	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 02:06	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	ND	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/26/20 21:39	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/26/20 21:39	7440-48-4	
Lithium, Dissolved	0.024J	mg/L	0.050	0.0084	20	02/26/20 11:47	02/26/20 21:39	7439-93-2	



Project: Plant McManus
Pace Project No.: 92466089

Sample: T1-3HT	Lab ID:	92466089016	Collecte	d: 02/01/20	13:56	Received: 02/	/04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 02:12	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 02:12	7440-48-4	
Lithium	0.092	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 02:12	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0016J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/26/20 21:48	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/26/20 21:48	7440-48-4	
Lithium, Dissolved	0.080	mg/L	0.050	0.0084	20	02/26/20 11:47	02/26/20 21:48	7439-93-2	




Project: Plant McManus
Pace Project No.: 92466089

Sample: T1-3HTS	Lab ID:	92466089017	Collecte	d: 02/01/20	13:52	Received: 02/	/04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 02:17	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 02:17	7440-48-4	
Lithium	0.067	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 02:17	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0015J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/26/20 22:01	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/26/20 22:01	7440-48-4	
Lithium, Dissolved	0.072	mg/L	0.050	0.0084	20	02/26/20 11:47	02/26/20 22:01	7439-93-2	



Project: Plant McManus
Pace Project No.: 92466089

Sample: T1-3LT	Lab ID:	92466089018	Collecte	d: 02/01/20	10:06	Received: 02/	/04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 02:22	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 02:22	7440-48-4	
Lithium	0.022J	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 02:22	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	ND	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/26/20 22:35	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/26/20 22:35	7440-48-4	
Lithium, Dissolved	0.019J	mg/L	0.050	0.0084	20	02/26/20 11:47	02/26/20 22:35	7439-93-2	





Project: Plant McManus
Pace Project No.: 92466089

Sample: T1-4HT	Lab ID:	92466089019	Collecte	d: 02/01/20	13:40	Received: 02/	/04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 02:27	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 02:27	7440-48-4	
Lithium	0.080	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 02:27	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0019J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/26/20 22:40	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/26/20 22:40	7440-48-4	
Lithium, Dissolved	0.086	mg/L	0.050	0.0084	20	02/26/20 11:47	02/26/20 22:40	7439-93-2	



Project: Plant McManus
Pace Project No.: 92466089

Sample: T1-4HTS	Lab ID:	92466089020	Collecte	d: 02/01/20	13:34	Received: 02/	/04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0014J	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 02:33	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 02:33	7440-48-4	
Lithium	0.081	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 02:33	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0016J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/26/20 22:56	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/26/20 22:56	7440-48-4	
Lithium, Dissolved	0.083	mg/L	0.050	0.0084	20	02/26/20 11:47	02/26/20 22:56	7439-93-2	



## **ANALYTICAL RESULTS**

Sample: T1-4LT	Lab ID:	92466089021	Collected	d: 02/01/20	09:56	Received: 02/	/04/20 08:00 Ma	atrix: Water	
			Report						
Parameters —	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	nod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0016J	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 02:48	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 02:48	7440-48-4	
Lithium	0.090	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 02:48	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	nod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0016J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/26/20 23:01	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/26/20 23:01	7440-48-4	
Lithium, Dissolved	0.090	mg/L	0.050	0.0084	20	02/26/20 11:47	02/26/20 23:01	7439-93-2	




## **ANALYTICAL RESULTS**

Sample: T3-1HT	Lab ID:	92466089022	Collecte	d: 02/02/20	14:35	Received: 02/	2/04/20 08:00 Matrix: Water		
			Report						
Parameters —	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0018J	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 02:54	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 02:54	7440-48-4	
Lithium	0.076	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 02:54	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0016J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/27/20 00:09	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/27/20 00:09	7440-48-4	
Lithium, Dissolved	0.075	mg/L	0.050	0.0084	20	02/26/20 11:47	02/27/20 00:09	7439-93-2	



Project: Plant McManus
Pace Project No.: 92466089

Sample: T3-2HT	Lab ID:	92466089023	Collecte	d: 02/02/20	14:34	Received: 02/	/04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0015J	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 02:59	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 02:59	7440-48-4	
Lithium	0.097	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 02:59	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0017J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/27/20 00:14	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/27/20 00:14	7440-48-4	
Lithium, Dissolved	0.087	mg/L	0.050	0.0084	20	02/26/20 11:47	02/27/20 00:14	7439-93-2	





Project: Plant McManus
Pace Project No.: 92466089

Sample: T3-2HTS	Lab ID:	92466089024	Collecte	d: 02/02/20	14:28	Received: 02/	/04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0013J	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 03:04	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 03:04	7440-48-4	
Lithium	0.075	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 03:04	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0017J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/27/20 00:18	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/27/20 00:18	7440-48-4	
Lithium, Dissolved	0.078	mg/L	0.050	0.0084	20	02/26/20 11:47	02/27/20 00:18	7439-93-2	



Project: Plant McManus
Pace Project No.: 92466089

Sample: T3-2LT	Lab ID:	92466089025	Collecte	d: 02/03/20	13:30	Received: 02/	/04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0029	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 03:20	7440-38-2	ВС
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 03:20	7440-48-4	
Lithium	0.077	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 03:20	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0017J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/27/20 00:27	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/27/20 00:27	7440-48-4	
Lithium, Dissolved	0.079	mg/L	0.050	0.0084	20	02/26/20 11:47	02/27/20 00:27	7439-93-2	



## **ANALYTICAL RESULTS**

Sample: T3-3HT	Lab ID:	92466089026	Collected	d: 02/02/20	14:10	Received: 02/	04/20 08:00 Ma	atrix: Water	
_			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0021	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 03:25	7440-38-2	ВС
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 03:25	7440-48-4	
Lithium	0.081	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 03:25	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0017J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/27/20 00:31	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/27/20 00:31	7440-48-4	
Lithium, Dissolved	0.088	mg/L	0.050	0.0084	20	02/26/20 11:47	02/27/20 00:31	7439-93-2	



## **ANALYTICAL RESULTS**

Sample: T3-3HTS	Lab ID:	92466089027	Collecte	d: 02/02/20	14:08	Received: 02/	/04/20 08:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
- Turamotors									
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0018J	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 04:02	7440-38-2	ВС
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 04:02	7440-48-4	
Lithium	0.080	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 04:02	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0019J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/27/20 00:36	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/27/20 00:36	7440-48-4	
Lithium, Dissolved	0.081	mg/L	0.050	0.0084	20	02/26/20 11:47	02/27/20 00:36	7439-93-2	



Project: Plant McManus
Pace Project No.: 92466089

Sample: T3-3LT	Lab ID:	92466089028	Collecte	d: 02/03/20	12:12	Received: 02/	04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0018J	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 04:07	7440-38-2	ВС
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 04:07	7440-48-4	
Lithium	0.084	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 04:07	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0016J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/27/20 00:44	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/27/20 00:44	7440-48-4	
Lithium, Dissolved	0.078	mg/L	0.050	0.0084	20	02/26/20 11:47	02/27/20 00:44	7439-93-2	



## **ANALYTICAL RESULTS**

Sample: T3-4HT	Lab ID:	92466089029	Collecte	d: 02/02/20	13:50	Received: 02/	/04/20 08:00 Ma	atrix: Water	
			Report						
Parameters —	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0018J	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 04:12	7440-38-2	ВС
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 04:12	7440-48-4	
Lithium	0.087	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 04:12	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0019J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/27/20 00:49	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/27/20 00:49	7440-48-4	
Lithium, Dissolved	0.10	mg/L	0.050	0.0084	20	02/26/20 11:47	02/27/20 00:49	7439-93-2	



## **ANALYTICAL RESULTS**

Sample: T3-4HTS	Lab ID:	92466089030	Collecte	d: 02/02/20	13:44	Received: 02/	/04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0014J	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 04:18	7440-38-2	ВС
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 04:18	7440-48-4	
Lithium	0.085	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 04:18	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0016J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/27/20 00:58	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/27/20 00:58	7440-48-4	
Lithium, Dissolved	0.090	mg/L	0.050	0.0084	20	02/26/20 11:47	02/27/20 00:58	7439-93-2	



## **ANALYTICAL RESULTS**

Sample: T3-4LT	Lab ID:	92466089031	Collected	d: 02/03/20	10:40	Received: 02/	/04/20 08:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
COOO MET IODMO		Mathadi EDA C				- · · · · · · · · · · · · · · · · · · ·		-	_
6020 MET ICPMS	•	Method: EPA 6		aralion iviel	100. E	PA 3010A			
	Pace Anal	ytical Services	- Asneville						
Arsenic	0.0012J	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 04:23	7440-38-2	BC
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 04:23	7440-48-4	
Lithium	0.072	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 04:23	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prepa	aration Met	nod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0015J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/27/20 01:02	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/27/20 01:02	7440-48-4	
Lithium, Dissolved	0.072	mg/L	0.050	0.0084	20	02/26/20 11:47	02/27/20 01:02	7439-93-2	



## **ANALYTICAL RESULTS**

Sample: MCM-05HT	Lab ID:	92466089032	Collecte	d: 02/02/20	14:46	Received: 02/	/04/20 08:00 Ma	atrix: Water	
_			Report						
Parameters — — — — — — — — — — — — — — — — — — —	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0013J	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 04:28	7440-38-2	ВС
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 04:28	7440-48-4	
Lithium	0.017J	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 04:28	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	ND	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/27/20 01:20	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/27/20 01:20	7440-48-4	
Lithium, Dissolved	0.024J	mg/L	0.050	0.0084	20	02/26/20 11:47	02/27/20 01:20	7439-93-2	



Project: Plant McManus
Pace Project No.: 92466089

Sample: MCM-05LT	Lab ID:	92466089033	Collecte	d: 02/03/20	09:47	Received: 02/	/04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0016J	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 04:34	7440-38-2	ВС
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 04:34	7440-48-4	
Lithium	0.023J	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 04:34	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	ND	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/27/20 01:24	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/27/20 01:24	7440-48-4	
Lithium, Dissolved	0.021J	mg/L	0.050	0.0084	20	02/26/20 11:47	02/27/20 01:24	7439-93-2	



## **ANALYTICAL RESULTS**

Sample: MCM-06HT	Lab ID:	92466089034	Collected	d: 02/01/20	13:55	Received: 02/	/04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.40	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 04:39	7440-38-2	ВС
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 04:39	7440-48-4	
Lithium	0.096	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 04:39	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.48	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/27/20 01:28	7440-38-2	
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/27/20 01:28	7440-48-4	
Lithium, Dissolved	0.11	mg/L	0.050	0.0084	20	02/26/20 11:47	02/27/20 01:28	7439-93-2	



Project: Plant McManus
Pace Project No.: 92466089

Sample: MCM-06LT	Lab ID:	92466089035	Collecte	d: 02/02/20	09:00	Received: 02/	/04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.44	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 05:00	7440-38-2	ВС
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 05:00	7440-48-4	
Lithium	0.094	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 05:00	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.47	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/27/20 01:37	7440-38-2	
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/27/20 01:37	7440-48-4	
Lithium, Dissolved	0.094	mg/L	0.050	0.0084	20	02/26/20 11:47	02/27/20 01:37	7439-93-2	



Project: Plant McManus
Pace Project No.: 92466089

Sample: MCM-07HT	Lab ID:	92466089036	Collected	d: 02/01/20	14:20	Received: 02/	04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.018	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 05:05	7440-38-2	ВС
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 05:05	7440-48-4	
Lithium	0.047J	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 05:05	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.020	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/27/20 01:42	7440-38-2	
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/27/20 01:42	7440-48-4	
Lithium, Dissolved	0.048J	mg/L	0.050	0.0084	20	02/26/20 11:47	02/27/20 01:42	7439-93-2	



Project: Plant McManus
Pace Project No.: 92466089

Sample: MCM-07LT	Lab ID:	92466089037	Collecte	d: 02/01/20	10:15	Received: 02/	/04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.016	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 05:10	7440-38-2	ВС
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 05:10	7440-48-4	
Lithium	0.044J	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 05:10	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.018	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/27/20 01:46	7440-38-2	
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/27/20 01:46	7440-48-4	
Lithium, Dissolved	0.062	mg/L	0.050	0.0084	20	02/26/20 11:47	02/27/20 01:46	7439-93-2	



Project: Plant McManus
Pace Project No.: 92466089

Sample: DUP-01	Lab ID:	92466089038	Collecte	d: 02/03/20	00:00	Received: 02/	/04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0018J	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 05:15	7440-38-2	ВС
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 05:15	7440-48-4	
Lithium	0.073	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 05:15	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0018J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/27/20 01:51	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/27/20 01:51	7440-48-4	
Lithium, Dissolved	0.080	mg/L	0.050	0.0084	20	02/26/20 11:47	02/27/20 01:51	7439-93-2	



Project: Plant McManus
Pace Project No.: 92466089

Sample: MCM-05HT ASHPOND	Lab ID:	92466089039	Collecte	d: 02/02/20	14:30	Received: 02/	04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0019J	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 05:21	7440-38-2	BC
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 05:21	7440-48-4	
Lithium	0.018J	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 05:21	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0013J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/27/20 01:59	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/27/20 01:59	7440-48-4	
Lithium, Dissolved	0.020J	mg/L	0.050	0.0084	20	02/26/20 11:47	02/27/20 01:59	7439-93-2	



### **ANALYTICAL RESULTS**

Sample: MCM-06LT ASHPOND	Lab ID:	92466089040	Collecte	d: 02/02/20	08:50	Received: 02/	/04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0017J	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 05:26	7440-38-2	ВС
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 05:26	7440-48-4	
Lithium	0.012J	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 05:26	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0013J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/27/20 02:04	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/27/20 02:04	7440-48-4	
Lithium, Dissolved	0.022J	mg/L	0.050	0.0084	20	02/26/20 11:47	02/27/20 02:04	7439-93-2	



Project: Plant McManus
Pace Project No.: 92466089

Sample: MCM-05LT ASHPOND	Lab ID:	92466089041	Collected	d: 02/03/20	09:45	Received: 02/	04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0017J	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 05:31	7440-38-2	ВС
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 05:31	7440-48-4	
Lithium	0.012J	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 05:31	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	ND	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/27/20 02:08	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/27/20 02:08	7440-48-4	
Lithium, Dissolved	0.021J	mg/L	0.050	0.0084	20	02/26/20 11:47	02/27/20 02:08	7439-93-2	



Project: Plant McManus
Pace Project No.: 92466089

Sample: MCM-07HT ASHPOND	Lab ID:	92466089042	Collected	d: 02/01/20	14:20	Received: 02/	/04/20 08:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	nod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0019J	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 05:37	7440-38-2	ВС
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 05:37	7440-48-4	
Lithium	0.020J	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 05:37	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	nod: Ef	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	ND	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/27/20 15:46	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/27/20 15:46	7440-48-4	
Lithium, Dissolved	0.020J	mg/L	0.050	0.0084	20	02/26/20 11:47	02/27/20 02:48	7439-93-2	



### **ANALYTICAL RESULTS**

Sample: MCM-07LT ASHPOND	Lab ID:	92466089043	Collected	d: 02/01/20	09:40	Received: 02/	04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0022	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 05:42	7440-38-2	ВС
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 05:42	7440-48-4	
Lithium	0.019J	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 05:42	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	ND	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/27/20 15:51	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/27/20 15:51	7440-48-4	
Lithium, Dissolved	0.019J	mg/L	0.050	0.0084	20	02/26/20 11:47	02/27/20 02:52	7439-93-2	



### **ANALYTICAL RESULTS**

Sample: MCM-06HT ASHPOND	Lab ID:	92466089044	Collecte	d: 02/01/20	13:55	Received: 02/	/04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0025	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 05:47	7440-38-2	ВС
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 05:47	7440-48-4	
Lithium	0.020J	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 05:47	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0012J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/27/20 15:55	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/27/20 15:55	7440-48-4	
Lithium, Dissolved	0.021J	mg/L	0.050	0.0084	20	02/26/20 11:47	02/27/20 02:57	7439-93-2	



### **ANALYTICAL RESULTS**

Sample: BG-1LT	Lab ID:	92466089045	Collecte	d: 02/02/20	08:58	Received: 02/	/04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0019J	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 06:45	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 06:45	7440-48-4	
Lithium	0.090	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 06:45	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0014J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/27/20 16:00	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/27/20 16:00	7440-48-4	
Lithium, Dissolved	0.098	mg/L	0.050	0.0084	20	02/26/20 11:47	02/27/20 03:06	7439-93-2	



Project: Plant McManus
Pace Project No.: 92466089

Sample: BG-2HT	Lab ID:	92466089046	Collecte	d: 02/02/20	15:04	Received: 02/	/04/20 08:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0023	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 07:06	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 07:06	7440-48-4	
Lithium	0.099	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 07:06	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0016J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/27/20 16:08	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/27/20 16:08	7440-48-4	
Lithium, Dissolved	0.099	mg/L	0.050	0.0084	20	02/26/20 11:47	02/27/20 03:10	7439-93-2	



### **ANALYTICAL RESULTS**

Project: Plant McManus
Pace Project No.: 92466089

Sample: MCM-04LT	Lab ID:	92466089047	Collecte	d: 02/03/20	11:35	Received: 02/	/04/20 10:48 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0016J	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 06:13	7440-38-2	
Cobalt	0.0030	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 06:13	7440-48-4	
Lithium	ND	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 06:13	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	ND	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/27/20 16:17	7440-38-2	D3
Cobalt, Dissolved	0.0026	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/27/20 16:17	7440-48-4	
Lithium, Dissolved	ND	mg/L	0.050	0.0084	20	02/26/20 11:47	02/27/20 03:14	7439-93-2	



### **ANALYTICAL RESULTS**

Sample: MCM-08LT	Lab ID:	92466089048	Collecte	d: 02/03/20	12:41	Received: 02/	/04/20 10:48 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0019J	mg/L	0.0020	0.0012	2	03/04/20 02:26	03/06/20 06:19	7440-38-2	
Cobalt	0.0020J	mg/L	0.0020	0.0010	2	03/04/20 02:26	03/06/20 06:19	7440-48-4	
Lithium	ND	mg/L	0.050	0.0084	2	03/04/20 02:26	03/06/20 06:19	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0013J	mg/L	0.0020	0.0012	20	02/26/20 11:47	02/27/20 16:22	7440-38-2	D3
Cobalt, Dissolved	0.0020J	mg/L	0.0020	0.0010	20	02/26/20 11:47	02/27/20 16:22	7440-48-4	
Lithium, Dissolved	ND	mg/L	0.050	0.0084	20	02/26/20 11:47	02/27/20 16:22	7439-93-2	



### **QUALITY CONTROL DATA**

Project: Plant McManus
Pace Project No.: 92466089

Date: 03/31/2020 03:53 PM

QC Batch: 526783 Analysis Method: EPA 6020B
QC Batch Method: EPA 3010A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92466089001, 92466089002, 92466089003, 92466089004

METHOD BLANK: 2814966 Matrix: Water

Associated Lab Samples: 92466089001, 92466089002, 92466089003, 92466089004, 92466089005, 92466089006, 92466089007,

92466089008, 92466089009, 92466089010, 92466089011, 92466089012, 92466089013, 92466089014,

92466089015

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Arsenic	mg/L	ND ND	0.00010	0.000060	02/25/20 10:17	
Cobalt	mg/L	ND	0.00010	0.000050	02/25/20 10:17	
Lithium	mg/L	ND	0.0025	0.00042	02/25/20 10:17	

LABORATORY CONTROL SAMPLE: 2814967 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Arsenic mg/L 0.01 0.0099 99 80-120 Cobalt mg/L 0.01 0.010 102 80-120 Lithium mg/L 0.05 0.050 100 80-120

MATRIX SPIKE & MATRIX SF	PIKE DUPL	ICATE: 2814		2814969								
			MS	MSD								
		92465431003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/L	2.6 ug/L	0.01	0.01	0.012	0.013	97	100	75-125	2	20	
Cobalt	mg/L	0.11 ug/L	0.01	0.01	0.010	0.010	100	101	75-125	0	20	
Lithium	mg/L	2.6 ug/L	0.05	0.05	0.051	0.054	98	103	75-125	5	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALITY CONTROL DATA**

Project: Plant McManus Pace Project No.: 92466089

QC Batch: 528310 Analysis Method: EPA 6020B
QC Batch Method: EPA 3010A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92466089005, 92466089006, 92466089007, 92466089008, 92466089009, 92466089010, 92466089011,

92466089012, 92466089013, 92466089014, 92466089015, 92466089016, 92466089017, 92466089018,

92466089019, 92466089020, 92466089021, 92466089022, 92466089023, 92466089024

METHOD BLANK: 2822122 Matrix: Water

Associated Lab Samples: 92466089005, 92466089006, 92466089007, 92466089008, 92466089009, 92466089010, 92466089011,

92466089012, 92466089013, 92466089014, 92466089015, 92466089016, 92466089017, 92466089018,

92466089019, 92466089020, 92466089021, 92466089022, 92466089023, 92466089024

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Arsenic	mg/L	ND	0.00010	0.000060	03/05/20 23:45	
Cobalt	mg/L	ND	0.00010	0.000050	03/05/20 23:45	
Lithium	ma/L	ND	0.0025	0.00042	03/05/20 23:45	

LABORATORY CONTROL SAMPLE:	2822123					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/L	0.01	0.010	104	80-120	
Cobalt	mg/L	0.01	0.010	103	80-120	
Lithium	mg/L	0.05	0.056	113	80-120	

MATRIX SPIKE & MATRIX SP	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2822124							2822125							
			MS	MSD											
	9	2466089006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max				
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual			
Arsenic	mg/L	0.0018J	0.1	0.1	0.12	0.11	119	109	75-125	8	20				
Cobalt	mg/L	ND	0.1	0.1	0.11	0.11	114	107	75-125	7	20				
Lithium	mg/L	0.11	0.5	0.5	0.68	0.62	114	102	75-125	10	20				

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALITY CONTROL DATA**

Project: Plant McManus Pace Project No.: 92466089

QC Batch: 528311 Analysis Method: EPA 6020B
QC Batch Method: EPA 3010A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Asheville

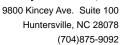
Associated Lab Samples: 92466089025, 92466089026, 92466089027, 92466089028, 92466089029, 92466089030, 92466089031,

92466089039, 92466089040, 92466089041, 92466089042, 92466089043, 92466089044

METHOD BLANK: 2822126 Matrix: Water

 $Associated \ Lab \ Samples: \quad 92466089025, \ 92466089026, \ 92466089027, \ 92466089028, \ 92466089029, \ 92466089030, \ 92466089031, \ 92466089029, \ 92466089029, \ 92466089029, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089030, \ 92466089000, \ 92466089000, \ 92466089000, \ 92466089000, \ 9246$ 

92466089032, 92466089033, 92466089034, 92466089035, 92466089036, 92466089037, 92466089038,


92466089039, 92466089040, 92466089041, 92466089042, 92466089043, 92466089044

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Arsenic	mg/L	0.000086J	0.00010	0.000060	03/06/20 03:09	BC
Cobalt	mg/L	ND	0.00010	0.000050	03/06/20 03:09	
Lithium	ma/l	ND	0.0025	0.00042	03/06/20 03:09	

LABORATORY CONTROL SAMPLE:	2822127					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/L	0.01	0.0099	99	80-120	BC
Cobalt	mg/L	0.01	0.010	100	80-120	
Lithium	mg/L	0.05	0.052	104	80-120	

MATRIX SPIKE & MATRIX SP	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2822128											
			MS	MSD								
	Ş	2466089026	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/L	0.0021	0.1	0.1	0.11	0.12	107	113	75-125	6	20	
Cobalt	mg/L	ND	0.1	0.1	0.10	0.12	104	116	75-125	10	20	
Lithium	mg/L	0.081	0.5	0.5	0.58	0.63	99	110	75-125	9	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





### **QUALITY CONTROL DATA**

Project: Plant McManus
Pace Project No.: 92466089

QC Batch: 528312 Analysis Method: EPA 6020B
QC Batch Method: EPA 3010A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92466089045, 92466089046, 92466089047, 92466089048

METHOD BLANK: 2822130 Matrix: Water
Associated Lab Samples: 92466089045, 92466089046, 92466089047, 92466089048

Blank Reporting MDL Qualifiers Parameter Units Result Limit Analyzed Arsenic mg/L ND 0.00010 0.000060 03/06/20 06:03 Cobalt mg/L ND 0.00010 0.000050 03/06/20 06:03 Lithium mg/L ND 0.0025 03/06/20 06:03 0.00042

LABORATORY CONTROL SAMPLE: 2822131

Date: 03/31/2020 03:53 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/L	0.01	0.0098	98	80-120	
Cobalt	mg/L	0.01	0.010	101	80-120	
Lithium	mg/L	0.05	0.050	99	80-120	

MATRIX SPIKE & MATRIX SP	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2822132							2822133							
			MS	MSD											
	9.	2466089048	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max				
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual			
Arsenic	mg/L	0.0019J	0.1	0.1	0.11	0.10	104	100	75-125	4	20				
Cobalt	mg/L	0.0020J	0.1	0.1	0.11	0.10	107	100	75-125	7	20				
Lithium	mg/L	ND	0.5	0.5	0.53	0.51	106	103	75-125	3	20				

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALITY CONTROL DATA**

Project: Plant McManus Pace Project No.: 92466089

QC Batch: 527145 Analysis Method: EPA 6020B

QC Batch Method: EPA 3010A Analysis Description: 6020 MET Dissolved

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92466089001, 92466089002, 92466089003, 92466089004, 92466089005, 92466089006, 92466089007,

92466089008, 92466089009, 92466089010, 92466089011, 92466089012, 92466089013, 92466089014,

92466089015, 92466089016, 92466089017, 92466089018, 92466089019, 92466089020

METHOD BLANK: 2816511 Matrix: Water

Associated Lab Samples: 92466089001, 92466089002, 92466089003, 92466089004, 92466089005, 92466089006, 92466089007,

92466089008, 92466089009, 92466089010, 92466089011, 92466089012, 92466089013, 92466089014,

92466089015, 92466089016, 92466089017, 92466089018, 92466089019, 92466089020

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Arsenic, Dissolved	mg/L	ND	0.00010	0.000060	02/26/20 16:11	
Cobalt, Dissolved	mg/L	ND	0.00010	0.000050	02/26/20 16:11	
Lithium, Dissolved	mg/L	ND	0.0025	0.00042	02/26/20 16:11	

LABORATORY CONTROL SAMPLE:	2816512					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic, Dissolved	mg/L	0.01	0.0096	96	80-120	
Cobalt, Dissolved	mg/L	0.01	0.0098	98	80-120	
Lithium, Dissolved	mg/L	0.05	0.047	94	80-120	

MATRIX SPIKE & MATRIX SP	IKE DUPL	JCATE: 2816	513		2816514							
			MS	MSD								
		92466089001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic, Dissolved	mg/L	0.0014J	0.01	0.01	0.012	0.012	106	105	75-125	2	20	
Cobalt, Dissolved	mg/L	ND	0.01	0.01	0.011	0.011	109	108	75-125	1	20	
Lithium, Dissolved	mg/L	0.059	0.05	0.05	0.10	0.10	83	86	75-125	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALITY CONTROL DATA**

Project: Plant McManus Pace Project No.: 92466089

Date: 03/31/2020 03:53 PM

QC Batch: 527147 Analysis Method: EPA 6020B

QC Batch Method: EPA 3010A Analysis Description: 6020 MET Dissolved

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92466089021, 92466089022, 92466089023, 92466089024, 92466089025, 92466089026, 92466089027,

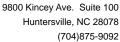
92466089028, 92466089029, 92466089030, 92466089031, 92466089032, 92466089033, 92466089034,

92466089035, 92466089036, 92466089037, 92466089038, 92466089039, 92466089040

METHOD BLANK: 2816517 Matrix: Water

 $Associated \ Lab \ Samples: \qquad 92466089021, \ 92466089022, \ 92466089023, \ 92466089024, \ 92466089025, \ 92466089026, \ 92466089027, \ 92466089027, \ 92466089027, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 92466089028, \ 9246$ 

92466089028, 92466089029, 92466089030, 92466089031, 92466089032, 92466089033, 92466089034,


92466089035, 92466089036, 92466089037, 92466089038, 92466089039, 92466089040

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Arsenic, Dissolved	mg/L	ND	0.00010	0.000060	02/26/20 16:02	
Cobalt, Dissolved	mg/L	ND	0.00010	0.000050	02/26/20 16:02	
Lithium, Dissolved	mg/L	ND	0.0025	0.00042	02/26/20 16:02	

LABORATORY CONTROL SAMPLE:	2816518					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic, Dissolved	mg/L	0.01	0.0098	98	80-120	
Cobalt, Dissolved	mg/L	0.01	0.010	103	80-120	
Lithium, Dissolved	mg/L	0.05	0.045	91	80-120	

MATRIX SPIKE & MATRIX SF	PIKE DUPLIC	CATE: 2816	519		2816520							
			MS	MSD								
	9	2466089021	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic, Dissolved	mg/L	0.0016J	0.01	0.01	0.012	0.013	105	111	75-125	5	20	
Cobalt, Dissolved	mg/L	ND	0.01	0.01	0.011	0.011	106	109	75-125	3	20	
Lithium, Dissolved	mg/L	0.090	0.05	0.05	0.14	0.14	104	103	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





### **QUALITY CONTROL DATA**

Project: Plant McManus Pace Project No.: 92466089

QC Batch: 527148 Analysis Method: EPA 6020B

QC Batch Method: EPA 3010A Analysis Description: 6020 MET Dissolved

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92466089041, 92466089042, 92466089043, 92466089044, 92466089045, 92466089046, 92466089047,

92466089048

METHOD BLANK: 2816523 Matrix: Water

Associated Lab Samples: 92466089041, 92466089042, 92466089043, 92466089044, 92466089045, 92466089046, 92466089047,

92466089048

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Arsenic, Dissolved	 mg/L	ND	0.00010	0.000060	02/26/20 15:54	
Cobalt, Dissolved	mg/L	ND	0.00010	0.000050	02/26/20 15:54	
Lithium, Dissolved	mg/L	ND	0.0025	0.00042	02/26/20 15:54	

LABORATORY CONTROL SAMPLE: 2816524 LCS LCS % Rec Spike Parameter Units Conc. Result % Rec Limits Qualifiers Arsenic, Dissolved 0.01 0.0098 98 80-120 mg/L Cobalt, Dissolved 0.01 0.010 100 80-120 mg/L Lithium, Dissolved mg/L 0.05 0.047 94 80-120

MATRIX SPIKE & MATRIX SF	IKE DUPL	ICATE: 2816	525		2816526							
			MS	MSD								
		92466089041	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic, Dissolved	mg/L	ND	0.01	0.01	0.011	0.011	99	100	75-125	1	20	
Cobalt, Dissolved	mg/L	ND	0.01	0.01	0.0097	0.0094	96	94	75-125	3	20	
Lithium, Dissolved	mg/L	0.021J	0.05	0.05	0.065	0.072	89	102	75-125	10	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092



**QUALIFIERS** 

Project: Plant McManus
Pace Project No.: 92466089

### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

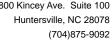
NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.


N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

### **ANALYTE QUALIFIERS**

- BC The same analyte was detected in an associated blank at a concentration above 1/2 the reporting limit but below the laboratory reporting limit.
- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.





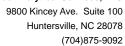
### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: Plant McManus
Pace Project No.: 92466089

Date: 03/31/2020 03:53 PM

ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch	
2466089001		EPA 3010A	526783	EPA 6020B	526805	
2466089002	T2-2HT	EPA 3010A	526783	EPA 6020B	526805	
2466089003	T2-2HTS	EPA 3010A	526783	EPA 6020B	526805	
2466089004	T2-2LT	EPA 3010A	526783	EPA 6020B	526805	
2466089005	T2-3HT	EPA 3010A	528310	EPA 6020B	528347	
2466089006	T2-3HTS	EPA 3010A	528310	EPA 6020B	528347	
2466089007	T2-3LT	EPA 3010A	528310	EPA 6020B	528347	
2466089008	T2-4HT	EPA 3010A	528310	EPA 6020B	528347	
2466089009	T2-4HTS	EPA 3010A	528310	EPA 6020B	528347	
2466089010	T2-4LT	EPA 3010A	528310	EPA 6020B	528347	
2466089011	T1-1HT	EPA 3010A	528310	EPA 6020B	528347	
2466089012	T1-1LT	EPA 3010A	528310	EPA 6020B	528347	
2466089013	T1-2HT	EPA 3010A	528310	EPA 6020B	528347	
2466089014	T1-2HTS	EPA 3010A	528310	EPA 6020B	528347	
2466089015	T1-2LT	EPA 3010A EPA 3010A	528310	EPA 6020B	528347	
2466089015 2466089016	T1-3HT					
2466089016 2466089017	T1-3HTS	EPA 3010A EPA 3010A	528310 528310	EPA 6020B EPA 6020B	528347 528347	
2466089018	T1-3LT	EPA 3010A	528310	EPA 6020B	528347	
2466089019	T1-4HT	EPA 3010A	528310	EPA 6020B	528347	
2466089020	T1-4HTS	EPA 3010A	528310	EPA 6020B	528347	
2466089021	T1-4LT	EPA 3010A	528310	EPA 6020B	528347	
2466089022	T3-1HT	EPA 3010A	528310	EPA 6020B	528347	
2466089023	T3-2HT	EPA 3010A	528310	EPA 6020B	528347	
2466089024	T3-2HTS	EPA 3010A	528310	EPA 6020B	528347	
2466089025	T3-2LT	EPA 3010A	528311	EPA 6020B	528348	
2466089026	T3-3HT	EPA 3010A	528311	EPA 6020B	528348	
2466089027	T3-3HTS	EPA 3010A	528311	EPA 6020B	528348	
2466089028	T3-3LT	EPA 3010A	528311	EPA 6020B	528348	
2466089029	T3-4HT	EPA 3010A	528311	EPA 6020B	528348	
2466089030	T3-4HTS	EPA 3010A	528311	EPA 6020B	528348	
2466089031	T3-4LT	EPA 3010A	528311	EPA 6020B	528348	
2466089032	MCM-05HT	EPA 3010A	528311	EPA 6020B	528348	
2466089033	MCM-05LT	EPA 3010A	528311	EPA 6020B	528348	
2466089034	MCM-06HT	EPA 3010A	528311	EPA 6020B	528348	
2466089035	MCM-06LT	EPA 3010A	528311	EPA 6020B	528348	
2466089036	MCM-07HT	EPA 3010A	528311	EPA 6020B	528348	
2466089037	MCM-07LT	EPA 3010A	528311	EPA 6020B	528348	
2466089038	DUP-01	EPA 3010A	528311	EPA 6020B	528348	
2466089039	MCM-05HT ASHPOND	EPA 3010A	528311	EPA 6020B	528348	
2466089040	MCM-06LT ASHPOND	EPA 3010A	528311	EPA 6020B	528348	
2466089041	MCM-05LT ASHPOND	EPA 3010A	528311	EPA 6020B	528348	
2466089042	MCM-07HT ASHPOND	EPA 3010A	528311	EPA 6020B	528348	
2466089043	MCM-07LT ASHPOND	EPA 3010A	528311	EPA 6020B	528348	
2466089044	MCM-06HT ASHPOND	EPA 3010A	528311	EPA 6020B	528348	
2466089045	BG-1LT	EPA 3010A	528312	EPA 6020B	528350	
2466089045 2466089046	BG-2HT	EPA 3010A EPA 3010A	528312	EPA 6020B	528350	

(704)875-9092




### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: Plant McManus
Pace Project No.: 92466089

Date: 03/31/2020 03:53 PM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
2466089048	MCM-08LT	EPA 3010A	528312	EPA 6020B	528350
2466089001	T2-1HT	EPA 3010A	527145	EPA 6020B	527187
2466089002	T2-2HT	EPA 3010A	527145	EPA 6020B	527187
2466089003	T2-2HTS	EPA 3010A	527145	EPA 6020B	527187
2466089004	T2-2LT	EPA 3010A	527145	EPA 6020B	527187
2466089005	T2-3HT	EPA 3010A	527145	EPA 6020B	527187
2466089006	T2-3HTS	EPA 3010A	527145	EPA 6020B	527187
2466089007	T2-3LT	EPA 3010A	527145	EPA 6020B	527187
2466089008	T2-4HT	EPA 3010A	527145	EPA 6020B	527187
2466089009	T2-4HTS	EPA 3010A	527145	EPA 6020B	527187
2466089010	T2-4LT	EPA 3010A	527145	EPA 6020B	527187
2466089011	T1-1HT	EPA 3010A	527145	EPA 6020B	527187
466089012	T1-1LT	EPA 3010A	527145	EPA 6020B	527187
2466089013	T1-2HT	EPA 3010A	527145	EPA 6020B	527187
2466089014	T1-2HTS	EPA 3010A	527145	EPA 6020B	527187
2466089015	T1-2LT	EPA 3010A	527145 527145	EPA 6020B	527187
2466089016	T1-3HT	EPA 3010A	527145 527145	EPA 6020B	527187
2466089017	T1-3HTS	EPA 3010A EPA 3010A	527145 527145	EPA 6020B	527187
2466089018	T1-3HT3	EPA 3010A	527145 527145	EPA 6020B	527187
466089019	T1-4HT	EPA 3010A	527145 527145	EPA 6020B	527187
466089020	T1-4HTS	EPA 3010A	527145 527145	EPA 6020B	527187
466089021	T1-4LT	EPA 3010A	527147	EPA 6020B	527190
	T3-1HT	EPA 3010A	527147 527147	EPA 6020B	527190
466089022 466089023	T3-1H1 T3-2HT	EPA 3010A EPA 3010A	527147 527147	EPA 6020B	527190
	T3-2HTS				
2466089024		EPA 3010A	527147	EPA 6020B	527190
2466089025	T3-2LT	EPA 3010A	527147	EPA 6020B	527190
2466089026	T3-3HT	EPA 3010A	527147	EPA 6020B	527190
2466089027	T3-3HTS	EPA 3010A	527147	EPA 6020B	527190
2466089028	T3-3LT	EPA 3010A	527147	EPA 6020B	527190
2466089029	T3-4HT	EPA 3010A	527147	EPA 6020B	527190
2466089030	T3-4HTS	EPA 3010A	527147	EPA 6020B	527190
2466089031	T3-4LT	EPA 3010A	527147	EPA 6020B	527190
2466089032	MCM-05HT	EPA 3010A	527147	EPA 6020B	527190
466089033	MCM-05LT	EPA 3010A	527147	EPA 6020B	527190
2466089034	MCM-06HT	EPA 3010A	527147	EPA 6020B	527190
466089035	MCM-06LT	EPA 3010A	527147	EPA 6020B	527190
2466089036	MCM-07HT	EPA 3010A	527147	EPA 6020B	527190
466089037	MCM-07LT	EPA 3010A	527147	EPA 6020B	527190
466089038	DUP-01	EPA 3010A	527147	EPA 6020B	527190
466089039	MCM-05HT ASHPOND	EPA 3010A	527147	EPA 6020B	527190
2466089040	MCM-06LT ASHPOND	EPA 3010A	527147	EPA 6020B	527190
466089041	MCM-05LT ASHPOND	EPA 3010A	527148	EPA 6020B	527192
2466089042	MCM-07HT ASHPOND	EPA 3010A	527148	EPA 6020B	527192
2466089043	MCM-07LT ASHPOND	EPA 3010A	527148	EPA 6020B	527192
2466089044	MCM-06HT ASHPOND	EPA 3010A	527148	EPA 6020B	527192
2466089045	BG-1LT	EPA 3010A	527148	EPA 6020B	527192
2466089046	BG-2HT	EPA 3010A	527148	EPA 6020B	527192





### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92466089047	MCM-04LT	EPA 3010A	527148	EPA 6020B	527192
92466089048	MCM-08LT	EPA 3010A	527148	EPA 6020B	527192

SAMPLE CONDITIONS WO#: 2628570 State / Locati 8 Residual Chlorine (Y/N) 7 0880 THE 841/20 CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields mu IIAH DATE kevin.herring@pacelabs.com, ACCEPTED BY ! AFFILIATION Dissolved Metals by 6020 Metals by 6020 JEST SSEVIENA N/A Other **lonsrbeM** EOSSZ6N HOBN Pace Quote:
Pace Project Manager:
Pace Profile # 2919 ЮН Section C Involce Information EONH Company Name POSZH 1 Attention: TIME peweseudun # OF CONTAINERS dalala SAMPLE TEMP AT COLLECTION DATE TIME 200 DATE Coxes Stroken RELEASURED BY LAFFILLATION Ster printe pos क्ष्मिक्षित विश्व SOFILE INES CENTRO NATO S Gellon woo S Gallinao 1452 Sto Hillohiseo CTENTANTO नाताकाति हु TIME Se Latita 1355 SG Lipping 5 C 21 20 HE Purchase Order #: Project Name: Plant McManus SW Project #: START Required Project Information Millet, Lea SAMPLE TYPE (G-GRAB C-COMP) MATRIX CODE (see valid codes to left) Report To. Section B Copy To \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ MATRIX
Critishing Wester
Waster
Waster
Product
Son/Solid
One
Wipe One Character per box. (A-Z, 0-9 /, -). Sample ids must be unique 1003 Weatherstone Parkwey SAMPLE ID MCK OF W THE DAY lea.millet@resoluteenv.com MCM-O'TUT TZ-4 KYS 72-34555 72 2 WYS Suite 320, Woodstock, GA 30188 7.45 Z Ó 1 250 72-2HT Phone (251)776-2760 Requested Due Date: H Pace Analytical Georgia Power SHE tequined Client Information: 1 9 10 ~ # WBLI

Page 73 of 88

PRINT Name of SAMPLER:

Samples Intact (Y/N)

(V/V)

Doland Sealed

(N/A)

Received on

LEMP IN C

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

TT PARTIES.	Saction D		:
Required Client Information:	Recuired Project Information:	(ocmetion:	30.00
Company: Calonia Preser	Report To: Miller Les		rage: 1 O
1	Copy To: W. San Strates	Company Name.	
Suite 320, Woodstock, GA 30188		Address:	RegulatoritApencyl
ili. Iea.millet@reschiteenv.com / 6 fronch. M. Jae.	S(a) Purchase Order #.	Pace Quote:	Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contro
Phone: (251)776-2760 Fax 172(4) 1-15-6/. Project Name: Requested Due Date:	Project Name: Plant McManus SW	Pace Project Manager kevin herring@penslabs.com	State Automation
MATR	(Mel of se	Preservatives M	
	Dirking Wester DW WT 85 Ca. Wester WT 87 M S Ca. Wheele Water WW Product P S W S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca. S Ca.	SE TOTAL	(N/A) <b>e</b> u
One Character per box. Woe (A-Z, 0-9 /, -) And Sample Ids must be unique Tissue (Tissue A-Z)	\$ € € E	SAMPLE TEMP A Motassorod Metranol Macountaine Metranol Macountaine Metranol Macountaine Metranol Macountaine Metranol Macountaine Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol Metranol	inoirtO laubiseR
MCM-OHLT	2511 actals	7. T	GON
MCM-OBLY	FG photogram	25% V	Q TOM
ŭ :			
96			
11.			
Appro	JEST PROUNTIES STOCKET FELLATION DE	Accession of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	SAMPLE CONDITIONS
Parket Charles	2000	Sept Colors	
	Comacobinas/Pace alui	D 13.16 K. Wellingfor / Pace 2/4/90	27 7 72
MO#: 2628593	BANEALER VALETAND SIGN PRINT Name of SAMPL SECONTURE of SAMPLE	Application Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Co	TEMP in C Secoled (YAN) Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed Cushed
-			

# CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

		7	12	10 9	<b>.</b> 4	6 %	4 8	8	*	ITEM#	Request	Phone:	Suite 32	Address	Company	Section A
WO#: 2628594		ا بدلين الماره	Spainter Tradition					BG-247	86-11-1	SAMPLE ID One Character per box. (A-Z, 0-9 / ,-) Sample ids must be unique	Requested Due Date:	(251)776-2760 Fax:	0, Woodstock, GA 30188	Address: 1003 Weatherstone Parkway	18	A THE PRESIDENT
594	OF K	Kww	700					44	42	MATRIX CODE (see valid codes to left)  MATRIX CODE (see valid codes to left)	Project #:	Project Name:	Purchase Order #	Copy To: \	Report To: Millet Lea	Section B
PRINT N	manarobick/Price	St. As a St.	NOTATE OF THE PROPERTY.					G zhan	G zízizo cess	SAMPLE TYPE (G=GRAB C=COMP)  COLLECTED  START  DATE  TIME  DATE		Plant McManus SW	Literat @ icsolvite G	Copy To: ballings, Strates	imormation:	
T Name of SAMPLER:	2/4/20 2/4130	26/25 1639	DATE: THE					<b>N</b>	<del> </del>	SAMPLE TEMP AT COLLECTION  F OF CONTAINERS  Unpreserved	Pace P			$\  \ $		Section C
- 15c	e K. W.	- James /	<b>1</b>					<b>A</b>	<i>\</i>	H2SO4 HNO3 HCI NaOH Na2S2O3 Methanol	Ш	Pace Project Manager: kevin.h	uote:	Company Name:	Invoice information:	ıc
Scotty Chant	Muspon/Pac		o mrg direction							Other  ATOTISES Gest  VIN  Metals by 6020  Dissolved Metals by 6020	Notes	vin harrag@pacelabs.com,			20	
	12/ 12/	2/3/20 1638	Olem Tues								Thurst Countries services of the					
TEMP in C  Received on Ice (Y/N)	7 2.99	*   	NAME OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERS		EXPERIMENT OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF			K	140	Residual Chiorine (Y/N)	GA.	State (Loration	Pagastas/Apanay		Page: 1	
Custody Sealed Cooler (Y/N) Samples Intact (Y/N)	7	Y Y	Capping and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second a second and a second and a second and a second and a second and a second and a second and a second and a second and a second a					Ø	b				ne/		0	

Due Date: 02/06/20 8 CLIENT: 26-GA Power Residual Chiorine (Y/N) I 2/4/20/08/00 CHAIN-OF-CUSTODY / Analytical Request C
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields mu kevin.heming@pacelabs.com Dissolved Metals by 6020 Metals by 6020 RIA. Sulfrage Yest lonarbeM Nª2S2O3 HOBN Attention:
Company Name:
Address:
Pace Quote:
Pace Project Managar. 2919 HCI nvoice information Pace Profile #: EONH H2504 DevieserquU # OF CONTAINERS SAMPLE TEMP AT COLLECTION 21-12 TIME 욂 DATE COLLECTED Version Streets SG Kulzalians SSEL achita PISS G Chita orus 8 Picaluta Jase SChopolass ZG zilizo mas S Capito Icolo Purchase Order #; Project Name: Piant McManus SW START SG Zubo SG PARE SGritto Report To: Millet, Lea (G=GRAB C=COMP) SAMPLE TYPE MATRIX CODE (see valid codes to left) Copy To: Project # MATRIX
Drinking Weter
Water
Water
Waste Water
Product
SoviBoid
ON
Wipe
Ar
Ar
Tissue MCM CONT PASSO SAMPLE ID
One Character per box.
(A-Z, 0-8 /, -)
Semple lids must be unique 1003 Weatherstone Parkway MEN OF LA Company: Georgia Power Address: 1003 Westherstone F Suite 320, Woodstock, GA 30188 Email lea.millet@resoluteenv.com Phone: (251)776-2760 MENSONELS TA LINTS STATE 7 11-319 41-14 Face Analytical LA LA (251)776-2760 Required Client Information: 812 218 Pro Daly Requested Due Date: # M3TI

MO#: 2628595

ntact (Y/V) Samples (N/A) Cooler pelees

(N/A)

Received on

TEMP in C

Page 76 of 88

Due Date: 02/06/20 (N/A) Samples (NA) MO#: 2628595 Cooler pelee Custod (NVA) Received on Residual Chlorine (Y/N) CLIENT: 26-GA 9 TEMP IN C 2/3/20 /654 00/11/0 OPINE CHAIN-OF-CUSTODY / Analytical Request Do The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must and langt amo Kevin herring@pacelabs.com Dissolved Metals by 6020 Metals by 6020 171 **"新生 新环 (研**安 Other lonsrbeM Preservatives EOSSZ8N HORN Pace Project Manager Pace Profile # 2919 involce information: HCI Company Name EONH Pace Quote **≯**OSZH Section C Attention: 8401 Comora Stole Pacalifizo 13:16 Devieserdnu 222 LEST # OF CONTAINERS SAMPLE TEMP AT COLLECTION TIME 2 DATE COLLECTED Copy To: Miller, Lea SPC Man SHS S'G PUNDO PANT and caleta Pa Se papalass HQ. SC Aclas ILL Fig prepara Project Name: Plant McManus SW START SG 2thon Delegand Required Project Information: SAMPLE TYPE (G-GRAB C-COMP) Purchase Order # MATRIX CODE (see valid codes to left) Section B Project #: CODE WAT WAT AND PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART MATRIX
Denoting Water
Person
Whate Whate Welve
Product
Product
Out
Wee
An
Cott One Character per box. (A-2, 0-9 /, -) Sample lds must be unique 1003 Weatherstone Parkwey SAMPLE ID ## 3-3-5 NCW OSLY MCM-OK 17 80-93W 73 25 73 /ES Suite 320, Woodstock, GA 30188 17 23-2-5 Face Aralytical (251)776-2760 Georgia Power Required Client Information -000 Requested Due Date 119 Page 77 of 88 * M3TI

### Pace Analytical

Section C Invoice information: Attention:

CHAIN-OF-CUSTODY / Analytical Request Dr 10#: 2628595

SAMPLE ID  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Character per bot.  On Characte		DATE Signed:		PRINT Name of SAMPLER:	PRINT I	
SAMPLE ID  SAMPLE ID  On Character per box.  When we will will be will per box.  When we will be will per box.  When we will be will per box.  When we will be will per box.  When we will be will per box.  When we will be will per box.  When we will be will per box.  When we will be will per box.  When we will be will per box.  When we will be will per box.  When we will be will per box.  When we will be will per box.  When we will be will per box.  When we will be will per box.  When we will be will per box.  When we will be will per box.  When we will be will per box.  When we will be will per box.  When we will be will per box.  When we will be will per box.  When we will be will per box.  When we will be will per box.  When we will be will per box.  When we will be will per box.  When we will be will per box.  When we will be will per box.  When we will be will be will per box.  When we will be will be will per box.  When we will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be will be	4/20	gar/race	14.1/		4	
SAMPLE ID  Sample for must be unique  There is a server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of the server of			F=1.	معلقاع	Sheephon	١
SAMPLE ID  Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be unique  The Sample its must be u	DOTE	атялится.			CAN LA CERT	50t.540
SAMPLE ID  Sample its must be unique  There is a state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of	L				0	72 /
SAMPLE ID  Semple list must be unique  To G A HAD ATTENDED  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SOC CONTAINERS  Unpreserved  H2SO4  HNO3  HCI  NacOH  Nac25203  Methanol  Other  Metals by 6020	1				وعدامداراء والع	1 72 347
SAMPLE ID  Semple ide must be unique  Take  Semple ide must be unique  Take  Semple ide must be unique  Take  Semple ide must be unique  Take  Semple ide must be unique  Take  Semple ide must be unique  Take  Semple ide must be unique  Take  Semple ide must be unique  Take  Semple ide must be unique  Take  Semple ide must be unique  START  END  SAMPLE TYPE  GEGRAB CACOMP)  TIME  DATE  TIME  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  ROF CONTAINERS  Unpreserved  H2SO4  HNO3  HCI  NaOH  Na2S203  Methanol  Other  Metals by 6020  Metals by 6020	_				3 Ca 1 1 20 1441	u
SAMPLE ID  Semple Ids must be unique  SAMPLE TIME  Semple Ids must be unique  COLLECTED  SAMPLE TYPE  SAMPLE TYPE  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT			-		اعطيالها	1
SAMPLE ID  Sample ids must be unique  SAMPLE ID  Sample ids must be unique  START  SAMPLE TEMP AT COLLECTION  POF CONTAINERS  Unpreserved  H2SO4  HNO3  HCI  NaOH  Na2S2O3  Methanol  Other  Metals by 6020  Metals by 6020	1				عمرساط	u
SAMPLE ID  Sample Ids must be unique  SAMPLE TEMP  Sample Ids must be unique  Thus  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  HOS  HOS  HOS  HOS  Na2S203  Methanol  Other  Metals by 9020			-			
SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SOF CONTAINERS  Unpreserved  H2SO4  HNO3  HCI  NeOH  Ne2S2203  Methanol  Other  Metals by 5020	1				24/120	
SAMPLE ID  One Character per box.  (A-Z-0-91 - 1)  Sample Ids must be unique  Titue  AMATRIX CODE (see velid codes to left)  SAMPLE TYPE (G=GRAB C=COMP)  Titue  SAMPLE TYPE (G=GRAB C=COMP)  Titue  SAMPLE TYPE (A=GRAB C=COMP)  Titue  SAMPLE TYPE (A=GRAB C=COMP)  Titue  SAMPLE TEMP AT COLLECTION  # OF CONTAINERS  Unpreserved  H2SO4  HNO3  HCI  NaOH  Na2S203  Methanol  Other  Metals by 9020					3	MCM OTHER
SAMPLE ID  Sample ids must be unique  MATRIX CODE (see valid codes to left)  SAMPLE TYPE (G=GRAB C=COMP)  Tasses  SAMPLE TEMP AT COLLECTION  # OF CONTAINERS  Unpreserved  H2SO4  HNO3  HCI  NaOH  Na2S203  Methanol  Other  Metals by 6020					टा ज्याहिक	171-2W75
SAMPLE ID  One Character per box.  (AZ, 0-9/)  Sample ids must be unique  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Time  DATE  Time  DATE  Time  DATE  Time  DATE  Time  Preserved  H2SO4  H103  HCI  NaOH  Na2S203  Methanol  Other  Metals by 6020  Metals by 6020					حدالاه	
SAMPLE ID  One Character per box.  (A-Z, 0-9) /- ;  Other  MATRIX CODE (see valid codes to left)  Sample Ids must be unique  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  Tissue  T					وعلالم	7
SAMPLE TO COLLECTED  Sample ids must be unique  MATRIX CODE  SAMPLE TYPE  G=GRAB C=COMP)  SAMPLE TYPE  G=GRAB C=COMP)  FOR Character per box.  Air  Air  Air  Air  Air  Air  Air  Ai					مطابلا ی	
COLLECTED Z Preservatives		Analyses Test Metals by 6020	Unpreserved H2SO4 HNO3 HCI NaOH Na2S2O3	SAMPLE TEMP AT COLLECT	献日表 製 名 学 マ 製 名 S MATRIX CODE (see valid coo SAMPLE TYPE (G=GRAB C	SAMPLE ID One Character per box. (A-Z, 0-81; -) Sample ids must be unique
		VAC 1	Preservatives		es to left) =COMP)	MATRIX
	L	ming@pacelabs.com.		P	Project Name: Plant McManus SW	1 1
76-2750 Fax Project Name: Plant McManus SW	Ц		ace Quote:	-	Purchase Order #:	- 12
SCA 30100 Purchase Order #: Pace Quote:  76-2760 Fax: Project Name: Plant McMarus SW Pace Project Manager:	CACA7	25	company Name:	• 0	Сору То:	Address: 1003 Weatherstone Parkway
tone Parkway  Copy To: Company Name:  Address:  Address:  Purchase Order #: Pace Quote: Project Name: Plant McManus SW  Pace Project Manager: kevin.herring@pacelabs.com,			dention:	<b>S</b>	Report To: Miller, Lea	Company: Georgia Power
Attention:  Perfection Parkway  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Address:  Address:  Pace Quote:  Pace Project Name: Plant MoManus SW  Pace Project Manager: kevin.heming@pacelabs.com,	=	ů!	Invoice information:	<b>5</b> 4	Required Project Information:	Section A  Required Client information:

CHAIN-OF-CUSTODY / Analytical Request Doc
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must? WO#: 2628595

528595 Page 79 of 88

				ç				8	6									ITEM#		Reques	Phone:	Email:	Address	Company:	Section A
			V	11 Om	MARANOS (MODERATOR	MGN-054- Labour	13-2475	13-36	T3-3WTS	73 4HT	T3 HHTS	72.25	7 3 7	72-465	THE OF IT	MCM-D6 LT ASUR	12-4H-12	SAMPLE ID  Sample Ids must be unique  Was ample Ids must be unique  Sample	MAI Dri	Requested Due Date:	(251)776-2760 Fax	Email: lea.milleughrasolulaerry.com	x 1003 Weatherstone Parkway	прелу: Georgia Power	1 A
PRINT	Spirit Confe	Comorpodick / Pare	L. Carre	Colored Colored	NOTES IN HIS WAY TO BE TO BE THE	2 G 2445 1430	Sam artela to s	क्रिम्भवविद्या विक्र	के दिन प्रदेशका भराहित	०३६० व्यापन ० दुन	भारत व्यक्ति के	क्रमा व्यक्ति र जुन	C MALTO WELD	Ames with a syst	अक्षेत्र क्षेत्रीय श्रीकृ	क्रिक्टकरायम् ठाइन	माझावसाम म्यूक	Water Webs Webs Webs Webs Webs Webs Webs Webs	OWN (No. of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the st	Project #:	Project Name: Plant McManus SW	Purchase Order #:	5	Report To: Milet, Lea	Section B Required Project Information:
Name of SAMPLER:	MANAGE CANAGE STATES	ना है। व्यामान	- 1/4/20 10H	D ZJalzo Ibesu	Series Dives	-	-		1				  -  -	E			111	SAMPLE TEMP AT COLLECT OF CONTAINERS Unpreserved		Paca Profile #:	Pace Pro	Pace Quote:	Company Name:	Attention:	Section C Invoice in
W State	,	1 Wellington	Homoro Hote	1 House	niosoliu-eniv													H2SO4 HN03 HCI NsOH Na2S203 Methanol Other	Preservatives	xíle #: 2919	Manager:	iote:	y Name:	Attention:	C C
DA/ESigned:	To the second second	space o	Pace a	1	September		- 2	-	-	í			-		-	-	-	Metals by 6020 Dissolved Metals by 6020	NR Y	(New Association)	kevin.herring@pacelabs.com				
		14/20 12/10	al 4/a0 10:48	3/20	Carre Duffe															Master of Walt				CLIENT: 26-GA	PM: KH
TEMP in C		40		1		E	L.		L			L		L			L	Residual Chlorine (Y/N)			No.		10000	SA Power	9
Received of Ice (Y/N)	xn	~		<	Mary															ğ	(Doodbo			=	Due Da
Custody Sealed Cooler (Y/N)		1		<	South															The second	NEWSTRANS.		300		Date: 0
Samples Intact (Y/N)		1		~		TIME TO															STATE OF THE PERSON				<b>02/06/20</b> ge 7

(MY) seldmas (N/A) Cooler pelees MO#:2628598 (N/A) 8 Received on Residual Chlorine (Y/N) TEMP in C 12/6 1634 10.18 241/20/ 2/3/10 2/4/30 The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields m CHAIN-OF-CUSTODY / Analytical Request [ kevin.herring@pecelabs.com, Lonies about Have Described Metals by 6020 7 Metals by 6020 2/3 reel spaylena 2005 Detho lonsriteM Preservatives Na2S203 HOPN Attention:
Company Name:
Address:
Pace Quote:
Pace Project Manager:
Pace Profile #: 2919 нсі Section C Invoice information EONH #OSZH <u>3:</u> للكطلا ديجاجاء 2/01 C2/h/2 DeviesendnU # OF CONTAINERS 4/4/30 SAMPLE TEMP AT COLLECTION S DATE Comer oder per Pere COLLECTED 5/6 by 120 1355 S C ZILIZO ISHO SG Supo 1362 \$ C 21/120 1355 Ze askis 282 SC putto 1334 वनाक वर्गाक SG dulan ores SG zujan booto S Galifa Tonk **695**k Plant McManus SW START SGPIND DATE Required Project Information Report To: Miller Lea Copy To: 1 G SAMPLE TYPE (G=GRAB C=COMP) Project Name: Project #: Purchase Order #: MATRIX CODE (see valid codes to left) Section B MATRIX
Density Water
Water
Water
Water
Water
Product
Society delay
Mayor
Ar
Ar
Cober
Trease One Character per box. (A-Z, 0-9 /, -) Sample Ids must be unique NEW O LA 1003 Weatherstone Parkway SAMPLE ID MCM. OO ST Emeil: lea millet@rescluteenv.com Phone: (251)776-2760 Requested Due Date: MANAGTEL-S TY LINTS Company Georgia Power Address 1003 Weatherston Buths 320, Woodstock, GA 30189 4 17 1 71-319 THE P Pace Analytical ST. ST. ST. 772 78 Required Client Information 3 Page 80 of 88 ITEM #

Due Date: 02/05/20 (NVA) ntact MO#: 2628598 (N/A) Cooler **Delae**S Custody (N/A) CLIENT: 26-GA Power 80 по bevieceя Residual Chlorine (Y/N) 1 TEMP in C 0050 pc/h/6 P. X DATE The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be c kevin herring@pacefabs.com, Dissolved Metals by 6020 Metals by 6020 N/A test services Scote Other lonarteM N₈2S2O3 Preservatives HOBN 2919 Pace Project Manager Section C Invoice Information: HCI Company Name Address Pace Quote Pace Profile # **EONH** HS204 Attention Unpreserved AND CACIFORNICAS CENT # OF CONTAINERS SAMPLE TEMP AT COLLECTION DATE 뿔 2 DATE COLLECTED SG 212/m Mass P G DISSON STRIS S G zustonent A G ZINDUD September Sichaspara TIME S C Halzo Hay Purchase Order #: Project Name Plant McManus SW Project #: 1 START 29G Klalm DATE Required Project Information: Report To: Miller, Lea SAMPLE TYPE (G-GRAB C-COMP) MATRIX CODE (see valid codes to left) Copy To MATRUX
Drinking Water
Waste Writer
Waste Writer
Product
Product
Out
Wipe
Ak
Ak
Chies 3 One Character per box. (A-2, 0-9 / , -). Sample ids must be unique Georgia Power 1003 Weatherstone Parkway Mem OSLA SAMPLE ID 3-3-3-5 MCH OS & DI SO-17M Suite 320, Woodstack, GA 30188 Email: Jea.millet@nesclukeenv.com 多 73 /HZ 77 73 215 (251)776-2760 Pace Analytical 200 Requested Due Date Page 81 of 88 ILEM *

CHAIN-OF-CUSTODY / Analytical Request Docur

Due Date: 02/05/20 (A/N) Iutect Semples (N/A) Cooler WO#: 2628598 polen; (N/A) CLIENT: 26-GA Power 8 Received on Residual Chlorine (Y/N) LEMP N.C 2/1/2 DIATE CHAIN-OF-CUSTODY / Analytical Request Doc The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must b Pace kevin.hentra@pacelabs.com, Dissolved Metals by 6020 . WellingADN Metals by 6020 Sel seguend SIA IonartiaM Nessos Preservatives HOBN Pace Quote:
Pace Project Manager
Pace Profile #: 2919 ЮН Section C Involce Information: Attention: Company Name: EONH POSZH Onpreserved 1 # OF CONTAINERS SAMPLE TEMP AT COLLECTION Zialzo DATE 잂 DATE Variable Street COLLECTED APC CALLES COPE Chapter Chap Servand De 3 G 2 Wan 1360 A Calebrower Catalana De Sandapa Pas G ट्राम्याप्टि Se ruite oft Gram item Ple suppositi Cuty Original Plant McManus SW START Required Project Information: Report To: Miller, Lea Copy To: (GMOD=0 8ARD=0) 34YT 3J4MA2 Purchase Order #: MATRIX CODE (see valid codes to left) Project Name: Project #: Section B MATRIX Drinking Weeker Waster Waster Waster Product Product SoafSoald Oll Wife All Other Tissue MCM DO LT ASING One Character per box. (A-Z, 0-9 /, -) Sample kts must be unique FACE OF L 1003 Weatherstone Parkwa SAMPLE ID Maniost Email: tea.millat/gresoluteony.com 3 245 THE CT Suite 320, Woodstock, GA 30188 53 LAA THE-EL THE LEFT 72-46 72.24 7 37 315 Phone: (251)776-2760 Requested Due Dete: Pace Aralytical Georgia Power tequired Client Information â Page 82 of 88

ITEM #

Due Date: 02/05/20 ntact (Y/V) Semples MO#: 2628598 (NA) Cooler belse Chargod CLIENT: 26-GA Power (N/A) B Received on Residual Chlorine (Y/N) TEMP in C 165 10:48 1216 PA: KH ON/NO 2/3/20 84 20 CHAIN-OF-CUSTODY / Analytical Request Docur The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be c Compactical to kevin.herring@pscelabs.com, Occopy d sistem bevood Metals by 6020 NA 1801 SOSYMICA JA6081 Other Methanol スとい人 Preservatives EOZSZBN HOEN Pace Quote: Pace Project Manager 2919 HCI nvoice information. Attention: Company Name: Pace Profile #. EONH H2SO4 Section C 8401 001 2/4/20 12:10 HS4 peviesendun * OF CONTAINERS SAMPLE TEMP AT COLLECTION DATE S DATE COLLECTED tehonograph / Pac SC 211/20 HUSE SG plane rout A G ZINIS IOUD S Chapa SS SHOO CERTO SHE रीट व्रयक्ति विम् Signatura Purchase Order #: Project Name: Plant McManus SW l START PSG kalas DATE SAMPLE TYPE (G-GRAB C-COMP) MATRIX CODE (see valid codes to left) Copy To: Section B Project #: MATRIX Dinitions Water Waste Waste Waste Water Product Sold/Solid Oal Wipe Ar Chree MCM-OSY'S PERSON One Character per box. (A-2, 0-9 f, -) Sample ids must be unique 1003 Weatherstone Parkwa SAMPLE ID MCK OS 17 KO-375 lea.millet@rosch.deenv.com 3 13 CE Surte 320, Woodstock, GA 30188 (251)776-2760 Pace Analytical Georgia Power Requested Due Date: 0 Company Page 83 of 88 # MB11 φ

Pace Analytical

## CHAIN-OF-CUSTODY / Analytical Request D

The Chain-of-Custody is a LEGAL DOCUMENT: All relevant fields mu Section C Invoice information: Attention: Company Name:

2628599	#0#
	1:26
	285
	99

Received Ice (Y/N) Custody	TEMP in		DATE Sumed:	*	1		M	C	1 × 3 × 3					
	c				DAY SEED		dijaruija Di EB:	ASIO	Serial Property					3
				/ /	,	,	4	Holl C						2
9	216 4	094	stilicate	Apr /:	Well in	100	_	Le Billian	Show Out By Price	Series .	Se se se se se se se se se se se se se se			
[6] [1]	10:48	08/11	JPac a	34.00	mere	Sh 8h01	00 00	2/4	12	1	V		(	
_	1654 -	13/20 /	//	NY	Ma	150	-	O Halz	- Call Carp	100	K		Endy	8
NAMES		DATE	A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA	minima da	, Alexander	THE PERSON NAMED IN		DATE:	D BYVAR FLATION	<b>DESCRIPTION</b>	-		SUMERINGO TANGOCKON	
							=		व व्यामक १५३०	F 10 24		Service Services	MEN-OSHT L	12
	8.5.						E		<b>डक्का</b> वर्द्धा	THE PASS			2 2452	
							E		CHHOS	محادرة كالمحد			3 3 5	10
							-		PATH GETE	C			3 3475	9
							-		1360	Wate De	i.o.	6	3-4HT	
							E		THE THE	att 19 5			3 HHTS	1
					9 1		E		SELIN CONTO	\$ C #			2-214	0
						-	Ξ		ध्यम् व्यक्त	100 PM			7-31-7	
							E		जनका व्यक्ति	الم المح			52-415	
Γ						_	E		Control of	S Co Day			Miller O.L.	3 5
	=16 67						=		CESO CIPLE	D.			MCA TO DO WAY	2
			-	200		9	F		माजिवद्याम	1 13 S			12-411-2	
Residual Chlori			Dissolved Meta	Other Alta fysics Metals by 6020	HCI NaOH Na2S2O3	Unpreserved H2SO4 HNO3	SAMPLE TEMP	DATE TIME	DATE TIME	MATRIX CODE SAMPLE TYPE	경 <b>3 A 돛</b>	Wige All Other Thause	One Character per box. (A-Z, 0-9 /, -) Sample kds must be unique	ITEM#
ine (Y/N)	1107			Test				END END	START	(See valid coo	C St D W W	Water Waste Weter Product Soll/Solid Oil	SAMPLE ID	
			<b>Z</b>	YIR	Preservatives	Pre	ON	TED	соцестев	_	00 CO	MATRIX		-
5	3	W. Powerin West	Requested Ana	Mark.	1010	н	$\ $							
September 1		NO.	labs.com,	kevin herring@pacelabs.com,		Pace Project Manager Pace Profile # 2010	Pac		Plant McManus SW	Plant N	Project #		(251)776-2760  Fax:	Requested Due Date:
						Pace Quote:	Pac			er#	Purchase Order #:		9	0
				1000	100	Address	Add		1	,			Suite 320, Woodstock, GA 30188	Suita 320,
	AL PRESIDE	2628599	2			Company Name:	CO		2	100	Copy To:	1	1003 Weatherstone Parkway	Address.
					93	Alterdor	Alla		uon:	Miles I an	Report To: Nilled Lea		Company: Georgia Power	Company
						Section C	Sec				Section B		llavi information:	Section A

# CHAIN-OF-CUSTODY / Analytical Request Dr WO#: 2628599 The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields mus

Required Client Information:
Company Georgia Power
Address 1003 Westherstone Parkway
Build 320, Woodstock, GA 30188
Email les miles gressules riv com
Phone: (251)776-2780 Fax.
Requested Due Date: Required Project information:
Report To: Miles Lea
Copy To: Miles Lea Section C Invoice information: Attention: Company Name: PH: X CLIENT: 26-GR Power 28599

Page 85 of 88

				0														ITEM#			13		9101		3
			C	Li Own	Table of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state	WENT-CASHIT THIS SELLEN	1000	T1-3WTS	13-4HE	11-HHTS	41-72-7	MENSONA	ALCO TO	Y1-315	T1-46T	11-11-1	MEN OT LT AGE	(A-Z, 0-9), -)  Sample ids must be unique  Tesse	SAMPLE ID Product Boulfooks	MATRI Orinkin Visitor Visitor		squessed one care:	(251)776-2760 Fax	leg_millet@resoluteerv.com	6/920, Woodstock, GA 30188
		40	nχ	<b>K</b>													r		 			Erojeci #:	Project Name:	Purchase Order#	
			1	Ď		183	183	43	li,	43	45	3	4	Ju	E,	4,	15	MATRIX CODE	(see vali	d nodes	to left)		атно:	Order	
	1	3	2	F	200	9		6	0	চ	G	S.	1	S	<b>2</b> 0	3	ೂ	SAMPLE TYPE				Š	2	1	
		2	1	2	0.50	مدارد	a tula	6	عدانك		GRIVE	وعلالا		محابات	ट्य	حدابك	4.17	DATE	S				x McMs	П	1
1 2 E		harding I Pac	F	X.	ALC: NAME	2) Had 1355	1355	11/20/1362	CHEL	भड़्ड्र वर्गाह	100	5	ľ	algon	C956	CARS	COTTO	TIME	START		3		Plant McManus SW		1
PRINT Name of su				_				Ī					$\parallel$					DATE	200		ECTED		1		
T-00 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -		a/4/20	7/4	2 2 2	000													TIME	S	1	9	9			
PLER:	Ц	6	$ \omega $	7		L							廿					SAMPLE TEMP	AT COLL	ECTION	$\dashv$	1			1
11		13:16	1048	PS4	7	F	1	F	-	E	E	E	H	-	=	Ε	Ξ	# OF CONTAIN	ERS				8	P	Address:
16	L	10	d	4	6	H	-	-	H		F	777	1			F		Unpreserved H2SO4		-		Pace Profile #:	Pace Project Manager	Pace Quote:	Address:
10	П	K	25	1										•	İ			HNO3			,	18	G Mar		
		M	3			H	-	-	-	-	H		-					HCI				2919	ge.		
8		7	8	1	1					1						H	-	NaOH Na2S2O3	_	_			Ш		1
CO.	9	in	٥	٠ <u>٠</u>	102	Г												Methanol		- · ·	ľ	1	kevin.he	П	
		3	8	11		H				1		Ĺ.,					<u></u>	Other	CAR INCH			1	ering@pacelabs.com		
2.0	-	3	B			Н	I		Т	T			T		T	П		Metals by 602			78	Ĭ	раса		
		2	ĮQ.	7		Ξ	-	E	E	E	E			E	-	Ξ	-	Disspired Me		20	~		805.83		
50		R	35		D = 1									t				*SuCo	لسسا	5	-		Э		
	H,	Ø	Į.	2/		H			-	-	-	-	1000		-						Control			ı	Ì
		ulo	2/4/20	13/20	only-	F			F	F	-		F	1.									100		2
		12/10	10.48	1654	ogia					F			-						23.0	-					į
	H		8	Z			-		7	F				201				-39:	_	1					Officers
TEMP in C		0.4		١			-	_	_	-	-	_	_		_			Residual Chlo	rine (Y/N)	)			Made	The state of	
Received on los (Y/N)				<	SECURE.																	۶	を変	DCBROOM	Selection of
Custody Sealed Cooler (Y/N)				<	Search							5					1						No.	1000	
Samples Intact (Y/N)				\									10							NAME OF TAXABLE			1	-	-

### CHAIN-OF-CUSTODY / Analytical Request Doc The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must t

W0#: 2628599

CLIENT: 26-GR Power

Due Date: 02/07/2007 88

Section A Required Client information: Company: Georgia Power	Section B Required Project Information: Report To: Millyt, Lea ,	Section C Invoice information: Amention:	CLIENT: 26-GA Power
Address: 1003 Weatherstone Parkway	Copy To: Way Sty	Company Name	
Suite 320, Woodstock, GA 30188 Email: lea miller@resoluteenv.com	Purchase Order #:	Pace Quote:	
Phone: (251)776-2760 Fax:	Project Name. Plant McManus SW	Pace Project Manager: kevin havring@pacelabs.com	Binary Legation
ted Due	П	ľ	GA.
	S to left)	Preservatives	
SAMPLE ID One Character per box. (A-Z, 0-9 i, -) Sample kis must be unique	<u> </u>		Residual Chlorine (Y/N)
WCH-DOWN	1385		
T-1 -3MT	G Julyan		
ANT-THE	Gentle action		
	طابعا متنانات كح		
200	care proper		
MGM-OTHIT	3		
17-24 17-24	حلاالء		
72-2 WTS	عداللاح		
72-2HT	5		
12-3495	ST CO BIOL TO HAME		
72-3HT	कर्मिक श्रीहिक विकास		
72-41-7	15 to 1400 1500		
Statement Comments	2	outs TARE	City Time State
الحريد الاصلام	Kanin Shares 2	also local Sales to L.	2/3/20 1654 - 4
L	Salus 67 1 = 1	40m	
STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET	Remove Winter Paralle	6 L. Wellow	-
		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	A CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY O
	PRINT Name of SAMPLER:	SAMPLER:	MP in C
	Day 1	2/2/20	R

### 9 ITEM# 8 ompeny: Georgia Power Idress: 1003 Weatherstone Parkway Jita 320, Woodstock, GA 30188 quired Client Information: lea.millet@resoluteenv.com 3-345 13-44T MCM-06 LT Ashpon MCW-OS HT 73-3WTS 72 215 BE THEN OUT 13-245S 77-31-7 15-4HT 13-4W-2 52-445 Pace Analytical One Character per box. {A-Z, 0-9 / , -} Sample ids must be unique (251)776-2760 ملاس **SAMPLE ID** DOMONT CONTRACTS Fex MATRIX Drinking Weeker Winder Winder Witter Product Soil/Soild Oil Wipe Air Other Tissue Required Project Information: Report To: Millet, Lea Copy To: Project Name: Purchase Order #: Section B 3988685868 Karin Shaganson र्जित विक्रांकि क्ष्मं के कि ا صداداد عامد SELENOMBIED BY LAFELLATION 25 क्रिक्षियं का र्ज (दक्षिक) भड़ क्रिक्रमाव्यक्ष क्षात्रम् व्यक्तिक जनभग्रे व्यादाय मा ज्वास्य क्रम्म माञ्जाक्याम्ब म्यूड् MATRIX CODE (see valid codes to left) ० अद्याक्षितव गुरु SAMPLE TYPE (G=GRAB C=COMP) Plant McManus SW उस्र विकास DATE START SELL) 0 V2V IME MELER NAME AND SIGNATURE COLLECTED PRINT Warms of SAMPLER: CHAIN-OF-CUSTODY / Analytical Reques The Chain-of-Custody is a LEGAL DOCUMENT. All relevant field: DATE 8 2267 DATE SAMPLE TEMP AT COLLECTION Invoice information: Attention: Company Name: Address: 417 # OF CONTAINERS Pace Project Manager. Pace Quote: 텵 Unpreserved H2SO4 HNO3 Preservatives 11 HCI 2919 Wellingtons NaOH No. kevin.herring@pacelabs.com ACCEPTED BY / ATTENDON Na2S2O3 Methanol Other YM **Analyses Test** Metals by 6020 Puce Dissolved Metals by 6020 W0#:2628600 24 DATE 60800 BALL 1.4 Pagalatory Agents TEMP in C State / Local Residual Chlorine (Y/N) B Received on BAMPLE CONDITIONS Ice (Y/N) Custody Sealed Coole (Y/N) Samples Intact (Y/N)

### Face Analytical

Required Client Information:

Georgia Power 1003 Weatherstone Parkway

Required Project Information:
Report To: Millet, Lea

Copy To:

Email: lea.millet@resoluteenv.com
Phone: (251)776-2760 Suite 320, Woodstock, GA 30188

Fax

Project #:

Purchase Order#:

roject Name:

Plant McManus SW

Company Name: Address: Pace Quote:

Pace Profile #: Pace Project Manager:

2919

Y/N

equested Due Date:

ITEM #

One Character per box.
(A-Z, 0-9/, -)
Sample ids must be unique

**SAMPLE ID** 

MATRUX
Drinking Water
Whate Water
Whate Water
Product
Soll/Solid
Oil
Wipe
Air
Other

⊒ ♀ ♣ ₽ ₽ ₽ ₽ ₽ ₽ ₽

MATRIX CODE (see valid codes to left)

START

8

SAMPLE TEMP AT COLLECTION

# OF CONTAINERS

Unpreserved

H2SO4 HNO3

HCI

NaOH

Na2S2O3

Methanol Other

Analyses Test

(G=GRAB C=COMP)

COLLECTED

SAMPLE TYPE

### **CHAIN-OF-CUSTODY / Analytical Request D**

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields mu

Section C

Wellingford ACCEPTED BY / APPRILATION kevin.herring@pacelabs.com Metals by 6020
Dissolved Metals by 6020 Pace 214 DATE 0800 THE TEMP in C Ĺ State / Local Residual Chlorine (Y/N) Received on **BAMPLE CONDITIONS** (Y/N) Custody Sealed Cooler (Y/N) Samples

=

13

þ

3

Ken Shamer

0252

07

ST YEX

AMPLER NAME AND SIGNATURE

PRINT Name of SAMPLER:

Second Liver

ntact (Y/N) NOTAL PROPERTY AND SERVICE OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF

DATE

DIDITIONAL COMMENTS

8

5

13-2-5

2 (chian) 1338 रम्य विदर्भात निरुष

I

3KK-0KK NY 150-1456 WCK-ON HO

2 G DIMENSAME

(4 <u>2</u>2220

111 NEW Y T. Ĭ,

ठ 2

क्रिक्टिक्टिक्टि

<u>ज्याज्याच्याच</u>

13-14T

-245

图13-3-5





March 31, 2020

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: Plant McManus SW

Pace Project No.: 92470735

### Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on March 24, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Asheville

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring

kevin.herring@pacelabs.com

Kan Slary

1(704)875-9092

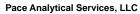
HORIZON Database Administrator

Enclosures

cc: Trent Godwin, Resolute Environmental & Water Resources

Kristen Jurinko

Ms. Lauren Petty, Southern Co. Services


Kevin Stephenson, Resolute Environmental & Water

Resources Consulting, LLC

Stephen Wilson, Resolute Environmental & Water

Resources Consulting, LLC



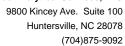


Pace Analytical www.pacelabs.com

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

### **CERTIFICATIONS**

Project: Plant McManus SW


Pace Project No.: 92470735

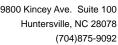
Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 Massachusetts Certification #: M-NC030

North Carolina Drinking Water Certification #: 37712

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222






### **SAMPLE SUMMARY**

Project: Plant McManus SW

Pace Project No.: 92470735

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92470735001	T4-1L	Water	03/18/20 14:18	03/24/20 12:20
92470735002	T4-2L	Water	03/18/20 13:50	03/24/20 12:20
92470735003	T4-3L	Water	03/18/20 13:06	03/24/20 12:20
92470735004	T4-4L	Water	03/18/20 11:55	03/24/20 12:20
92470735005	T4-1HS	Water	03/18/20 17:30	03/24/20 12:20
92470735006	T4-2HS	Water	03/18/20 17:50	03/24/20 12:20
92470735007	T4-3HS	Water	03/18/20 18:12	03/24/20 12:20
92470735008	T4-4HS	Water	03/18/20 18:40	03/24/20 12:20
92470735009	T4-1HB	Water	03/18/20 17:35	03/24/20 12:20
92470735010	T4-2HB	Water	03/18/20 17:55	03/24/20 12:20
92470735011	T4-3HB	Water	03/18/20 18:17	03/24/20 12:20
92470735012	T4-4HB	Water	03/18/20 18:45	03/24/20 12:20
92470735013	POND 4L	Water	03/18/20 11:14	03/24/20 12:20
92470735014	MCM-14L	Water	03/18/20 12:30	03/24/20 12:20
92470735015	POND 4H	Water	03/18/20 17:45	03/24/20 12:20
92470735016	MCM-14H	Water	03/18/20 19:27	03/24/20 12:20
92470735017	DUP-1	Water	03/18/20 00:00	03/24/20 12:20





### **SAMPLE ANALYTE COUNT**

Project: Plant McManus SW

Pace Project No.: 92470735

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92470735001	T4-1L	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92470735002	T4-2L	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92470735003	T4-3L	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92470735004	T4-4L	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92470735005	T4-1HS	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92470735006	T4-2HS	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92470735007	T4-3HS	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92470735008	T4-4HS	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92470735009	T4-1HB	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92470735010	T4-2HB	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92470735011	T4-3HB	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92470735012	T4-4HB	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92470735013	POND 4L	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92470735014	MCM-14L	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92470735015	POND 4H	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92470735016	MCM-14H	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A
92470735017	DUP-1	EPA 6020B	JOR	3	PASI-A
		EPA 6020B	JOR	3	PASI-A

PASI-A = Pace Analytical Services - Asheville

(704)875-9092



### **SUMMARY OF DETECTION**

Project: Plant McManus SW

Pace Project No.: 92470735

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92470735001	T4-1L					
EPA 6020B	Arsenic	0.0034	mg/L	0.0020	03/27/20 20:19	
EPA 6020B	Lithium	0.076	mg/L	0.050	03/27/20 20:19	M6
EPA 6020B	Arsenic, Dissolved	0.0018J	mg/L	0.0020	03/28/20 01:09	1g
EPA 6020B	Lithium, Dissolved	0.056	mg/L	0.050	03/28/20 01:09	1g,M6
2470735002	T4-2L					
EPA 6020B	Arsenic	0.0014J	mg/L	0.0020	03/26/20 23:21	
EPA 6020B	Lithium	0.043J	mg/L	0.050	03/26/20 23:21	
EPA 6020B	Arsenic, Dissolved	0.0012J	mg/L	0.0020	03/26/20 20:58	1g
EPA 6020B	Lithium, Dissolved	0.061	mg/L	0.050	03/26/20 20:58	1g
2470735003	T4-3L					
EPA 6020B	Arsenic	0.0035	mg/L	0.0020	03/26/20 23:25	
EPA 6020B	Cobalt	0.0020	mg/L	0.0020	03/26/20 23:25	
EPA 6020B	Lithium	0.053	mg/L	0.050	03/26/20 23:25	
EPA 6020B	Arsenic, Dissolved	0.0021	mg/L	0.0020	03/26/20 21:02	1g
EPA 6020B	Lithium, Dissolved	0.037J	mg/L	0.050	03/26/20 21:02	1g
2470735004	T4-4L					
EPA 6020B	Arsenic	0.0031	mg/L	0.0020	03/26/20 23:39	
EPA 6020B	Lithium	0.062	mg/L	0.050	03/26/20 23:39	
EPA 6020B	Lithium, Dissolved	0.036J	mg/L	0.050		1g
2470735005	T4-1HS					
EPA 6020B	Arsenic	0.0012J	mg/L	0.0020	03/26/20 23:43	
EPA 6020B	Lithium	0.042J	mg/L	0.050	03/26/20 23:43	
EPA 6020B	Lithium, Dissolved	0.058	mg/L	0.050	03/26/20 21:11	1g
2470735006	T4-2HS					
EPA 6020B	Lithium	0.043J	mg/L	0.050	03/26/20 23:47	
EPA 6020B	Arsenic, Dissolved	0.0013J	mg/L	0.0020	03/26/20 21:15	1g
EPA 6020B	Lithium, Dissolved	0.064	mg/L	0.050	03/26/20 21:15	1g
2470735007	T4-3HS					
EPA 6020B	Lithium	0.035J	mg/L	0.050	03/26/20 23:52	
EPA 6020B	Lithium, Dissolved	0.051	mg/L	0.050	03/26/20 21:28	1g
2470735008	T4-4HS					
EPA 6020B	Lithium	0.047J	mg/L	0.050	03/26/20 23:56	
EPA 6020B	Lithium, Dissolved	0.041J	mg/L	0.050	03/26/20 21:32	1g
2470735009	T4-1HB					
EPA 6020B	Lithium	0.036J	mg/L	0.050	03/27/20 00:00	
EPA 6020B	Lithium, Dissolved	0.033J	mg/L		03/26/20 21:37	1g
2470735010	T4-2HB					
EPA 6020B	Arsenic	0.0015J	mg/L	0.0020	03/27/20 00:05	
EPA 6020B	Lithium	0.048J	mg/L		03/27/20 00:05	
EPA 6020B	Lithium, Dissolved	0.042J	mg/L		03/26/20 21:41	10

(704)875-9092




### **SUMMARY OF DETECTION**

Project: Plant McManus SW

Pace Project No.: 92470735

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92470735011	T4-3HB					
EPA 6020B	Lithium	0.036J	mg/L	0.050	03/27/20 00:09	
EPA 6020B	Arsenic, Dissolved	0.0023	mg/L	0.0020	03/26/20 21:45	1g
EPA 6020B	Cobalt, Dissolved	0.0049	mg/L	0.0020	03/26/20 21:45	1g
EPA 6020B	Lithium, Dissolved	0.064	mg/L	0.050	03/26/20 21:45	1g
92470735012	T4-4HB					
EPA 6020B	Lithium	0.035J	mg/L	0.050	03/27/20 00:13	
EPA 6020B	Arsenic, Dissolved	0.0017J	mg/L	0.0020	03/26/20 21:50	1g
EPA 6020B	Cobalt, Dissolved	0.0036	mg/L	0.0020	03/26/20 21:50	1g
EPA 6020B	Lithium, Dissolved	0.066	mg/L	0.050	03/26/20 21:50	1g
92470735013	POND 4L					
EPA 6020B	Arsenic	0.0015J	mg/L	0.0020	03/27/20 00:18	
EPA 6020B	Lithium	0.022J	mg/L	0.050	03/27/20 00:18	
EPA 6020B	Arsenic, Dissolved	0.0013J	mg/L	0.0020	03/26/20 21:54	1g
EPA 6020B	Cobalt, Dissolved	0.0013J	mg/L	0.0020	03/26/20 21:54	1g
EPA 6020B	Lithium, Dissolved	0.022J	mg/L	0.050	03/26/20 21:54	1g
92470735014	MCM-14L					
EPA 6020B	Lithium	0.040J	mg/L	0.050	03/27/20 00:31	
EPA 6020B	Cobalt, Dissolved	0.0015J	mg/L	0.0020	03/26/20 21:58	1g
EPA 6020B	Lithium, Dissolved	0.055	mg/L	0.050	03/26/20 21:58	1g
2470735015	POND 4H					
EPA 6020B	Arsenic	0.0012J	mg/L	0.0020	03/27/20 00:35	
EPA 6020B	Lithium	0.016J	mg/L	0.050	03/27/20 00:35	
EPA 6020B	Arsenic, Dissolved	0.0013J	mg/L	0.0020	03/26/20 22:03	1g
EPA 6020B	Cobalt, Dissolved	0.0016J	mg/L	0.0020	03/26/20 22:03	1g
EPA 6020B	Lithium, Dissolved	0.020J	mg/L	0.050	03/26/20 22:03	1g
92470735016	MCM-14H					
EPA 6020B	Lithium	0.035J	mg/L	0.050	03/27/20 00:39	
EPA 6020B	Cobalt, Dissolved	0.0031	mg/L	0.0020	03/26/20 22:07	1g
EPA 6020B	Lithium, Dissolved	0.044J	mg/L	0.050	03/26/20 22:07	1g
92470735017	DUP-1					
EPA 6020B	Lithium	0.039J	mg/L	0.050	03/27/20 00:44	
EPA 6020B	Arsenic, Dissolved	0.0012J	mg/L	0.0020	03/28/20 01:23	1g
EPA 6020B	Lithium, Dissolved	0.053	mg/L	0.050	03/28/20 01:23	1g





Project: Plant McManus SW

Pace Project No.: 92470735

Sample: T4-1L	Lab ID:	92470735001	Collecte	d: 03/18/20	14:18	Received: 03/	/24/20 12:20 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical I	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Analy	ytical Services	- Asheville						
Arsenic	0.0034	mg/L	0.0020	0.0012	20	03/25/20 00:22	03/27/20 20:19	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	20	03/25/20 00:22	03/27/20 20:19	7440-48-4	
Lithium	0.076	mg/L	0.050	0.0084	20	03/25/20 00:22	03/27/20 20:19	7439-93-2	M6
6020 MET ICPMS, Dissolved	Analytical I	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Analy	ytical Services	- Asheville						
Arsenic, Dissolved	0.0018J	mg/L	0.0020	0.0012	20	03/26/20 03:08	03/28/20 01:09	7440-38-2	1g
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	03/26/20 03:08	03/28/20 01:09	7440-48-4	1g
Lithium, Dissolved	0.056	mg/L	0.050	0.0084	20	03/26/20 03:08	03/28/20 01:09	7439-93-2	1g,M6



Project: Plant McManus SW

Pace Project No.: 92470735

Date: 03/31/2020 12:52 PM

Sample: T4-2L	Lab ID:	92470735002	Collecte	d: 03/18/20	13:50	Received: 03/	/24/20 12:20 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0014J	mg/L	0.0020	0.0012	20	03/25/20 00:22	03/26/20 23:21	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	20	03/25/20 00:22	03/26/20 23:21	7440-48-4	
Lithium	0.043J	mg/L	0.050	0.0084	20	03/25/20 00:22	03/26/20 23:21	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0012J	mg/L	0.0020	0.0012	20	03/26/20 03:08	03/26/20 20:58	7440-38-2	1g
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	03/26/20 03:08	03/26/20 20:58	7440-48-4	1g
Lithium, Dissolved	0.061	mg/L	0.050	0.0084	20	03/26/20 03:08	03/26/20 20:58	7439-93-2	1g



Project: Plant McManus SW

Pace Project No.: 92470735

Date: 03/31/2020 12:52 PM


Sample: T4-3L	Lab ID:	92470735003	Collected	d: 03/18/20	13:06	Received: 03/	24/20 12:20 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0035	mg/L	0.0020	0.0012	20	03/25/20 00:22	03/26/20 23:25	7440-38-2	
Cobalt	0.0020	mg/L	0.0020	0.0010	20	03/25/20 00:22	03/26/20 23:25	7440-48-4	
Lithium	0.053	mg/L	0.050	0.0084	20	03/25/20 00:22	03/26/20 23:25	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0021	mg/L	0.0020	0.0012	20	03/26/20 03:08	03/26/20 21:02	7440-38-2	1g
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	03/26/20 03:08	03/26/20 21:02	7440-48-4	1g
Lithium, Dissolved	0.037J	mg/L	0.050	0.0084	20	03/26/20 03:08	03/26/20 21:02	7439-93-2	1g



Project: Plant McManus SW

Pace Project No.: 92470735

Sample: T4-4L	Lab ID:	92470735004	Collected	d: 03/18/20	11:55	Received: 03/	/24/20 12:20 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0031	mg/L	0.0020	0.0012	20	03/25/20 00:22	03/26/20 23:39	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	20	03/25/20 00:22	03/26/20 23:39	7440-48-4	
Lithium	0.062	mg/L	0.050	0.0084	20	03/25/20 00:22	03/26/20 23:39	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: Ef	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	ND	mg/L	0.0020	0.0012	20	03/26/20 03:08	03/26/20 21:06	7440-38-2	1g
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	03/26/20 03:08	03/26/20 21:06	7440-48-4	1g
Lithium, Dissolved	0.036J	mg/L	0.050	0.0084	20	03/26/20 03:08	03/26/20 21:06	7439-93-2	1g





Project: Plant McManus SW

Pace Project No.: 92470735

Sample: T4-1HS	Lab ID:	92470735005	Collected	d: 03/18/20	17:30	Received: 03/	/24/20 12:20 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: Ef	PA 3010A	-	-	
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0012J	mg/L	0.0020	0.0012	20	03/25/20 00:22	03/26/20 23:43	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	20	03/25/20 00:22	03/26/20 23:43	7440-48-4	
Lithium	0.042J	mg/L	0.050	0.0084	20	03/25/20 00:22	03/26/20 23:43	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: Ef	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	ND	mg/L	0.0020	0.0012	20	03/26/20 03:08	03/26/20 21:11	7440-38-2	1g
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	03/26/20 03:08	03/26/20 21:11	7440-48-4	1g
Lithium, Dissolved	0.058	mg/L	0.050	0.0084	20	03/26/20 03:08	03/26/20 21:11	7439-93-2	1g




Project: Plant McManus SW

Pace Project No.: 92470735

Date: 03/31/2020 12:52 PM

Sample: T4-2HS	Lab ID:	92470735006	Collecte	d: 03/18/20	17:50	Received: 03/	24/20 12:20 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.0020	0.0012	20	03/25/20 00:22	03/26/20 23:47	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	20	03/25/20 00:22	03/26/20 23:47	7440-48-4	
Lithium	0.043J	mg/L	0.050	0.0084	20	03/25/20 00:22	03/26/20 23:47	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0013J	mg/L	0.0020	0.0012	20	03/26/20 03:08	03/26/20 21:15	7440-38-2	1g
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	03/26/20 03:08	03/26/20 21:15	7440-48-4	1g
Lithium, Dissolved	0.064	mg/L	0.050	0.0084	20	03/26/20 03:08	03/26/20 21:15	7439-93-2	1g





Project: Plant McManus SW

Pace Project No.: 92470735

Date: 03/31/2020 12:52 PM

Sample: T4-3HS	Lab ID:	92470735007	Collected	d: 03/18/20	18:12	Received: 03/	24/20 12:20 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: Ef	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.0020	0.0012	20	03/25/20 00:22	03/26/20 23:52	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	20	03/25/20 00:22	03/26/20 23:52	7440-48-4	
Lithium	0.035J	mg/L	0.050	0.0084	20	03/25/20 00:22	03/26/20 23:52	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: Ef	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	ND	mg/L	0.0020	0.0012	20	03/26/20 03:08	03/26/20 21:28	7440-38-2	1g
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	03/26/20 03:08	03/26/20 21:28	7440-48-4	1g
Lithium, Dissolved	0.051	mg/L	0.050	0.0084	20	03/26/20 03:08	03/26/20 21:28	7439-93-2	1g



Project: Plant McManus SW

Pace Project No.: 92470735

Sample: T4-4HS	Lab ID:	92470735008	Collected	d: 03/18/20	18:40	Received: 03/	24/20 12:20 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.0020	0.0012	20	03/25/20 00:22	03/26/20 23:56	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	20	03/25/20 00:22	03/26/20 23:56	7440-48-4	
Lithium	0.047J	mg/L	0.050	0.0084	20	03/25/20 00:22	03/26/20 23:56	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	ND	mg/L	0.0020	0.0012	20	03/26/20 03:08	03/26/20 21:32	7440-38-2	1g
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	03/26/20 03:08	03/26/20 21:32	7440-48-4	1g
Lithium, Dissolved	0.041J	mg/L	0.050	0.0084	20	03/26/20 03:08	03/26/20 21:32	7439-93-2	1g



Project: Plant McManus SW

Pace Project No.: 92470735

Sample: T4-1HB	Lab ID:	92470735009	Collecte	d: 03/18/20	17:35	Received: 03/	/24/20 12:20 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: Ef	PA 3010A	•	-	
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.0020	0.0012	20	03/25/20 00:22	03/27/20 00:00	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	20	03/25/20 00:22	03/27/20 00:00	7440-48-4	
Lithium	0.036J	mg/L	0.050	0.0084	20	03/25/20 00:22	03/27/20 00:00	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: Ef	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	ND	mg/L	0.0020	0.0012	20	03/26/20 03:08	03/26/20 21:37	7440-38-2	1g
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	03/26/20 03:08	03/26/20 21:37	7440-48-4	1g
Lithium, Dissolved	0.033J	mg/L	0.050	0.0084	20	03/26/20 03:08	03/26/20 21:37	7439-93-2	1g



Project: Plant McManus SW

Pace Project No.: 92470735

Date: 03/31/2020 12:52 PM

Sample: T4-2HB	Lab ID:	92470735010	Collected	d: 03/18/20	17:55	Received: 03/	24/20 12:20 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6		aration Met	hod: FF	 PA 3010A	-	-	
0020 MET TOT MIC	•	ytical Services	•	aration wet	110a. E1	71001071			
Arsenic	0.0015J	mg/L	0.0020	0.0012	20	03/25/20 00:22	03/27/20 00:05	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	20	03/25/20 00:22	03/27/20 00:05	7440-48-4	
Lithium	0.048J	mg/L	0.050	0.0084	20	03/25/20 00:22	03/27/20 00:05	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	ND	mg/L	0.0020	0.0012	20	03/26/20 03:08	03/26/20 21:41	7440-38-2	1g
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	03/26/20 03:08	03/26/20 21:41	7440-48-4	1g
Lithium, Dissolved	0.042J	mg/L	0.050	0.0084	20	03/26/20 03:08	03/26/20 21:41	7439-93-2	1g



Project: Plant McManus SW

Pace Project No.: 92470735

Sample: T4-3HB	Lab ID:	92470735011	Collecte	d: 03/18/20	18:17	Received: 03/	24/20 12:20 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.0020	0.0012	20	03/25/20 00:22	03/27/20 00:09	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	20	03/25/20 00:22	03/27/20 00:09	7440-48-4	
Lithium	0.036J	mg/L	0.050	0.0084	20	03/25/20 00:22	03/27/20 00:09	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0023	mg/L	0.0020	0.0012	20	03/26/20 03:08	03/26/20 21:45	7440-38-2	1g
Cobalt, Dissolved	0.0049	mg/L	0.0020	0.0010	20	03/26/20 03:08	03/26/20 21:45	7440-48-4	1g
Lithium, Dissolved	0.064	mg/L	0.050	0.0084	20	03/26/20 03:08	03/26/20 21:45	7439-93-2	1g



Project: Plant McManus SW

Pace Project No.: 92470735

Sample: T4-4HB	Lab ID:	92470735012	Collected	d: 03/18/20	18:45	Received: 03/	24/20 12:20 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: Ef	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.0020	0.0012	20	03/25/20 00:22	03/27/20 00:13	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	20	03/25/20 00:22	03/27/20 00:13	7440-48-4	
Lithium	0.035J	mg/L	0.050	0.0084	20	03/25/20 00:22	03/27/20 00:13	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: Ef	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0017J	mg/L	0.0020	0.0012	20	03/26/20 03:08	03/26/20 21:50	7440-38-2	1g
Cobalt, Dissolved	0.0036	mg/L	0.0020	0.0010	20	03/26/20 03:08	03/26/20 21:50	7440-48-4	1g
Lithium, Dissolved	0.066	mg/L	0.050	0.0084	20	03/26/20 03:08	03/26/20 21:50	7439-93-2	1g



Project: Plant McManus SW

Pace Project No.: 92470735

Sample: POND 4L	Lab ID:	92470735013	Collecte	d: 03/18/20	11:14	Received: 03/	/24/20 12:20 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	-	Method: EPA 6		aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0015J	mg/L	0.0020	0.0012	20	03/25/20 00:22	03/27/20 00:18	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	20	03/25/20 00:22	03/27/20 00:18	7440-48-4	
Lithium	0.022J	mg/L	0.050	0.0084	20	03/25/20 00:22	03/27/20 00:18	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0013J	mg/L	0.0020	0.0012	20	03/26/20 03:08	03/26/20 21:54	7440-38-2	1g
Cobalt, Dissolved	0.0013J	mg/L	0.0020	0.0010	20	03/26/20 03:08	03/26/20 21:54	7440-48-4	1g
Lithium, Dissolved	0.022J	mg/L	0.050	0.0084	20	03/26/20 03:08	03/26/20 21:54	7439-93-2	1g



Project: Plant McManus SW

Pace Project No.: 92470735

Sample: MCM-14L	Lab ID:	92470735014	Collecte	d: 03/18/20	12:30	Received: 03/	24/20 12:20 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.0020	0.0012	20	03/25/20 00:22	03/27/20 00:31	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	20	03/25/20 00:22	03/27/20 00:31	7440-48-4	
Lithium	0.040J	mg/L	0.050	0.0084	20	03/25/20 00:22	03/27/20 00:31	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	ND	mg/L	0.0020	0.0012	20	03/26/20 03:08	03/26/20 21:58	7440-38-2	1g
Cobalt, Dissolved	0.0015J	mg/L	0.0020	0.0010	20	03/26/20 03:08	03/26/20 21:58	7440-48-4	1g
Lithium, Dissolved	0.055	mg/L	0.050	0.0084	20	03/26/20 03:08	03/26/20 21:58	7439-93-2	1g



Project: Plant McManus SW

Pace Project No.: 92470735

Date: 03/31/2020 12:52 PM

Sample: POND 4H	Lab ID:	92470735015	Collecte	d: 03/18/20	17:45	Received: 03/	/24/20 12:20 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	0.0012J	mg/L	0.0020	0.0012	20	03/25/20 00:22	03/27/20 00:35	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	20	03/25/20 00:22	03/27/20 00:35	7440-48-4	
Lithium	0.016J	mg/L	0.050	0.0084	20	03/25/20 00:22	03/27/20 00:35	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0013J	mg/L	0.0020	0.0012	20	03/26/20 03:08	03/26/20 22:03	7440-38-2	1g
Cobalt, Dissolved	0.0016J	mg/L	0.0020	0.0010	20	03/26/20 03:08	03/26/20 22:03	7440-48-4	1g
Lithium, Dissolved	0.020J	mg/L	0.050	0.0084	20	03/26/20 03:08	03/26/20 22:03	7439-93-2	1g



Project: Plant McManus SW

Pace Project No.: 92470735

Sample: MCM-14H	Lab ID:	92470735016	Collected	d: 03/18/20	19:27	Received: 03/	24/20 12:20 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3010A			,
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.0020	0.0012	20	03/25/20 00:22	03/27/20 00:39	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	20	03/25/20 00:22	03/27/20 00:39	7440-48-4	
Lithium	0.035J	mg/L	0.050	0.0084	20	03/25/20 00:22	03/27/20 00:39	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	ND	mg/L	0.0020	0.0012	20	03/26/20 03:08	03/26/20 22:07	7440-38-2	1g
Cobalt, Dissolved	0.0031	mg/L	0.0020	0.0010	20	03/26/20 03:08	03/26/20 22:07	7440-48-4	1g
Lithium, Dissolved	0.044J	mg/L	0.050	0.0084	20	03/26/20 03:08	03/26/20 22:07	7439-93-2	1g



Project: Plant McManus SW

Pace Project No.: 92470735

Sample: DUP-1	Lab ID:	92470735017	Collected	d: 03/18/20	00:00	Received: 03/	/24/20 12:20 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
- raiailleteis					DI	- ————	- — Analyzeu		- Quai
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic	ND	mg/L	0.0020	0.0012	20	03/25/20 00:22	03/27/20 00:44	7440-38-2	
Cobalt	ND	mg/L	0.0020	0.0010	20	03/25/20 00:22	03/27/20 00:44	7440-48-4	
Lithium	0.039J	mg/L	0.050	0.0084	20	03/25/20 00:22	03/27/20 00:44	7439-93-2	
6020 MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Asheville						
Arsenic, Dissolved	0.0012J	mg/L	0.0020	0.0012	20	03/26/20 03:08	03/28/20 01:23	7440-38-2	1g
Cobalt, Dissolved	ND	mg/L	0.0020	0.0010	20	03/26/20 03:08	03/28/20 01:23	7440-48-4	1g
Lithium, Dissolved	0.053	mg/L	0.050	0.0084	20	03/26/20 03:08	03/28/20 01:23	7439-93-2	1g



### **QUALITY CONTROL DATA**

Project: Plant McManus SW

Pace Project No.: 92470735

Date: 03/31/2020 12:52 PM

QC Batch: 532336 Analysis Method: EPA 6020B
QC Batch Method: EPA 3010A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92470735001, 92470735002, 92470735003, 92470735004, 92470735005, 92470735006, 92470735007,

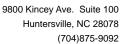
92470735008, 92470735009, 92470735010, 92470735011, 92470735012, 92470735013, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 92470735014, 924

92470735015, 92470735016, 92470735017

METHOD BLANK: 2841830 Matrix: Water

Associated Lab Samples: 92470735001, 92470735002, 92470735003, 92470735004, 92470735005, 92470735006, 92470735007,

92470735008, 92470735009, 92470735010, 92470735011, 92470735012, 92470735013, 92470735014,


92470735015, 92470735016, 92470735017

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Arsenic	mg/L	ND	0.00010	0.000060	03/26/20 22:51	
Cobalt	mg/L	ND	0.00010	0.000050	03/26/20 22:51	
Lithium	mg/L	ND	0.0025	0.00042	03/26/20 22:51	

LABORATORY CONTROL SAMPLE:	2841831					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/L	0.01	0.0098	98	80-120	
Cobalt	mg/L	0.01	0.011	106	80-120	
Lithium	mg/L	0.05	0.052	105	80-120	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2841	832		2841833							
			MS	MSD								
		92470735001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/L	0.0034	0.01	0.01	0.011	0.011	80	81	75-125	1	20	
Cobalt	mg/L	ND	0.01	0.01	0.0094	0.0099	94	99	75-125	5	20	
Lithium	mg/L	0.076	0.05	0.05	0.097	0.10	42	52	75-125	5	20	M6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





### **QUALITY CONTROL DATA**

Project: Plant McManus SW

Pace Project No.: 92470735

Date: 03/31/2020 12:52 PM

QC Batch: 532344 Analysis Method: EPA 6020B

QC Batch Method: EPA 3010A Analysis Description: 6020 MET Dissolved

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92470735001, 92470735002, 92470735003, 92470735004, 92470735005, 92470735006, 92470735007,

92470735008, 92470735009, 92470735010, 92470735011, 92470735012, 92470735013, 92470735014,

92470735015, 92470735016, 92470735017

METHOD BLANK: 2841847 Matrix: Water

Associated Lab Samples: 92470735001, 92470735002, 92470735003, 92470735004, 92470735005, 92470735006, 92470735007,

92470735008, 92470735009, 92470735010, 92470735011, 92470735012, 92470735013, 92470735014,

92470735015, 92470735016, 92470735017

_		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Arsenic, Dissolved	mg/L	ND	0.00010	0.000060	03/26/20 20:19	
Cobalt, Dissolved	mg/L	ND	0.00010	0.000050	03/26/20 20:19	
Lithium, Dissolved	mg/L	ND	0.0025	0.00042	03/26/20 20:19	

LABORATORY CONTROL SAMPLE:	2841848					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic, Dissolved	mg/L	0.01	0.011	113	80-120	
Cobalt, Dissolved	mg/L	0.01	0.011	112	80-120	
Lithium, Dissolved	mg/L	0.05	0.057	114	80-120	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2841	849		2841850							
			MS	MSD								
		92470735001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic, Dissolved	mg/L	0.0018J	0.01	0.01	0.010	0.011	86	93	75-125	6	20	
Cobalt, Dissolved	mg/L	ND	0.01	0.01	0.0090	0.0096	89	95	75-125	7	20	
Lithium, Dissolved	mg/L	0.056	0.05	0.05	0.091	0.097	69	81	75-125	6	20	M6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

### **QUALIFIERS**

Project: Plant McManus SW

Pace Project No.: 92470735

### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD - Relative Percent Difference** 

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 03/31/2020 12:52 PM

Pace Analytical*	Sample Condition Up Documen F-CAR-CS-03	on Receipt(SCU t No.:	Document Revised: February 7, 2018  Page 1 of 2  Issuing Authority:  Pace Carolinas Quality Office	
Laboratory receiving samples: Asheville	Greenwood 🗌	Hunte	ersville Raleigh Mechanicsv	/ille
Courier: Fed Ex U	USPS USPS Other:	Proj	92470735	- 70
Custody Seal Present? Yes No	Seals Intact? Yes	√No	Date/Initials Person Examining Contents:	<u>3/2</u> 4/20
Thermometer: 03706/	Bubble Bags None  Type of Ice: 1	, Wet □Blue	Temp should be above freezing to 6°C  □Samples out of temp criteria. Samples on ice, cooling	
USDA Regulated Soil ( N/A, water sample) Did samples originate in a quarantine zone within the	e United States: CA, NY, or SC	C (check maps)?	has begun  Did samples originate from a foreign source (internationally including Hawaii and Puerto Rico)?   Comments/Discrepancy:	<i>h</i>
Chain of Custody Present?	Yes No	□N/A 1.		-
Samples Arrived within Hold Time?	□Yes □No	□N/A 2.		
Short Hold Time Analysis (<72 hr.)?	□Yes □No	□N/A 3.		
Rush Turn Around Time Requested?	□Yes □No	□N/A 4.	•	
Sufficient Volume?	1 Yes □No	□N/A 5.		
Correct Containers Used?	Yes No	□N/A 6.		
-Pace Containers Used?	.□Yes □No	□N/A		
Containers Intact?	√Yes □No	□N/A 7.		
Dissolved analysis: Samples Field Filtered?	□Yes \□No	□N/A 8.		
Sample Labels Match COC?	√ØFes □No	□N/A 9.	N.	
-includes Date/Time/ID/Analysis Matrix:	wr			
Headspace in VOA Vials (>5-6mm)?	Yes No		0.	
Trip Blank Present?	□Yes -□No		1.	
Trip Blank Custody Seals Present?	□Yes □No	-DN/A		
COMMENTS/SAMPLE DISCREPANCY	<u> </u>		Field Data Required? □Yes	 
			Lot ID of split containers:	010-0-00-00-0
CLIENT NOTIFICATION/RESOLUTION				
		•		
Person contacted:		Date/Time:	4	

Person contacted: ____

Project Manager SCURF Review:

Project Manager SRF Review:

Date:

Date:



### Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.06 Document Revised: February 7, 2018 Page 1 of 2

Issuing Authority: Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottle

Project WO#: 92470735

PM: KLH1

Due Date: 03/31/20

CLIENT: 26-GA Power

10(2

			1		T	_					,						,				VI							
ltem#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP42-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		8P3A-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AG0U-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1	1		1			V							/											abla				_
2	/		1	-		$\langle \rangle$	7	/			/		$\leftarrow$	/				-		i			-	$\ominus$				
3			1		7	4	-							-	$\overline{\ }$				_				_	4	1			
_			1		7			_					<u>/</u>	_														
4			1		/	1	$\setminus$				/																-	
5			1			1					1				7								1	7				
6			1		/	X	7	7			7		1										$\dashv$	7	1			$\dashv$
7		,	1			V						-		/									-	7	7	_	$\dashv$	$\dashv$
8			1		7	(>)	7	1			7		7	$\langle \cdot \rangle$	7						-	-	-	$\left\langle \cdot \right\rangle$	1			
9	1		1	-	$\langle \cdot \rangle$	$\langle \rangle$	$\langle \cdot \rangle$				H		$\langle \cdot \rangle$	$\langle \cdot \rangle$	1						-	-	_	$\downarrow$	1			
10	4		1		4	1		$\langle \cdot \rangle$			1			/	1	_					_			$\searrow$	1		c .	
			1			X		1			1			1	/									V				
11			1			M																		7				
12			1			M					1				1	12000					7	$\dashv$		7	7			$\exists$

		рН Ас	ljustment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, Incorrect containers.

### Pace Analytical

### Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.06 Document Revised: February 7, 2013

Page 1 of 2
Issuing Authority:
Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottle

Proj WO#: 92470735

DM . KLH1

Due Date: 03/31/20

CLIENT: 26-GA Power

	DOL	.0111	itaii i	01 2	O. 10																	7 <	+	2_				
Item#	BP4U-125 mL Plastic Unpreserved (N/A) (Ci-)	BP3U-250 ml. Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1. liter Plastic Unpreserved (N/A)	BP4S-125 mL Piestic H2SG4 (pH < 2) (CI-)	BP3N-256 mL plastic HNO3 (pH < 2)	BP42-125 mL Plastic ZN Acetate & NaOH (>9)	8P4C-125 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (Cl-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4G (N/A)(G-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A - lab)	SP2T-250 mL Sterile Plastic (N/A lab)		BP3A-250 mL Plastic (NH2)2504 (9.3-9.7)	AG0U-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1	- B		1		1	X	-		MES		1	1	1	1											7			
2	/		<u>'</u> ,		K	K	/	/			1	-	1	1											7		ļ	
3	/		Ħ		K	K	1	K			1		1	X	1									7	7		ļ	
4	/		1	-	1	1	/	K	-		1		1	X	X									7	7	-		-
5	/		1		K	1	X	1	-	1	1				1								1	7	7	_	-	_
6	/	-	//-	-	K	1	1	K	-	T	1		K	X	X						-			7	1	_	_	1
7	/	+	-	-	K	K	X	/	-	1-	1		1	T	1											1	_	
8	1	<del> </del>		-	1	K	1		-	1	1		1	1	1										1	1		-
9	/	-		-	K	1	1			$\dagger$	1	1	1	1	1									1	1	1	_	-
10	/	1	+		1	1	X	1	1	$\dagger$	1			1	1										1	1		_
11	1	+-	+-	╁	1	X	1	X	1	+	1	1	1	1	1										1	1		1
12	<del>/</del> _	4-		+	-	1	+	X	-	-	$\forall$	+	1	1	1	1									//			

		prince	ljustment Log for Pres	Time uran article	Amount of Preservative	Lot #
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time presentation adjusted	added	
**********						
						1

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will te sent to the North Carolina DEHNR Certification Office (i.e., Out of hold, incorrect preservative, out of temp, incorrect containers.

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Ted IIX  ACCEPTED BY A FILLIATION  ACCEPTED BY A FILLIATION  AX X X X X X X X X X X X X X X X X X X		SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER:	
Ted EX  Accepted By AFFILIATION  DATE  Time  Sample conditions  Resid	DATE TIM  3/20/20   444	SAMPLER NAME A	
Ted EX  ACCEPTED BY JAFFILLATION  ACCEPTED BY JAFFILLATION  DATE  SAMPLE CONDITIONS  Resid			
Tred EX  Accepted By Afflianov  Date  Time  SAMPLE CONDITIONS  Resid			
TICAL TIME  ACCEPTED BY AFFILIANTON  AX X X X X X X X X X X X X X X X X X X	588		DISSONRUI METAIS DY BUZU (AS, LI, CO)
ACCEPTED BY A X X X X X X X X X X X X X X X X X X	2	beronica Fay I Resolute	
H2		BY / AFFILIATION	
H2	$\top$	1845	
H2:	7	31.070 1817	74-
H2:	4	317120 7755	11 Tu 3HB
H2	2 1	SEL 021217E	7 4
H2:	2 1	अवाद्य १८५०	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
H2:	2	3/18/201812	1 4.
H2:	\ 2	3/18/td 1750	1
H2: H2: H3: H4: H4: H4: H4: H5: H6: H6: H6: H6: H6: H6: H6: H6: H6: H6	2	5/18/20 1730	14.
H2: H2: H3: H4: H4: H4: H5: H6: H6: H6: H6: H6: H6: H6: H6: H6: H6	2	5/18/20 1155	10 10
H2: HN HC NaC NaZ Meta X X Disso	2	अक्षां ३०६	3 74.31
H2: HN HC Nac Nac Met Oth X Disso	2	3650 250	T4-
H2: HN HCI Na2 Met Other Metassississississississississississississi	2	अंशाय प्राप्त	
DH IS203 hano! er knalyses Test Is 6020 (Co, Li, As) blived Metals 6020 (Co, L	SAMPLE TEMP AT COLLECTI	MATRIX CODE (see valid co	SAMPLE ID 10 Character per box. (A-Z, 0-9 /) 11 prior ids must be unique
Preservatives ×	ON	des to Jeft)	MATRIX COL
Requested Analysis Filtered (Y/N)	Face	41	
ana	Pace	#: Fidit McManus SW	
Pace Quote: Regulatory Agency	Pace	Purchase Order #:	(404)358-8469 Fax:
Company Name:	Com	coulon reity, cestle Miller	
Attention: Page: 1 Of Z	Atter	Copy To: Stephen Wilson, Trent Godwin	1003 Weatherstone Parkway, Suite 320
-	lnvo	Required Project Information:	Company: Resolute Environment Required

## CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part	C Se C (Y Si Int		0	2118120			_			ļ		ξ	20					_							-
Company   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Desc	usto alectoole (/N)				÷	DAT				,			Ì		SAMPLE	TURE of	SIGNA								-
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page	edy d		T	W. Ca	-	60	3	႕	2	51.5		her	te	2010	SAMPLE	Name of	PRINT								
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page	n												1025	URE	DSIGNA	NAME AN	AMPLER	1 44							
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page																									
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page												+						-					020 (As, Li, Co)	olved Metals by 6	Filter Diss
Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time   Page   Time			<b>अम</b> ्	3/20/20		THE WAY		^	(E)	TI		-	440		120/2	Ĺ	esolut	10000	Ġ	Veron			Li Only!	onsist of As, Co.	als 6020 c
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page	SAMPLE CONDITIONS		TIME	DATE	z	TLIATIO	1 AFF	(8 d3.	CCEP		ŀ	$\vdash$	TIME	Н	DATE		FFILIATION	A / AB CIR	SINDNI	REI			TIONAL COMMENTS	ADD	-
Residual Frommation:   Residual Project Information:   Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual R		1							-																12
Regulate Environment   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regulate Project Information:   Regul		1	+					+			7	-													==
Regulate Environment   Report of Project Information:   Regulate Project Information:   Regulate Regulate Project Information:   Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulate Regulat			+			-			-		$\dashv$	-													6
Regular Martination:   Required Project Hormation:   Required Pr								+	+		-	-		7											9
Regulated Environment   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulated Project Information:   Regulat		1	+			-		+	-			$\dashv$		$\neg$											00
Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Required Project Information:   Required Required Project Information:   Required Required Project Information:   Required Required Project Information:   Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required Required R							-	$\dashv$	$\dashv$		+	,		-											7
Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation:   Required Project Incompation									-			-		-				0.00							6
Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information			_					$\neg$	_		-			N			1	3/18/22	-					Dup-1	UT.
Regulate Environment   Regulated Project Information:   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environment   Regulated Environmen											-			2			1927	3/18/28					H.	NCM-1	4
Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information						_					=			2			1145	3/18/29					H.	1	ω
Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information:   Required Project Information		1				_		$\dashv$	_		_			2			1230	3/18/20						MCM-14	2
Resolute Environment   Required Project Information:   Invoice Information:   Invoice Information:   Invoice Information:   Report To:   Stephen William:   Report To:   Stephen William:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Report To:   Stephen William:   Company Name:   Report To:   Stephen William:   Company Name:   Report To:   Stephen William:   Report To:   Stephen William:   Company Name:   Report To:   Stephen William:   Report To:   Stephen William:   Report To:   Stephen William:   Report To:   Stephen William:   Report To:   Stephen William:   Report To:   Stephen William:   Report To:   Stephen William:   Report To:   Stephen William:   Report To:   Stephen William:   Report To:   Stephen William:   Report To:   Stephen William:   Report To:   Stephen William:   Report To:   Stephen William:   Report To:   Stephen William:   Report To:   Stephen William:   Report To:   Stephen William:   Report To:   Stephen William:   Report To:   Stephen William:   Report To:   Stephen William:   Report To:   Stephen William:   Report To:   Stephen William:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report To:   Report						_								2			1114	3/13/25					-		1
Itent Information:   Regulared Project Information:   Reposit To: Stephen Wilson, Trent Godwin   Attention:   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Resolute Environment   Re	92470735	Residual Chlorine (YIN)					Analyses Test			NaOH	(200 200 to 1)		Unpreserved		TIME	DATE	TIME	ST		33885828		2 S & K & Q S & O E	APLE ID reactor por box. z, 0-9 /, -) ss must be unique	SAN One Cha (A. Sample k	ITEM#
Itent Information:   Regulared Project Information:   Reposit To: Stephen Milson, Trent Godwin   Attention:   Attention:   Attention:   Page : 2. Of							Y/N	1	/es	rvati	rese	_		A1		CTED	COLLE			CODE		2 %			
Resolute Environment   Report To: Stephen Wilson, Trent Godwin   Attention:   Attention:   Report To: Stephen Wilson, Trent Godwin   Attention:   Attention:   Attention:   Company Name:   Ga. 30188   Fax   Project Name:   Plant McManus SW   Pace Project Manager:   Kevin.herring@pacelabs.com   Stato / Location   Stato / Location   Company Name:   Plant McManus SW   Pace Project Manager:   Kevin.herring@pacelabs.com   Stato / Location   Company Name:   Plant McManus SW   Pace Project Manager:   Kevin.herring@pacelabs.com   Stato / Location   Company Name:   Plant McManus SW   Pace Project Manager:   Kevin.herring@pacelabs.com   Stato / Location   Company Name:   Plant McManus SW   Pace Project Manager:   Kevin.herring@pacelabs.com   Stato / Location   Company Name:   Plant McManus SW   Pace Project Manager:   Kevin.herring@pacelabs.com   Stato / Location   Company Name:   Plant McManus SW   Pace Project Manager:   Kevin.herring@pacelabs.com   Company Name:   Plant McManus SW   Pace Project Manager:   Kevin.herring@pacelabs.com   Company Name:   Plant McManus SW   Pace Project Manager:   Kevin.herring@pacelabs.com   Company Name:   Plant McManus SW   Pace Project Manager:   Kevin.herring@pacelabs.com   Company Name:   Plant McManus SW   Pace Project Manager:   Kevin.herring@pacelabs.com   Company Name:   Plant McManus SW   Pace Project Manager:   Kevin.herring@pacelabs.com   Company Name:   Plant McManus SW   Pace Project Manager:   Kevin.herring@pacelabs.com   Company Name:   Plant McManus SW   Pace Project Manager:   Kevin.herring@pacelabs.com   Company Name:   Plant McManus SW   Pace Project Manager:   Kevin.herring@pacelabs.com   Company Name:   Plant McManus SW   Pace Project Manager:   Kevin.herring@pacelabs.com   Company Name:   Plant McManus SW   Pace Project Manager:   Kevin.herring@pacelabs.com   Company Name:   Plant McManus SW   Pace Project Manager:   Kevin.herring@pacelabs.com   Company Name:   Plant McManus SW   Pace Project Manager:   Kevin.herring@pacelabs.com   Company Name:   Plant McManus SW	GA		(N/A)	ilysis Filtered	Requested An:		Н			قا ا	11	ile #	8 3	1 =					$\  \cdot \ $	7.	-				+
Intert Information:   Required Project Information:   Invoice Information:   Invoice Information:   Page: 2 Of	Location	State			labs.com	Dpace	pnin		kevi	7	anage	yect M	ce Pra	P			WS St	int McMani	PI	ect Name:	Proj			(404)358-8 Due Date:	quested
Intert Information:   Required Project Information:   Invoice Information:   Page: 2. Of Resolute Environment   Report To: Stephen Wilson, Trent Godwin   Attention:   1003 Weatherstone Parkway, Suite 320   Copy To: Lauren Pethy, Leslie Miller   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anthers:   Anther	ory Agency	Rogula										ote:	ce Qu	P					#	hase Orde	Purc	m	n@resoluteenv.c	ephen wilso	nail: S
Intert Information:   Required Project Information:   Regular Control   Report To: Stephen Wilson, Technology   Attention:   Report To: Stephen Wilson, Technology   Attention:   Report To: Stephen Wilson, Technology   Attention:   Report To: Stephen Wilson, Technology   Attention:   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology   Report To: Stephen Wilson, Technology				1							1	INGIL	dress	2 5			ic Millel	r cuy, Les	, acr	- 1	-			ଜୁ	oodstock
lient information: Required Project Information: Invoice Information: Page : 2. Of			ī								1		ention	2 B		5	rent Godw	Wilson, T	stephe		CO Rep	te 320	herstone Parkway, Su		dress:
	Q	Page:									ation	nform	oice	5				ormation:	oct Inf	uirod Pro	Roq	l	on:	I	pe linbe







February 04, 2020

Joju Abraham Georgia Power - Coal Combustion Residuals 2480 Maner Road Atlanta, GA 30339

RE: Project: Plant McManus SW

Pace Project No.: 2628570

# Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on February 04, 2020. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring

Kai Slery

kevin.herring@pacelabs.com

(704)875-9092

**HORIZON** Database Administrator

Enclosures

cc: Veronica Faye, Resolute

Trent Godwin, Resolute Environmental & Water Resources Kristen Jurinko

Lea Millet, Resolute Environmental & Water Resources Lauren Petty, Southern Company Services, Inc.

Kevin Stephenson, Resolute Environmental & Water Resources Consulting, LLC

Stephen Wilson, Resolute Environmental & Water

Resources Consulting, LLC







# **CERTIFICATIONS**

Project: Plant McManus SW

Pace Project No.: 2628570

**Pace Analytical Services Atlanta** 

110 Technology Parkway Peachtree Corners, GA 30092 Florida DOH Certification #: E87315

Georgia DW Inorganics Certification #: 812 Georgia DW Microbiology Certification #: 812 North Carolina Certification #: 381 South Carolina Certification #: 98011001

Virginia Certification #: 460204



# **SAMPLE SUMMARY**

Project: Plant McManus SW

Pace Project No.: 2628570

Lab ID	Sample ID	Matrix	Date Collected	Date Received
2628570001	T2-1HT	Water	02/01/20 13:55	02/04/20 08:00
2628570002	T2-2HTS	Water	02/01/20 14:28	02/04/20 08:00
2628570003	T2-2HT	Water	02/01/20 14:32	02/04/20 08:00
2628570004	T2-3HTS	Water	02/01/20 14:46	02/04/20 08:00
2628570005	T2-3HT	Water	02/01/20 14:50	02/04/20 08:00
2628570006	T2-4HTS	Water	02/01/20 15:00	02/04/20 08:00
2628570007	T2-4HT	Water	02/01/20 15:14	02/04/20 08:00
2628570008	T2-4LT	Water	02/02/20 09:46	02/04/20 08:00
2628570009	T2-3LT	Water	02/02/20 11:20	02/04/20 08:00
2628570010	T2-2LT	Water	02/02/20 13:38	02/04/20 08:00



# **SAMPLE ANALYTE COUNT**

Project: Plant McManus SW

Pace Project No.: 2628570

Lab ID	Sample ID	Method	Analysts	Analytes Reported
2628570001	T2-1HT	EPA 6020B	CSW	1
2628570002	T2-2HTS	EPA 6020B	CSW	1
2628570003	T2-2HT	EPA 6020B	CSW	1
2628570004	T2-3HTS	EPA 6020B	CSW	1
2628570005	T2-3HT	EPA 6020B	CSW	1
2628570006	T2-4HTS	EPA 6020B	CSW	1
2628570007	T2-4HT	EPA 6020B	CSW	1
2628570008	T2-4LT	EPA 6020B	CSW	1
2628570009	T2-3LT	EPA 6020B	CSW	1
2628570010	T2-2LT	EPA 6020B	CSW	1



# **SUMMARY OF DETECTION**

Project: Plant McManus SW

Pace Project No.: 2628570

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2628570001	T2-1HT					
EPA 6020B	Arsenic	0.0035J	mg/L	0.025	02/04/20 13:06	D3
2628570002	T2-2HTS					
EPA 6020B	Arsenic	0.0041J	mg/L	0.025	02/04/20 13:29	D3
2628570003	T2-2HT					
EPA 6020B	Arsenic	0.0044J	mg/L	0.025	02/04/20 13:34	D3
2628570004	T2-3HTS					
EPA 6020B	Arsenic	0.0039J	mg/L	0.025	02/04/20 13:40	D3
2628570005	T2-3HT					
EPA 6020B	Arsenic	0.0044J	mg/L	0.025	02/04/20 13:46	D3
2628570006	T2-4HTS					
EPA 6020B	Arsenic	0.0038J	mg/L	0.025	02/04/20 14:04	D3
2628570007	T2-4HT					
EPA 6020B	Arsenic	0.0041J	mg/L	0.025	02/04/20 14:10	D3
2628570008	T2-4LT					
EPA 6020B	Arsenic	0.0051J	mg/L	0.025	02/04/20 14:16	D3
2628570009	T2-3LT					
EPA 6020B	Arsenic	0.0038J	mg/L	0.025	02/04/20 14:21	D3
2628570010	T2-2LT					
EPA 6020B	Arsenic	0.0039J	mg/L	0.025	02/04/20 14:27	D3



Project: Plant McManus SW

Pace Project No.: 2628570

Date: 02/04/2020 04:50 PM

Sample: T2-1HT Lab ID: 2628570001 Collected: 02/01/20 13:55 Received: 02/04/20 08:00 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

6020B MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic 0.0035J mg/L 0.025 0.0018 5 02/04/20 09:25 02/04/20 13:06 7440-38-2 D3



Project: Plant McManus SW

Pace Project No.: 2628570

Date: 02/04/2020 04:50 PM

Sample: T2-2HTS Lab ID: 2628570002 Collected: 02/01/20 14:28 Received: 02/04/20 08:00 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

6020B MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic **0.0041J** mg/L 0.025 0.0018 5 02/04/20 09:25 02/04/20 13:29 7440-38-2 D3



Project: Plant McManus SW

Pace Project No.: 2628570

Date: 02/04/2020 04:50 PM

Sample: T2-2HT Lab ID: 2628570003 Collected: 02/01/20 14:32 Received: 02/04/20 08:00 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

6020B MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic 0.0044J mg/L 0.025 0.0018 5 02/04/20 09:25 02/04/20 13:34 7440-38-2 D3



Project: Plant McManus SW

Pace Project No.: 2628570

Date: 02/04/2020 04:50 PM

Sample: T2-3HTS Lab ID: 2628570004 Collected: 02/01/20 14:46 Received: 02/04/20 08:00 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

6020B MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic 0.0039J mg/L 0.025 0.0018 5 02/04/20 09:25 02/04/20 13:40 7440-38-2 D3



Project: Plant McManus SW

Pace Project No.: 2628570

Date: 02/04/2020 04:50 PM

Sample: T2-3HT Lab ID: 2628570005 Collected: 02/01/20 14:50 Received: 02/04/20 08:00 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

6020B MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic 0.0044J mg/L 0.025 0.0018 5 02/04/20 09:25 02/04/20 13:46 7440-38-2 D3



Project: Plant McManus SW

Pace Project No.: 2628570

Date: 02/04/2020 04:50 PM

Sample: T2-4HTS Lab ID: 2628570006 Collected: 02/01/20 15:00 Received: 02/04/20 08:00 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

6020B MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic 0.0038J mg/L 0.025 0.0018 5 02/04/20 09:25 02/04/20 14:04 7440-38-2 D3



Project: Plant McManus SW

Pace Project No.: 2628570

Date: 02/04/2020 04:50 PM

Sample: T2-4HT Lab ID: 2628570007 Collected: 02/01/20 15:14 Received: 02/04/20 08:00 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

6020B MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic **0.0041J** mg/L 0.025 0.0018 5 02/04/20 09:25 02/04/20 14:10 7440-38-2 D3



Project: Plant McManus SW

Pace Project No.: 2628570

Date: 02/04/2020 04:50 PM

Sample: T2-4LT Lab ID: 2628570008 Collected: 02/02/20 09:46 Received: 02/04/20 08:00 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

6020B MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic 0.0051J mg/L 0.025 0.0018 5 02/04/20 09:25 02/04/20 14:16 7440-38-2 D3



Project: Plant McManus SW

Pace Project No.: 2628570

Date: 02/04/2020 04:50 PM

Sample: T2-3LT Lab ID: 2628570009 Collected: 02/02/20 11:20 Received: 02/04/20 08:00 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

6020B MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic 0.0038J mg/L 0.025 0.0018 5 02/04/20 09:25 02/04/20 14:21 7440-38-2 D3



Project: Plant McManus SW

Pace Project No.: 2628570

Date: 02/04/2020 04:50 PM

Sample: T2-2LT Lab ID: 2628570010 Collected: 02/02/20 13:38 Received: 02/04/20 08:00 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

6020B MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic 0.0039J mg/L 0.025 0.0018 5 02/04/20 09:25 02/04/20 14:27 7440-38-2 D3



#### **QUALITY CONTROL DATA**

Project: Plant McManus SW

Pace Project No.: 2628570

Date: 02/04/2020 04:50 PM

QC Batch: 42781 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020B MET

Associated Lab Samples: 2628570001, 2628570002, 2628570003, 2628570004, 2628570005, 2628570006, 2628570007, 2628570008,

2628570009, 2628570010

METHOD BLANK: 195438 Matrix: Water

Associated Lab Samples: 2628570001, 2628570002, 2628570003, 2628570004, 2628570005, 2628570006, 2628570007, 2628570008,

2628570009, 2628570010

ParameterUnitsBlank Reporting ResultReporting LimitMDLAnalyzedQualifiersArsenicmg/LND0.00500.0003502/04/20 12:11

LABORATORY CONTROL SAMPLE: 195439

LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 93 80-120 Arsenic mg/L 0.1 0.093

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 195440 195441

MS MSD 2628570001 Spike Spike MS MSD MS MSD % Rec Max RPD Parameter Units Conc. Conc. Result Result % Rec % Rec Limits **RPD** Result Qual Arsenic 0.0035J 0.1 0.1 0.098 0.097 94 93 75-125 20 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALIFIERS**

Project: Plant McManus SW

Pace Project No.: 2628570

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### **ANALYTE QUALIFIERS**

Date: 02/04/2020 04:50 PM

D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.



# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: Plant McManus SW

Pace Project No.: 2628570

Date: 02/04/2020 04:50 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
2628570001	T2-1HT	EPA 3005A	42781	EPA 6020B	42798
2628570002	T2-2HTS	EPA 3005A	42781	EPA 6020B	42798
2628570003	T2-2HT	EPA 3005A	42781	EPA 6020B	42798
2628570004	T2-3HTS	EPA 3005A	42781	EPA 6020B	42798
2628570005	T2-3HT	EPA 3005A	42781	EPA 6020B	42798
2628570006	T2-4HTS	EPA 3005A	42781	EPA 6020B	42798
2628570007	T2-4HT	EPA 3005A	42781	EPA 6020B	42798
2628570008	T2-4LT	EPA 3005A	42781	EPA 6020B	42798
2628570009	T2-3LT	EPA 3005A	42781	EPA 6020B	42798
2628570010	T2-2LT	EPA 3005A	42781	EPA 6020B	42798

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

	As Only	WCH-COMPANY	THE COURT	72 1453	13-4WI	SAMPLAN		WENTOTIE	71-319	73-44-7		MENT LI LO-Man	SAMPLE ID  Character per hon.  (A-Z, 0-91; -)  Sample Ids must be unique  Thus	MANTELX Drinkfing V		Requested Due Date:	w.com	Š	Addition: 1003 Marshaute Cod	¥
PRINT Name of SAME	Kannon Shaphanana 21420	SSS PVICIONAL	3447	CONTRACT S	10	विद्याप्त्र	To Capity The	K G ZWE TO	S G Ellis moch		S Jamps	क्षाक व्यक्ति	MATRIX CODE (see valid to SAMPLE TYPE (G-GRAS ( DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE THANK DATE TH	que co (eú)	Trojusto.	Project Name: Plant McManus SW	Purchase Order#;	capy 10:	Report To: Maket Lea	Section B Required Project information:
T. 2015	17										227 Table 1994 (1994) 8 Salet		SAMPLETEMPAT COLLECT # OF CONTAINERS Unpreserved H2SO4 HNO3 HCI NEOH	Preservatives	Pace Profite #: 2919 → (	Aanagar:	Pace Ouche:	Company Name:	Assertion:	Section C Invoice information:
older Chance	*										According to the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the cont		Na25203 Methanol Other Metals by 6020 Dissolved Metals by 6020			kevin, hening@pacalabs, com,	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA		
TEMP in C  Received on Ice (Y/N)  Custody Seeled Cooler											Annual control of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of		Residual Chlorine (Y/N)					-	rage: 1 Of	

# ITEM# tequired Client Information: 2mperry: Georgia Power Iddress: 1003 Westherstone Parkway Life 320, Woodstock, GA 30188 mait: less millestifresoluteens, com 12-2WT 12 344 MAN STANT 71-347 10 -2 H25 たアフトな (251)778-2760 ed Due Date: MCM-DIAM 14-23-5T 日に対 ST. THE One Character per box. (A-Z, 0-9 / , -) Sample lds must be unique F Required Project Information Report To: Miller, Lea Copy To: Purchase Order #: Project Name: Kon Christian Vales 88₹₹₹₹₹₽₽ र्डिज्हाम्याम्य Se plyanus 22 Na Liveoliseo Men action क्टा ज्यापित्र न्द्रका क्यान्त्र शहर TEN CONTROL 2 2 नाक्तांक्यांकि MATRIX CODE (see valid codes to left) SAMPLETYPE (G-GRAB C-COMP) Plant McManus SW F START 6 35 Sant TIME COLLECTED The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. SAMPLETEMP AT COLLECTION Section C Linvoice information: Attantion: Company Name: Address: Pace Durie: Pace Profile #: 2919 OF CONTAINERS Unpreserved H2S04 HNO3 HÇI NaOH Ne2S2O3 Methanol Other LONGINO Metals by 6020 Dissolved Matais by 6020 Page: TEMP in C Residual Chlorine (Y/N) Received on (Y/N) Custo Sealed Cooler (Y/N) Q Samples Intact (Y/N)

CHAIN-OF-CUSTODY / Analytical Request Document

# ITEM# pary: Georgia Power ses: 1000 Weetherstone Pa \$200, Weedstock, GA 30188 it is a mile (i) mace the environment 1251)776-2780 MCM-COS FT 3-36 23-AA1 73-347 STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY 77-21 3-4WT 72-217 735 12-5-7 TACK-CALL One Character per box. (A-Z, 0-91, -) Sample this reust be unique **SAMPLE ID** Purchase Order #: Project Name: Figural week क्रिया कार्या कर् र्ड दि श्रामक त्यास वर्ष दिश्यामक त्यास र्ज (अध्यक्तिमञ्जू क्रिक्किक्कि 5 5 S क्रिक्रिक प्रकार Sec application MATRIX CODE (see valid codes to left) SAMPLE TYPE (G-GRAS C-COMP) HILS CAMP START 144 COLLECTED DATE CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. 8 Caletz 붎 SAMPLE TEMP AT COLLECTION 13.41 Invoice Information: Affertion: Company Name: Address: Page Quote: # OF CONTAINERS Unpreserved H2\$04 ниоз HCI. X NaOH Na2S203 Methanol Other as, bidge Metals by 6020 Dissolved Matals by 6020 TEMP in C Residual Chlorine (Y/N) Received on ice (Y/N) Custod Sealed Cooler 2 (Y/N)

Samples Intact (Y/N)

# ITEM # peny: Georgia Power see: 1003 Westherstone Parlsway 320, Woodwork, GA 30189 THE PORTE TAN-DULA PRINCE AND 13-145 No. 3-31 5 1 One Character per box. (A-Z, 0-9 /, -) Sample ide must be unique SAMPLE ID 12/14 Ī Purchase Order #: Project Name: Project #: Required Project Information: Report To: Millet, Lee Copy To: Ky John Standard 3 MATRIX CODE (see valid codes to left) SAMPLE TYPE (G-GRAB C-COMP) START 1 1 SE S 1 COLLECTED DATE The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately CHAIN-OF-CUSTODY / Analytical Request Document क्रमा वर्षा Sample temp at collection Saction C havoice information: Attorizer Company Name: Address: Pace Quote: Pace Project Manager: Pace Profile # 2919 # OF CONTAINERS Unpreserved H2\$04 HN03 行いい HCI - Indiana NaOH Na28203 Methanol A10A2 (134 10万元 Metals by 6020 Dissolved Metals by 6020 Residual Chlorine (Y/N) ice (Y/N) Custoo beise Cooler (Y/N) Q Samples (Y/N)





February 18, 2020

Joju Abraham Georgia Power - Coal Combustion Residuals 2480 Maner Road Atlanta, GA 30339

RE: Project: Plant McManus SW

Pace Project No.: 2628593

# Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on February 04, 2020. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring

Kai Slery

kevin.herring@pacelabs.com

(704)875-9092

**HORIZON** Database Administrator

Enclosures

cc: Veronica Faye, Resolute

Trent Godwin, Resolute Environmental & Water Resources Kristen Jurinko Lea Millet, Resolute Environmental & Water Resources Lauren Petty, Southern Company Services, Inc. Kevin Stephenson, Resolute Environmental & Water

Resources Consulting, LLC Stephen Wilson, Resolute Environmental & Water

Resources Consulting, LLC







#### **CERTIFICATIONS**

Project: Plant McManus SW

Pace Project No.: 2628593

**Pace Analytical Services Atlanta** 

110 Technology Parkway Peachtree Corners, GA 30092 Florida DOH Certification #: E87315

Georgia DW Inorganics Certification #: 812 Georgia DW Microbiology Certification #: 812 North Carolina Certification #: 381 South Carolina Certification #: 98011001

Virginia Certification #: 460204



# **SAMPLE SUMMARY**

Project: Plant McManus SW

Pace Project No.: 2628593

Lab ID	Sample ID	Matrix	Date Collected	Date Received
2628593001	MCM-04LT	Water	02/03/20 11:35	02/04/20 10:48
2628593002	MCM-08LT	Water	02/03/20 12:41	02/04/20 10:48



# **SAMPLE ANALYTE COUNT**

Project: Plant McManus SW

Pace Project No.: 2628593

Lab ID	Sample ID	Method	Analysts	Analytes Reported
2628593001	MCM-04LT	EPA 6020B	CSW	3
		EPA 6020B	CSW	3
2628593002	MCM-08LT	EPA 6020B	CSW	3
		EPA 6020B	CSW	3



# **SUMMARY OF DETECTION**

Project: Plant McManus SW

Pace Project No.: 2628593

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2628593001	MCM-04LT					
EPA 6020B	Arsenic	0.0063J	mg/L	0.050	02/17/20 15:10	D3
2628593002	MCM-08LT					
EPA 6020B	Arsenic	0.019J	mg/L	0.050	02/17/20 15:16	D3



Project: Plant McManus SW

Pace Project No.: 2628593

Date: 02/18/2020 05:11 PM

Sample: MCM-04LT	Lab ID:	2628593001	Collecte	d: 02/03/20	11:35	Received: 02/	/04/20 10:48 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: El	PA 3005A			
Arsenic	0.0063J	mg/L	0.050	0.0035	10	02/17/20 11:15	02/17/20 15:10	7440-38-2	D3
Cobalt	ND	mg/L	0.050	0.0030	10	02/17/20 11:15	02/17/20 15:10	7440-48-4	D3
Lithium	ND	mg/L	0.30	0.0078	10	02/17/20 11:15	02/17/20 15:10	7439-93-2	D3
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: El	PA 3005A			
Arsenic, Dissolved	ND	mg/L	0.050	0.0035	10	02/17/20 11:15	02/17/20 17:25	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/17/20 11:15	02/17/20 17:25	7440-48-4	D3
Lithium, Dissolved	ND	mg/L	0.30	0.0078	10	02/17/20 11:15	02/17/20 17:25	7439-93-2	D3



Project: Plant McManus SW

Pace Project No.: 2628593

Date: 02/18/2020 05:11 PM

Sample: MCM-08LT	Lab ID:	2628593002	Collecte	d: 02/03/20	12:41	Received: 02/	/04/20 10:48 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Prep	aration Met	hod: E	PA 3005A			
Arsenic	0.019J	mg/L	0.050	0.0035	10	02/17/20 11:15	02/17/20 15:16	7440-38-2	D3
Cobalt	ND	mg/L	0.050	0.0030	10	02/17/20 11:15	02/17/20 15:16	7440-48-4	D3
Lithium	ND	mg/L	0.30	0.0078	10	02/17/20 11:15	02/17/20 15:16	7439-93-2	D3
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA 6	6020B Prep	aration Met	hod: E	PA 3005A			
Arsenic, Dissolved	ND	mg/L	0.050	0.0035	10	02/17/20 11:15	02/17/20 17:48	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/17/20 11:15	02/17/20 17:48	7440-48-4	D3
Lithium, Dissolved	ND	mg/L	0.30	0.0078	10	02/17/20 11:15	02/17/20 17:48	7439-93-2	D3



#### **QUALITY CONTROL DATA**

Project: Plant McManus SW

Pace Project No.: 2628593

Date: 02/18/2020 05:11 PM

QC Batch: 43407 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020B MET

Associated Lab Samples: 2628593001, 2628593002

METHOD BLANK: 198741 Matrix: Water

Associated Lab Samples: 2628593001, 2628593002

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Arsenic	mg/L	ND	0.0050	0.00035	02/17/20 14:58	
Cobalt	mg/L	ND	0.0050	0.00030	02/17/20 14:58	
Lithium	mg/L	ND	0.030	0.00078	02/17/20 14:58	

LABORATORY CONTROL SAMPLE:	198742					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/L	0.1	0.097	97	80-120	
Cobalt	mg/L	0.1	0.099	99	80-120	
Lithium	mg/L	0.1	0.099	99	80-120	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 198743												
			MS	MSD								
		2629097001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/L	ND	0.1	0.1	0.097	0.099	97	99	75-125	2	20	
Cobalt	mg/L	0.017	0.1	0.1	0.11	0.11	95	95	75-125	0	20	
Lithium	mg/L	0.019J	0.1	0.1	0.12	0.11	97	94	75-125	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL DATA**

Project: Plant McManus SW

Pace Project No.: 2628593

Date: 02/18/2020 05:11 PM

QC Batch: 43413 Analysis Method: EPA 6020B

QC Batch Method: EPA 3005A Analysis Description: 6020B MET Dissolved

Associated Lab Samples: 2628593001, 2628593002

METHOD BLANK: 198753 Matrix: Water

Associated Lab Samples: 2628593001, 2628593002

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Arsenic, Dissolved	mg/L	ND	0.0050	0.00035	02/17/20 17:14	
Cobalt, Dissolved	mg/L	ND	0.0050	0.00030	02/17/20 17:14	
Lithium, Dissolved	mg/L	ND	0.030	0.00078	02/17/20 17:14	

LABORATORY CONTROL SAMPLE: 198754 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Arsenic, Dissolved mg/L 0.1 0.095 95 80-120 Cobalt. Dissolved 0.1 0.098 98 80-120 mg/L Lithium, Dissolved mg/L 0.1 0.096 96 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 198755					198756							
			MS	MSD								
		2628593001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic, Dissolved	mg/L	ND	0.1	0.1	0.098	0.095	98	95	75-125	3	20	
Cobalt, Dissolved	mg/L	ND	0.1	0.1	0.098	0.094	95	91	75-125	4	20	
Lithium, Dissolved	mg/L	ND	0.1	0.1	0.095J	0.095J	94	93	75-125		20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALIFIERS**

Project: Plant McManus SW

Pace Project No.: 2628593

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### **ANALYTE QUALIFIERS**

Date: 02/18/2020 05:11 PM

D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.



# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: Plant McManus SW

Pace Project No.: 2628593

Date: 02/18/2020 05:11 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
2628593001	MCM-04LT	EPA 3005A	43407	EPA 6020B	43433
2628593002	MCM-08LT	EPA 3005A	43407	EPA 6020B	43433
2628593001	MCM-04LT	EPA 3005A	43413	EPA 6020B	43435
2628593002	MCM-08LT	EPA 3005A	43413	EPA 6020B	43435

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

WWW PACELARS COM		Chairtoi-Custody is a LEGAL DOCOMENT. All relevant herds must be completed accurately	ed accurately.
Section A	Section B	Section C	1
<b>≣</b> I	Required Project information:	Involce Information:	Page: 1 Of 1
	Report To: Mille Lea	Attention:	
Address: 1003 Weatherstone Parkway	COPY TO: W. SON STECKEN	Company Name.	2000
320, Woodstock, GA 30188		Address:	Regulatoritégenory
i. lea.milletigresouteenv.com 6 fronch. Wise J	Purchase Order #:	Pace Quote:	
Requested Due Date:	Project #:	Abvillmently greated by cam.	AS
	(Red or	Procentative A 1	ed Zirio
SAMPLE ID ON SOLUTION OF THE SAME OF THE SAME OF CHARACTER POR DOX.  (A-Z, 6-9 /, -) COX.  Sample ids must be unique These Tesse	8 ままず で 4 まま 2 まま 2 まま 2 まま 2 まま 2 まま 2 まま 2	Metals by 6020  Metals by 6020  Metals by 6020  Metals by 6020  Metals by 6020  Metals by 6020  Metals by 6020  Metals by 6020  Metals by 6020  Metals by 6020  Metals by 6020  Metals by 6020  Metals by 6020  Metals by 6020  Metals by 6020  Metals by 6020  Metals by 6020  Metals by 6020	(VVV) enholrO (Bubise)
MCM-04 LT	A ziston 1135	7 47	gg
MCM-OBLS	F Gptatroum	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	G log
2 B B C C C C C C C C C C C C C C C C C			
Approvise comment	THE HOUNSHED STOCKHOME CONTOCK	The STIME ACCORDED BY LANGER DATE	TTIRE
Becalit Dalie!	CHANGE TO THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STAT	00/2/2 Jahrah 3 32 0	163Y Y Y Y
	Commerce with Pere silvine	20 1048 Vermone Okaba Pare allya	7 x x 22 april
MO#: 2628593	PRINT Name of SAM	A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMPLER:  A SAMP	TEMP in C Sealed (YA) Sealed Cooler (YA) Tousky Samples Intect

Sar	nple Condition	Upon Receip	JO#: 2628593
Pace Analytical Client Name	CAPO.	Ner F	M: KH Due Date: 02/07/
Courier: Fed Ex UPS USPS Client	nt Commercial		Proj. Due Date:
Custody Seal on Cooler/Box Present:  yes	no Seals	intact: yes [	Proj. Name:
Packing Material: Bubble Wrap Bubble	Bags 🗌 Nome	Other	
Thermometer Used 230	Type of Ice: (Wet	Blue None	Samples on ice, cooling process has begun
Cooler Temperature  Temp should be above freezing to 6°C	Biological Tissue	is Frozen: Yes No Comments:	Date and initials of person examining contents:
Chain of Custody Present:	GYes ONO ONA	1.	
Chain of Custody Filled Out:	EYes DNo DNA	2.	c
Chain of Custody Relinquished:	ØYes □No □N/A	3.	
Sampler Name & Signature on COC:	□Tes □No □N/A	4.	
Samples Arrived within Hold Time:	☐Yes □No □N/A	5.	
Short Hold Time Analysis (<72hr):	□Yes ☐NA	6.	
Rush Turn Around Time Requested:	□Yes □No □N/A	7. 24hr7	
Sufficient Volume:	GYES ON ONA	8.	4
Correct Containers Used:	DYS ONO ONA	9.	
-Pace Containers Used:	Des DNo DNA		
Containers Intact:	ØYes □No □N/A	10.	
Filtered volume received for Dissolved tests	□Yes □No ZINTA	11.	
Sample Labels match COC:	ZYes DNo DNA	12.	
_Includes date/time/ID/Analysis Matrix:	W	1.0	
All containers needing preservation have been checked.	TYes ONO ON/A	13.	
All containers needing preservation are found to be in compliance with EPA recommendation.	Tos Ono On/A		17.55° U.S.
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	□Yes □Ño	Initial when completed	Lot # of added preservative
Samples checked for dechlorination:	□Yes □No □N/A	14	
Headspace in VOA Vials ( >6mm):	□Yes □No ☑MA	15.	
Trip Blank Present:	□Yes □No ☑NA	16.	0.
Trip Blank Custody Seals Present	□Yes □No ☑N/A		•
Pace Trip Blank Lot # (if purchased):	<del>-</del>		
Client Notification/ Resolution:	··	<u> </u>	Field Data Required? Y / N
Person Contacted:	Date/	Time:	
Comments/ Resolution:			
	d.		
0.		30	
	<del></del>		
P 2- 5- 9		292	<del>-</del>
·		<del> </del>	<u> </u>

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office ( i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

**Project Manager Review:** 

Date:





February 14, 2020

Joju Abraham Georgia Power - Coal Combustion Residuals 2480 Maner Road Atlanta, GA 30339

RE: Project: Plant McManus SW

Pace Project No.: 2628594

# Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on February 04, 2020. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring

Kai Slery

kevin.herring@pacelabs.com

(704)875-9092

**HORIZON** Database Administrator

Enclosures

cc: Veronica Faye, Resolute

Trent Godwin, Resolute Environmental & Water Resources

Kristen Jurinko

Lea Millet, Resolute Environmental & Water Resources Lauren Petty, Southern Company Services, Inc. Kevin Stephenson, Resolute Environmental & Water

Resources Consulting, LLC

Stephen Wilson, Resolute Environmental & Water

Resources Consulting, LLC







# **CERTIFICATIONS**

Project: Plant McManus SW

Pace Project No.: 2628594

**Pace Analytical Services Atlanta** 

110 Technology Parkway Peachtree Corners, GA 30092 Florida DOH Certification #: E87315

Georgia DW Inorganics Certification #: 812 Georgia DW Microbiology Certification #: 812 North Carolina Certification #: 381 South Carolina Certification #: 98011001

Virginia Certification #: 460204



# **SAMPLE SUMMARY**

Project: Plant McManus SW

Pace Project No.: 2628594

Lab ID	Sample ID	Matrix	Date Collected	Date Received
2628594001	BG-1LT	Water	02/02/20 08:58	02/04/20 10:48
2628594002	BG-2HT	Water	02/02/20 15:04	02/04/20 10:48



# **SAMPLE ANALYTE COUNT**

Project: Plant McManus SW

Pace Project No.: 2628594

Lab ID	Sample ID	Method	Analysts	Analytes Reported
2628594001	BG-1LT	EPA 6020B	CSW	3
		EPA 6020B	CSW	3
2628594002	BG-2HT	EPA 6020B	CSW	3
		EPA 6020B	CSW	3



# **SUMMARY OF DETECTION**

Project: Plant McManus SW

Pace Project No.: 2628594

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
 2628594001	BG-1LT					
EPA 6020B	Lithium	0.090J	mg/L	0.30	02/11/20 21:14	
EPA 6020B	Arsenic, Dissolved	0.0057J	mg/L	0.050	02/12/20 21:23	D3
EPA 6020B	Lithium, Dissolved	0.094J	mg/L	0.30	02/12/20 21:23	
2628594002	BG-2HT					
EPA 6020B	Arsenic	0.0055J	mg/L	0.050	02/11/20 21:37	D3
EPA 6020B	Lithium	0.098J	mg/L	0.30	02/11/20 21:37	
EPA 6020B	Arsenic, Dissolved	0.0038J	mg/L	0.050	02/12/20 21:46	D3
EPA 6020B	Lithium, Dissolved	0.096J	mg/L	0.30	02/12/20 21:46	



Project: Plant McManus SW

Pace Project No.: 2628594

Date: 02/14/2020 10:42 AM

Sample: BG-1LT	Lab ID:	2628594001	Collecte	d: 02/02/20	08:58	Received: 02/	/04/20 10:48 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: E	PA 3005A			
Arsenic	ND	mg/L	0.050	0.0035	10	02/11/20 12:50	02/11/20 21:14	7440-38-2	D3
Cobalt	ND	mg/L	0.050	0.0030	10	02/11/20 12:50	02/11/20 21:14	7440-48-4	
Lithium	0.090J	mg/L	0.30	0.0078	10	02/11/20 12:50	02/11/20 21:14	7439-93-2	
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: El	PA 3005A			
Arsenic, Dissolved	0.0057J	mg/L	0.050	0.0035	10	02/12/20 13:27	02/12/20 21:23	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/12/20 13:27	02/12/20 21:23	7440-48-4	
Lithium, Dissolved	0.094J	mg/L	0.30	0.0078	10	02/12/20 13:27	02/12/20 21:23	7439-93-2	



Project: Plant McManus SW

Pace Project No.: 2628594

Date: 02/14/2020 10:42 AM

Sample: BG-2HT	Lab ID:	2628594002	Collecte	d: 02/02/20	15:04	Received: 02/	/04/20 10:48 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Prep	aration Met	hod: El	PA 3005A			
Arsenic	0.0055J	mg/L	0.050	0.0035	10	02/11/20 12:50	02/11/20 21:37	7440-38-2	D3
Cobalt	ND	mg/L	0.050	0.0030	10	02/11/20 12:50	02/11/20 21:37	7440-48-4	
Lithium	0.098J	mg/L	0.30	0.0078	10	02/11/20 12:50	02/11/20 21:37	7439-93-2	
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA 6	6020B Prep	aration Met	hod: El	PA 3005A			
Arsenic, Dissolved	0.0038J	mg/L	0.050	0.0035	10	02/12/20 13:27	02/12/20 21:46	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/12/20 13:27	02/12/20 21:46	7440-48-4	
Lithium, Dissolved	0.096J	mg/L	0.30	0.0078	10	02/12/20 13:27	02/12/20 21:46	7439-93-2	



### **QUALITY CONTROL DATA**

Plant McManus SW Project:

Pace Project No.: 2628594

QC Batch: 43168 QC Batch Method: **EPA 3005A**  Analysis Method:

EPA 6020B

Analysis Description:

6020B MET

Associated Lab Samples: 2628594001, 2628594002

METHOD BLANK: 197286

Matrix: Water

Units

Units

mg/L

Result

0.0057J

Associated Lab Samples:

Arsenic

Arsenic

2628594001, 2628594002

Blank

Reporting

Parameter

Result

Limit

MDL Analyzed Qualifiers

Arsenic ND 0.0050 0.00035 02/11/20 21:02 mg/L

LABORATORY CONTROL SAMPLE: Parameter

Spike Conc.

LCS Result

LCS % Rec

MSD

Result

% Rec Limits

80-120

Qualifiers

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

197288

197289

0.098

MS MSD

Spike

MS

MS % Rec

98

MSD % Rec

103

% Rec Limits RPD

Max RPD

Qual

2628594001

Parameter

Date: 02/14/2020 10:42 AM

Spike Conc. Conc.

0.1

Result 0.1 0.11

0.11

105

75-125

2 20

Units

mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL DATA**

Project: Plant McManus SW

Pace Project No.: 2628594

Date: 02/14/2020 10:42 AM

QC Batch: 43232 Analysis Method: EPA 6020B

QC Batch Method: EPA 3005A Analysis Description: 6020B MET Dissolved

Associated Lab Samples: 2628594001, 2628594002

METHOD BLANK: 197813 Matrix: Water

Associated Lab Samples: 2628594001, 2628594002

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Arsenic, Dissolved mg/L ND 0.0050 0.00035 02/12/20 21:11

LABORATORY CONTROL SAMPLE: 197814

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Arsenic, Dissolved mg/L 0.10 103 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 197815 197816

MS MSD MSD 2628594001 Spike Spike MS MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual Arsenic, Dissolved 75-125 20 mg/L 0.0057J 0.1 0.1 0.12 0.11 110 102

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALIFIERS**

Project: Plant McManus SW

Pace Project No.: 2628594

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD - Relative Percent Difference** 

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

## **ANALYTE QUALIFIERS**

Date: 02/14/2020 10:42 AM

D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.



# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: Plant McManus SW

Pace Project No.: 2628594

Date: 02/14/2020 10:42 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
2628594001	BG-1LT	EPA 3005A	43168	EPA 6020B	43189
2628594002	BG-2HT	EPA 3005A	43168	EPA 6020B	43189
2628594001	BG-1LT	EPA 3005A	43232	EPA 6020B	43245
2628594002	BG-2HT	EPA 3005A	43232	EPA 6020B	43245

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

		8		2	: 6	•	<u>o</u>	7	6	6	64 A	,		ITEM#	gold)	Request	Phone	Email:	Address:	Company:	Required	<b>.</b>
W0#:2628594		Couly 1	Sydericohymousov								1 #7 5	1	36-11-5	SAMPLE ID One Character per box. (A-Z, 0-9 / , -) Sample ids must be unique		Requested Due Date:	(251)776-2760 Fax:	Suite 320, Woodstock, GA 30188  Email: lea.millet@resoluteenv.com	1003 Weatherstone Parkway	y: Georgia Power	Section A Required Client information:	WWW.PACELARS.COM
594	6	(X)	noyeau						iii N			<b>1</b>	ža Ža	Water West West Soulison Soulison Soulison Soulison Soulison Soulison Soulison Soulison Soulison Soulison Soulison Soulison Soulison Soulison Soulison Soulison Soulison Soulison Soulison Soulison Soulison Soulison Soulis	COOR COOR	Project #:	Project Name: P	Purchase Order #	Copy To: \alle	Report To: Mijlet, Lea	Required Project Information:	,
PRINT Name	OFTHE STANDARD OF THE	200	MOLLY THE CASE CASE THE WOLLY SELECT								7420 1564		2(21/20 02/2)	START E	солество		Plant McManus SW	Purchase Order #:	" Strong "	Lea	formation:	
THE SAMPLER:			m sure								_	- A	73%	SAMPLE TEMP AT COLLECT		Pace				Ц	hvol	} ,
	K. Wes	Same!	de VV anu									-	4 A	H2SO4 HNO3 HCI NaOH Na2S2O3	Preservatives		sneger kevi	Pace Quote:	Company Name:	Attention:	hvoice information:	
Court Chese	Jungton / Pac	ali willes	NOUNCE PLANTED IN									The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s		Methanol Other AMELIAN GOST Metals by 6020 Dissolved Metals by 6020		Require	n,herring@pacelabs.com,					
	1/2	2/3/20 1638 8291 02/5/2	dens the													DAZ CRAMBEL SERVEDING					11.5	
TEMP in C  Received on loe (Y/N)	12.69	2 8	a subject		750		6				8		15	Residual Chlorine (Y/N)		QA.	Specificonson	(energiane)			Page: 1	
Custody Sealed Cooler (Y/N) Samples Intact (Y/N)	4	Y 1	Economica			-0		,					CO					/cns/			<b>Q</b>	

:esseCl Project Manager Review: Comments/ Resolution: :emiT\efa Person Contacted: N / A Field Data Required? Client Notification/ Resolution: Pace Trip Blank Lot # (if purchased): ON[] SeY[] Trip Blank Custody Seals Present ON[] SOY[] Trip Blank Present: .61 AME ON SOY Headspace in VOA Vials ( >6mm): **∀**ME oN□ **Y□ Samples checked for dechlorination: preservative completed exceptions: VOA, coliform, TOC, O&G, VM-DRO (water) 9NE 30V bebbs to # JoJ nativ leitini compliance with EPA recommendation. All containers needing preservation are found to be in AW. %□ <del>;</del>%□ All containers needing preservation have been checked. :xirtsM -includes date/time/ID/Analysis **多り まる** .2 A/N 🗀 Sample Labels match COC: Filtered volume received for Dissolved tests YM(Z ON D SOAD AW. ON□ \$9人[Z] Containers Intact: AW. -Pace Containers Used: 9N□ #9¥Ó AW. 9ND 39ND Correct Containers Used: VN□ ON ________ Sufficient Volume: • Rush Turn Around Time Requested: A/N ON D SOME Short Hold Time Analysis (<72hr): AW. 9ME ##A□ Samples Arrived within Hold Time: AW. Sey E ON Sampler Mame & Signature on COC: AW[ *** Chain of Custody Relinquished: A/N ****J** Chain of Custody Filled Out: AW. ON Chain of Custody Present: AW. 9N□ , **99**√⊡ Comments: D.8 of grissent evods ed bluods gmeT bed to slattini bna etad Listnetnoo Cooler Temperature Biological Tissue is Frozen: Yes Samples on ice, cooling process has begun Type of Ice: (Wet enia ( Thermometer Used Techo 🔲 Bubble Bags Packing Material: 🔲 Bubble Wrap Seals intact: Custody Seal on Cooler/Box Present: Tracking #: T Pace Other Courter: Ted Ex DPS DSPS Client Commercial CFIENT: 26-CR Power 13Med H-Client Name: PM: KH Face Analytical Due Date: 02/07/20 7698Z9Z:#0M

Sample Condition Upon Receipt

Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHMR

Due Date: 02/06/20 CHAIN-OF-CUSTODY / Analytical Request E MO#: 2628595 CLIENT: 26-GR Power PM: KH Attention:
Company Name:
Address:
Pace Quote:
Pace Project Manager. kevin.herring@parelabs.com Section C Invoice Information: Purchase Order #: Project Name: Plant McManus SW Project #: Required Project Information: Report To: Millet, Lea Copy To: Section B Company: Georgia Power
Addres: 1000 Westherstone Parkway
Suite 320, Woodstock, GA 30186
Email lea-millet@resoluteerv.com
Phone: (261)776-2760 Fax:
Requested Due Date: Face Arrabytical Required Client Information:

MATTRIX	COLLECT	ED		Preservatives	97. S	W. 17.7						A STATE AND	
SAMPLE ID Solfsond of	BPOO PHEN ees)	EN COLLECTION	SH		291	24	10.				(N/A) DU	_	0
One Character per box. Wee (A-Z, 0-9, 1, -) Ar Character per box. Ar Character per box. Ar Character per box. Ar Character per box. Ar Character per per per per per per per per per p	SAPE TYPE  SAMPLE TYPE  DATE  TIME	ATE TME TEMPLE TEMPS	H2SO4	N#S2SO3 N#OH HCI HNO3	Netherol Services	DS03 yd alafeM sfeM bevloesiQ	الأجدد				hold3 leubiseЯ		
MENSON IN AREA	SHIP	-			0 - 7 	_		A.			L	1	
8 T1-1-X	SG Zubo offer					_							
T T.	S G Diga case					_					_		5
71-315	PG 21 (Jac locolo					_						Ki ()	
WKESK SCHOOL		1	3	<u>.</u>									
MANAOTI-S	Za silva ms			-			N.						
712-17	S Galina Imb										L		
TY-HATS	S Gallita 13594			Section 1		-					L		
71-4147	SG MINTER COMD					_							
T13455	\$ G blibo 1362			-		Ξ			GI.				
上田一大	Septime 1355	46-46 78-97 86-47						07/1					
MCM-COMT MUSE	SAC Zulud BSS			<u></u>									
Angricoladico	REMODERATO PITARECHON	DATE	make	9	неттебдечу/жертемном	FCATION	N. A.	DATE	が		SAUCH	LF CONTON	2
a Online	Vend Shapeson	Cale12	949	FLE	×					H			2
,				KING	Water !!	7	ace	2/4/	0000	4-1 a	1 1	7	٨
					0								
Pa	SAUPLISON	IE AND SKONATUR	-					Service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the servic		2			
ii ge 14 c	PRINTING	ans of SAMPLER: JRE of SAMPLER:	4	215	34	38	3			EMP in C	eceived o	Oojet navody	VA) subjes
of 1	San San San San San San San San San San	Serie L				2	20			_	R	20	S. Int

Due Date: 02/06/20 (N/A) Samples (NA) MO#: 2628595 Cooler pelee Custod (NVA) CLIENT: 26-GA Power Received on Residual Chlorine (Y/N) 9 TEMP IN C 2/3/20 /654 00/11/0 OPINE The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must Despt Cons Kevin herring@pacelabs.com Dissolved Metals by 6020 Metals by 6020 17.1 **"新生 新教"(前位** Other lonsrbeM Preservatives EOSSZ8N HORN Pace Project Manager Pace Profile # 2919 involce information: HCI Company Name EONH Pace Quote **≯**OSZH Section C Attention: 8401 Comora Stole Pacalifizo 13:16 Devieserdnu 222 LEST # OF CONTAINERS SAMPLE TEMP AT COLLECTION TIME 2 DATE COLLECTED Copy To: Miller, Lea S G LIBER OFFIS SIG pure rous and caleta Pa Se papalass HQ. SC Aclas ILL Fig prepara Project Name: Plant McManus SW START SG 2thon Delegand Required Project Information: SAMPLE TYPE (G-GRAB C-COMP) Purchase Order # MATRIX CODE (see valid codes to left) Section B Project #: CODE WAT WAT AND PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART OF PART MATRIX
Distributed Waster
Waster
Waster
Product
Bookbodd
Gue
Wege
Au
COhee
Tissue One Character per box. (A-2, 0-9 /, -) Sample lds must be unique 1003 Weatherstone Parkwey SAMPLE ID ## 3-3-5 NCW OSLY MCK OK 17 80-93W 73 25 73 /ES Suite 320, Woodstock, GA 30188 17 23-2-5 Face Aralytical (251)776-2760 Georgia Power Required Client Information -000 Requested Due Date 119 Page 15 of 17 * M3TI

CHAIN-OF-CUSTODY / Analytical Request Do

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the cont	WWW.PACELASS.COM			
Senting of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the sta		ecuon b equired Project Information:	Invoice information:	<b>~</b>
Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Com	Geomia Power	eport.To: Millet. Lea	Attention:	
COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   COLORS   C	1003 Weatherstone Parkway	opy To:	Company Name:	
Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part			Address:	Regulatory Agency
See of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of		urchase Order #:	1	
Seminary (Control of the Control of	Fax	roject Name: Plant McManus SW	ı	State (Location
SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID		ाणुंबदी हैं.	2919 Regulerited Analy	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
SAMPLE ID  One Owners are the many to the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control o	iii-	1		
SCHAPLE ID  Seminary American property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the	NATION AND THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE	OODE DE PRINCIPAL COLLEC	Preservatives	
Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comparing   Comp	_	₩ ₹ ₩ ₹ ₩ ₹ ₩ ₹ ₩ ₹ ₩ ₹ ₩ ₹ ₩ ₹ ₹ ₹ ₹ ₹	1891 1891	(M/Y) en
		S & S & S & S & S & S & S & S & S & S &	Metals py 6020 Other Angly and Machanol HCI HCI HNO3 H2604 H2604 A OF CONTAINER SAMPLE TEMP A	Residual Chlon
		द्यांक क्षाक	1	
		S To Tollise Office		
Sentiment Could be to the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of	h-17-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			
Mannage and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Contro	1 .			
Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Seminary Control of Semina			45	
1	15 15 15 15 15 15 15 15 15 15 15 15 15 1	1420		
SG PHUDD IZEN.  CM - CO WIT THE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUNTRY SAMPLE COUN	4.7-2 CT			
ADDITIONAL CONSTITUTE OF ANY PER NAME AND BIGGARTORE  SAMPLER NAME AND BIGGARTORE  SAMPLER NAME AND BIGGARTORE  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF ANY PER:  PRINT NAME OF	71-1445			
ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITOR OF ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITIONAL COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR COMBINES ADVITOR C				
Administration of supplementary part of supplements and supplements of supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplements and supplem	71-3HYS	2 G B(180) 1362		
Samples  Control of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color o	THE WAY	रेड्डा वयोगिक रिड्ड		
SAMPLER NAME AND SIGNATURE  PRINT Name of SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SAMPLER:  SOMPLER NAME OF SA	4			OCT NEWSCORPS
Samples  Samples  Samples  Custody  Samples  Free  Samples  Free  Samples  Free  Samples  Free  Samples  Free  Samples  Free  Samples  Samples  Free  Samples  Samples  Samples  Samples  Samples  Samples  Samples  Samples  Samples  Samples  Samples  Samples  Samples  Samples  Samples  Samples  Samples  Samples  Samples  Samples  Samples  Samples  Samples  Free  Samples  Samples  Free  Samples  Samples  Samples  Samples  Free  Samples  Samples  Free  Samples  Free  Samples  Free  Samples  Free  Samples  Free  Samples  Free  Samples  Free  Samples  Free  Samples  Free  Free  Samples  Free  Free  Samples  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Free  Fre	АррттомА, сомментв		TIME ACCEPTED BY JAFFLATION	
SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SA	ALO CLI	7	WHO TENEX	3
NAME AND BIGHATURE  CUSTON  CUSTON  CUSTON  CONTRIBUTE  CYNN  CONTRIBUTE  CYNN  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE  CONTRIBUTE	7	•	Trace With	0200 1.4
NAME AND BIGGIATURE  NAME AND BIGGIATURE  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Framples  Fram				
Name of SAMPLER:  Name of SAMPLER:  DATE Signod:  DATE Signod:  DATE Signod:  DATE Signod:  DATE Signod:  DATE Signod:  DATE Signod:  DATE Signod:  DATE Signod:  DATE Signod:  DATE Signod:  DATE Signod:  DATE Signod:		100	CHATTURE	+
			mara 15col	Received (Y/N) (Y/N) Custody Sealed (Y/N) (Y/N) Samples
		6		

# Sample Condition Upon Receipt

Pawer WO#: 2628595 Client Name: Grevaru PM: KH Due Date: 02/06/20 Courier: Fed Ex UPS USPS Client Commercial Pace Other CLIENT: 26-GA Power Tracking #: 3901 2400 8795 ☐ no ☐ no Seals intact: Packing Material: Bubble Wrap . Bubble Bags Doné Other ZIDIOCK Samples on ice, cooling process has begun Type of Ice: Wet Blue None 140230Thermometer Used Date and Initials of person examining Biological Tissue is Frozen: Yes No contents: KW 2 Cooler Temperature Comments: Temp should be above freezing to 6°C DYGS DNO DNA 1. Chain of Custody Present: ADYS ONO **□NA** Chain of Custody Filled Out: ZYSs □No □NA 3. Chain of Custody Relinquished: Tres ONo **□N/A** Sampler Name & Signature on COC: ATOS □NO **□N/A** Samples Arrived within Hold Time: □Yes ÆN6 □NA 6. Short Hold Time Analysis (<72hr): A No. **□NA** Rush Turn Around Time Requested: ZYes □No **□NA** 8. Sufficient Volume: /CYes □No **□NA** 9. Correct Containers Used: ØYes □No **□NA** -Pace Containers Used: 12Yes □No **□NA** 10. Containers Intact: ZINA □Yes □No 11. Filtered volume received for Dissolved tests □Yes □No □N/A 12. Sample Labels match COC: -Includes date/time/ID/Analysis Matrix: All containers needing preservation have been checked. ZÍYes □No □N/A 13. All containers needing preservation are found to be in ADV6 DNO DNA compliance with EPA recommendation. Lot # of added Initial when ZYes DNo preservative completed exceptions: VOA, coliform, TOC, O&G, WI-DRO (water) DYS DNO TINA 14. Samples checked for dechlorination: **SHA** ☐Yes ☐No 15. Headspace in VOA Vials ( >6mm): EN/A □Yes □No 16. Trip Blank Present: □Yes □No ENA Trip Blank Custody Seals Present Pace Trip Blank Lot # (if purchased):_ Y / N Field Data Required? Client Notification/ Resolution: Date/Time: Person Contacted: Comments/ Resolution:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Project Manager Review:

Date:





February 14, 2020

Joju Abraham Georgia Power - Coal Combustion Residuals 2480 Maner Road Atlanta, GA 30339

RE: Project: Plant McManus SW

Pace Project No.: 2628595

# Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on February 04, 2020. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring

Kai Slery

kevin.herring@pacelabs.com

(704)875-9092

**HORIZON** Database Administrator

Enclosures

cc: Veronica Faye, Resolute

Trent Godwin, Resolute Environmental & Water Resources Kristen Jurinko

Lea Millet, Resolute Environmental & Water Resources Lauren Petty, Southern Company Services, Inc.

Kevin Stephenson, Resolute Environmental & Water Resources Consulting, LLC

Stephen Wilson, Resolute Environmental & Water

Resources Consulting, LLC







### **CERTIFICATIONS**

Project: Plant McManus SW

Pace Project No.: 2628595

**Pace Analytical Services Atlanta** 

110 Technology Parkway Peachtree Corners, GA 30092 Florida DOH Certification #: E87315

Georgia DW Inorganics Certification #: 812 Georgia DW Microbiology Certification #: 812 North Carolina Certification #: 381 South Carolina Certification #: 98011001

Virginia Certification #: 460204



# **SAMPLE SUMMARY**

Project: Plant McManus SW

Pace Project No.: 2628595

Lab ID	Sample ID	Matrix	Date Collected	Date Received
2628595001	T2-1HT	Water	02/01/20 13:55	02/04/20 10:48
2628595002	T2-2HTS	Water	02/01/20 14:28	02/04/20 10:48
2628595003	T2-2HT	Water	02/01/20 14:32	02/04/20 10:48
2628595004	T2-3HTS	Water	02/01/20 14:46	02/04/20 10:48
2628595005	T2-3HT	Water	02/01/20 14:50	02/04/20 10:48
2628595006	T2-4HTS	Water	02/01/20 15:00	02/04/20 10:48
2628595007	T2-4HT	Water	02/01/20 15:14	02/04/20 10:48
2628595008	T2-4LT	Water	02/02/20 09:46	02/04/20 10:48
2628595009	T2-3LT	Water	02/02/20 11:20	02/04/20 10:48
2628595010	T2-2LT	Water	02/02/20 11:38	02/04/20 10:48
2628595011	T1-1LT	Water	02/01/20 09:50	02/04/20 10:48
2628595012	T1-4LT	Water	02/01/20 09:56	02/04/20 10:48
2628595013	T1-3LT	Water	02/01/20 10:06	02/04/20 10:48
2628595014	T1-2LT	Water	02/01/20 10:16	02/04/20 10:48
2628595015	T1-4HTS	Water	02/01/20 13:34	02/04/20 10:48
2628595016	T1-4HT	Water	02/01/20 13:40	02/04/20 10:48
2628595017	T1-3HTS	Water	02/01/20 13:52	02/04/20 10:48
2628595018	T1-3HT	Water	02/01/20 13:56	02/04/20 10:48
2628595019	T1-1HT	Water	02/01/20 14:08	02/04/20 10:48
2628595020	T1-2HTS	Water	02/01/20 14:16	02/04/20 10:48
2628595021	T1-2HT	Water	02/01/20 14:20	02/04/20 10:48



# **SAMPLE ANALYTE COUNT**

Project: Plant McManus SW

Pace Project No.: 2628595

Lab ID	Sample ID	Method	Analysts	Analytes Reported
2628595001	T2-1HT	EPA 6020B	CSW	1
2628595002	T2-2HTS	EPA 6020B	CSW	1
2628595003	T2-2HT	EPA 6020B	CSW	1
2628595004	T2-3HTS	EPA 6020B	CSW	1
2628595005	T2-3HT	EPA 6020B	CSW	1
2628595006	T2-4HTS	EPA 6020B	CSW	1
2628595007	T2-4HT	EPA 6020B	CSW	1
2628595008	T2-4LT	EPA 6020B	CSW	1
2628595009	T2-3LT	EPA 6020B	CSW	1
2628595010	T2-2LT	EPA 6020B	CSW	1
2628595011	T1-1LT	EPA 6020B	CSW	1
2628595012	T1-4LT	EPA 6020B	CSW	1
2628595013	T1-3LT	EPA 6020B	CSW	1
2628595014	T1-2LT	EPA 6020B	CSW	1
2628595015	T1-4HTS	EPA 6020B	CSW	1
2628595016	T1-4HT	EPA 6020B	CSW	1
2628595017	T1-3HTS	EPA 6020B	CSW	1
2628595018	T1-3HT	EPA 6020B	CSW	1
2628595019	T1-1HT	EPA 6020B	CSW	1
2628595020	T1-2HTS	EPA 6020B	CSW	1
2628595021	T1-2HT	EPA 6020B	CSW	1



# **SUMMARY OF DETECTION**

Project: Plant McManus SW

Pace Project No.: 2628595

Lab Sample ID	Client Sample ID	Result	l laita	Donort Limit	Analyzad	Qualifiers
Method	Parameters	Result	Units	Report Limit	Analyzed	- Qualifiers
2628595001	T2-1HT					
EPA 6020B	Arsenic, Dissolved	0.012J	mg/L	0.050	02/13/20 14:15	D3
2628595002	T2-2HTS					
EPA 6020B	Arsenic, Dissolved	0.018J	mg/L	0.050	02/13/20 14:20	D3
2628595003	T2-2HT					
EPA 6020B	Arsenic, Dissolved	0.023J	mg/L	0.050	02/13/20 14:26	D3,M6
2628595004	T2-3HTS					
EPA 6020B	Arsenic, Dissolved	0.036J	mg/L	0.050	02/13/20 14:49	D3
2628595005	T2-3HT					
EPA 6020B	Arsenic, Dissolved	0.043J	mg/L	0.050	02/13/20 14:55	D3
2628595006	T2-4HTS					
EPA 6020B	Arsenic, Dissolved	0.037J	mg/L	0.050	02/13/20 15:35	D3
2628595007	T2-4HT					
EPA 6020B	Arsenic, Dissolved	0.040J	mg/L	0.050	02/13/20 15:43	D3
2628595008	T2-4LT					
EPA 6020B	Arsenic, Dissolved	0.044J	mg/L	0.050	02/13/20 15:49	D3
2628595009	T2-3LT					
EPA 6020B	Arsenic, Dissolved	0.043J	mg/L	0.050	02/13/20 15:54	D3
2628595010	T2-2LT					
EPA 6020B	Arsenic, Dissolved	0.040J	mg/L	0.050	02/13/20 16:29	D3
2628595011	T1-1LT					
EPA 6020B	Arsenic, Dissolved	0.039J	mg/L	0.050	02/13/20 16:35	D3
2628595012	T1-4LT					
EPA 6020B	Arsenic, Dissolved	0.046J	mg/L	0.050	02/13/20 16:41	D3
2628595013	T1-3LT					
EPA 6020B	Arsenic, Dissolved	0.043J	mg/L	0.050	02/13/20 16:47	D3
2628595014	T1-2LT					
EPA 6020B	Arsenic, Dissolved	0.041J	mg/L	0.050	02/13/20 16:52	D3
2628595015	T1-4HTS					
EPA 6020B	Arsenic, Dissolved	0.048J	mg/L	0.050	02/13/20 16:58	D3
2628595016	T1-4HT					
EPA 6020B	Arsenic, Dissolved	0.0065J	mg/L	0.050	02/13/20 19:04	D3
2628595017	T1-3HTS					
EPA 6020B	Arsenic, Dissolved	0.0086J	mg/L	0.050	02/13/20 19:10	D3
2628595018	T1-3HT					
EPA 6020B	Arsenic, Dissolved	0.0079J	mg/L		02/13/20 19:16	



# **SUMMARY OF DETECTION**

Project: Plant McManus SW

Pace Project No.: 2628595

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2628595019	T1-1HT					
EPA 6020B	Arsenic, Dissolved	0.0082J	mg/L	0.050	02/13/20 19:21	D3
2628595020	T1-2HTS					
EPA 6020B	Arsenic, Dissolved	0.0077J	mg/L	0.050	02/13/20 19:27	D3
2628595021	T1-2HT					
EPA 6020B	Arsenic, Dissolved	0.0062J	mg/L	0.050	02/12/20 18:20	D3



Project: Plant McManus SW

Pace Project No.: 2628595

Date: 02/14/2020 09:31 AM

Sample: T2-1HT Lab ID: 2628595001 Collected: 02/01/20 13:55 Received: 02/04/20 10:48 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

**6020B MET ICPMS, Lab Filtered** Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic, Dissolved **0.012J** mg/L 0.050 0.0035 10 02/11/20 15:11 02/13/20 14:15 7440-38-2 D3



Project: Plant McManus SW

Pace Project No.: 2628595

Date: 02/14/2020 09:31 AM

Sample: T2-2HTS Lab ID: 2628595002 Collected: 02/01/20 14:28 Received: 02/04/20 10:48 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

**6020B MET ICPMS, Lab Filtered** Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic, Dissolved **0.018J** mg/L 0.050 0.0035 10 02/11/20 15:11 02/13/20 14:20 7440-38-2 D3



Project: Plant McManus SW

Pace Project No.: 2628595

Date: 02/14/2020 09:31 AM

Sample: T2-2HT Lab ID: 2628595003 Collected: 02/01/20 14:32 Received: 02/04/20 10:48 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

**6020B MET ICPMS, Lab Filtered** Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic, Dissolved **0.023J** mg/L 0.050 0.0035 10 02/11/20 15:11 02/13/20 14:26 7440-38-2 D3,M6



Project: Plant McManus SW

Pace Project No.: 2628595

Date: 02/14/2020 09:31 AM

Sample: T2-3HTS Lab ID: 2628595004 Collected: 02/01/20 14:46 Received: 02/04/20 10:48 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

6020B MET ICPMS, Lab Filtered Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic, Dissolved **0.036J** mg/L 0.050 0.0035 10 02/11/20 15:11 02/13/20 14:49 7440-38-2 D3



Project: Plant McManus SW

Pace Project No.: 2628595

Date: 02/14/2020 09:31 AM

Sample: T2-3HT Lab ID: 2628595005 Collected: 02/01/20 14:50 Received: 02/04/20 10:48 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

6020B MET ICPMS, Lab Filtered Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic, Dissolved **0.043J** mg/L 0.050 0.0035 10 02/11/20 15:11 02/13/20 14:55 7440-38-2 D3



Project: Plant McManus SW

Pace Project No.: 2628595

Date: 02/14/2020 09:31 AM

Sample: T2-4HTS Lab ID: 2628595006 Collected: 02/01/20 15:00 Received: 02/04/20 10:48 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

**6020B MET ICPMS, Lab Filtered** Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic, Dissolved **0.037J** mg/L 0.050 0.0035 10 02/11/20 15:11 02/13/20 15:35 7440-38-2 D3



Project: Plant McManus SW

Pace Project No.: 2628595

Date: 02/14/2020 09:31 AM

Sample: T2-4HT Lab ID: 2628595007 Collected: 02/01/20 15:14 Received: 02/04/20 10:48 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

6020B MET ICPMS, Lab Filtered Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic, Dissolved **0.040J** mg/L 0.050 0.0035 10 02/11/20 15:11 02/13/20 15:43 7440-38-2 D3



Project: Plant McManus SW

Pace Project No.: 2628595

Date: 02/14/2020 09:31 AM

Sample: T2-4LT Lab ID: 2628595008 Collected: 02/02/20 09:46 Received: 02/04/20 10:48 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

**6020B MET ICPMS, Lab Filtered** Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic, Dissolved **0.044J** mg/L 0.050 0.0035 10 02/11/20 15:11 02/13/20 15:49 7440-38-2 D3



Project: Plant McManus SW

Pace Project No.: 2628595

Date: 02/14/2020 09:31 AM

Sample: T2-3LT Lab ID: 2628595009 Collected: 02/02/20 11:20 Received: 02/04/20 10:48 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

6020B MET ICPMS, Lab Filtered Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic, Dissolved **0.043J** mg/L 0.050 0.0035 10 02/11/20 15:11 02/13/20 15:54 7440-38-2 D3



Project: Plant McManus SW

Pace Project No.: 2628595

Date: 02/14/2020 09:31 AM

Sample: T2-2LT Lab ID: 2628595010 Collected: 02/02/20 11:38 Received: 02/04/20 10:48 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

**6020B MET ICPMS, Lab Filtered** Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic, Dissolved **0.040J** mg/L 0.050 0.0035 10 02/11/20 15:11 02/13/20 16:29 7440-38-2 D3



Project: Plant McManus SW

Pace Project No.: 2628595

Date: 02/14/2020 09:31 AM

Sample: T1-1LT Lab ID: 2628595011 Collected: 02/01/20 09:50 Received: 02/04/20 10:48 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

**6020B MET ICPMS, Lab Filtered** Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic, Dissolved **0.039J** mg/L 0.050 0.0035 10 02/11/20 15:11 02/13/20 16:35 7440-38-2 D3



Project: Plant McManus SW

Pace Project No.: 2628595

Date: 02/14/2020 09:31 AM

Sample: T1-4LT Lab ID: 2628595012 Collected: 02/01/20 09:56 Received: 02/04/20 10:48 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

**6020B MET ICPMS, Lab Filtered** Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic, Dissolved **0.046J** mg/L 0.050 0.0035 10 02/11/20 15:11 02/13/20 16:41 7440-38-2 D3



Project: Plant McManus SW

Pace Project No.: 2628595

Date: 02/14/2020 09:31 AM

Sample: T1-3LT Lab ID: 2628595013 Collected: 02/01/20 10:06 Received: 02/04/20 10:48 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

**6020B MET ICPMS, Lab Filtered** Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic, Dissolved **0.043J** mg/L 0.050 0.0035 10 02/11/20 15:11 02/13/20 16:47 7440-38-2 D3



Project: Plant McManus SW

Pace Project No.: 2628595

Date: 02/14/2020 09:31 AM

Sample: T1-2LT Lab ID: 2628595014 Collected: 02/01/20 10:16 Received: 02/04/20 10:48 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

**6020B MET ICPMS, Lab Filtered** Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic, Dissolved **0.041J** mg/L 0.050 0.0035 10 02/11/20 15:11 02/13/20 16:52 7440-38-2 D3



Project: Plant McManus SW

Pace Project No.: 2628595

Date: 02/14/2020 09:31 AM

Sample: T1-4HTS Lab ID: 2628595015 Collected: 02/01/20 13:34 Received: 02/04/20 10:48 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

**6020B MET ICPMS, Lab Filtered** Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic, Dissolved **0.048J** mg/L 0.050 0.0035 10 02/11/20 15:11 02/13/20 16:58 7440-38-2 D3



Project: Plant McManus SW

Pace Project No.: 2628595

Date: 02/14/2020 09:31 AM

Sample: T1-4HT Lab ID: 2628595016 Collected: 02/01/20 13:40 Received: 02/04/20 10:48 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

**6020B MET ICPMS, Lab Filtered** Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic, Dissolved **0.0065J** mg/L 0.050 0.0035 10 02/11/20 15:11 02/13/20 19:04 7440-38-2 D3



Project: Plant McManus SW

Pace Project No.: 2628595

Date: 02/14/2020 09:31 AM

Sample: T1-3HTS Lab ID: 2628595017 Collected: 02/01/20 13:52 Received: 02/04/20 10:48 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

6020B MET ICPMS, Lab Filtered Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic, Dissolved **0.0086J** mg/L 0.050 0.0035 10 02/11/20 15:11 02/13/20 19:10 7440-38-2 D3



Project: Plant McManus SW

Pace Project No.: 2628595

Date: 02/14/2020 09:31 AM

Sample: T1-3HT Lab ID: 2628595018 Collected: 02/01/20 13:56 Received: 02/04/20 10:48 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

**6020B MET ICPMS, Lab Filtered** Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic, Dissolved **0.0079J** mg/L 0.050 0.0035 10 02/11/20 15:11 02/13/20 19:16 7440-38-2 D3



Project: Plant McManus SW

Pace Project No.: 2628595

Date: 02/14/2020 09:31 AM

Sample: T1-1HT Lab ID: 2628595019 Collected: 02/01/20 14:08 Received: 02/04/20 10:48 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

**6020B MET ICPMS, Lab Filtered** Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic, Dissolved **0.0082J** mg/L 0.050 0.0035 10 02/11/20 15:11 02/13/20 19:21 7440-38-2 D3



Project: Plant McManus SW

Pace Project No.: 2628595

Date: 02/14/2020 09:31 AM

Sample: T1-2HTS Lab ID: 2628595020 Collected: 02/01/20 14:16 Received: 02/04/20 10:48 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

**6020B MET ICPMS, Lab Filtered** Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic, Dissolved **0.0077J** mg/L 0.050 0.0035 10 02/11/20 15:11 02/13/20 19:27 7440-38-2 D3



Project: Plant McManus SW

Pace Project No.: 2628595

Date: 02/14/2020 09:31 AM

Sample: T1-2HT Lab ID: 2628595021 Collected: 02/01/20 14:20 Received: 02/04/20 10:48 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

**6020B MET ICPMS, Lab Filtered** Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic, Dissolved **0.0062J** mg/L 0.050 0.0035 10 02/11/20 15:11 02/12/20 18:20 7440-38-2 D3



### **QUALITY CONTROL DATA**

Project: Plant McManus SW

Pace Project No.: 2628595

QC Batch: 43170 Analysis Method: EPA 6020B

mg/L

QC Batch Method: EPA 3005A Analysis Description: 6020B MET Dissolved

2628595001, 2628595002, 2628595003, 2628595004, 2628595005, 2628595006, 2628595007, 2628595008, Associated Lab Samples:

2628595009, 2628595010, 2628595011, 2628595012, 2628595013, 2628595014, 2628595015, 2628595016,

2628595017, 2628595018, 2628595019, 2628595020

METHOD BLANK: 197294 Matrix: Water

Associated Lab Samples: 2628595001, 2628595002, 2628595003, 2628595004, 2628595005, 2628595006, 2628595007, 2628595008,

2628595009, 2628595010, 2628595011, 2628595012, 2628595013, 2628595014, 2628595015, 2628595016,

2628595017, 2628595018, 2628595019, 2628595020

Blank Reporting Parameter Result MDL Qualifiers Units Limit Analyzed Arsenic, Dissolved ND 0.0050 0.00035 02/13/20 14:03

LABORATORY CONTROL SAMPLE: 197295

Date: 02/14/2020 09:31 AM

LCS LCS % Rec Spike

Parameter Units Conc. Result % Rec Limits Qualifiers Arsenic, Dissolved mg/L 0.1 0.10 101 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 197296 197297

MS MSD

2628595003 MSD MS MSD Spike Spike MS % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Arsenic, Dissolved 0.023J 0.1 0.14 0.15 122 20 M6 mg/L 0.1 127 75-125 3

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALITY CONTROL DATA**

Project: Plant McManus SW

Pace Project No.: 2628595

Date: 02/14/2020 09:31 AM

QC Batch: 43171 Analysis Method: EPA 6020B

QC Batch Method: EPA 3005A Analysis Description: 6020B MET Dissolved

Associated Lab Samples: 2628595021

METHOD BLANK: 197298 Matrix: Water

Associated Lab Samples: 2628595021

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Arsenic, Dissolved mg/L ND 0.0050 0.00035 02/12/20 18:08

LABORATORY CONTROL SAMPLE: 197299

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Arsenic, Dissolved mg/L 0.10 101 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 197300 197301

MS MSD MSD 2628599001 Spike Spike MS MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual Arsenic, Dissolved 75-125 2 20 mg/L 0.0065J 0.1 0.1 0.12 0.11 111 109

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALIFIERS**

Project: Plant McManus SW

Pace Project No.: 2628595

### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

### **ANALYTE QUALIFIERS**

Date: 02/14/2020 09:31 AM

D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.



### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: Plant McManus SW

Pace Project No.: 2628595

Date: 02/14/2020 09:31 AM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
2628595001	T2-1HT	EPA 3005A	43170	EPA 6020B	43193
2628595002	T2-2HTS	EPA 3005A	43170	EPA 6020B	43193
2628595003	T2-2HT	EPA 3005A	43170	EPA 6020B	43193
2628595004	T2-3HTS	EPA 3005A	43170	EPA 6020B	43193
2628595005	T2-3HT	EPA 3005A	43170	EPA 6020B	43193
2628595006	T2-4HTS	EPA 3005A	43170	EPA 6020B	43193
2628595007	T2-4HT	EPA 3005A	43170	EPA 6020B	43193
2628595008	T2-4LT	EPA 3005A	43170	EPA 6020B	43193
2628595009	T2-3LT	EPA 3005A	43170	EPA 6020B	43193
2628595010	T2-2LT	EPA 3005A	43170	EPA 6020B	43193
2628595011	T1-1LT	EPA 3005A	43170	EPA 6020B	43193
2628595012	T1-4LT	EPA 3005A	43170	EPA 6020B	43193
2628595013	T1-3LT	EPA 3005A	43170	EPA 6020B	43193
2628595014	T1-2LT	EPA 3005A	43170	EPA 6020B	43193
2628595015	T1-4HTS	EPA 3005A	43170	EPA 6020B	43193
2628595016	T1-4HT	EPA 3005A	43170	EPA 6020B	43193
2628595017	T1-3HTS	EPA 3005A	43170	EPA 6020B	43193
2628595018	T1-3HT	EPA 3005A	43170	EPA 6020B	43193
2628595019	T1-1HT	EPA 3005A	43170	EPA 6020B	43193
2628595020	T1-2HTS	EPA 3005A	43170	EPA 6020B	43193
2628595021	T1-2HT	EPA 3005A	43171	EPA 6020B	43192

# Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Dr 10#: 2628595

SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID	The control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the co	1	in C					U		SIGNATU AMPLER:	PLER VALIGATORS OVALING PRINT Name of SAMPLER:	PRINT				1		
SAMPLE ID  Sample its matt be infigure  The sample its matt be infigure  The sample its matt be infigure  The sample its matt be infigure  The sample its matt be infigure  The sample its matt be infigure  The sample its matt be infigure  The sample its matt be infigure  The sample its matt be infigure  The sample its matt be infigure  The sample its matt be infigure  The sample its matt be infigure  The sample its matt be infigure  The sample its matt be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  The sample its matter be infigure  Th	COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINSIPE  COCHINE PRINCIPE  COCHINE PRINCIPE  COCHINE PRINCIPE  COCHINE PRINCIPE  COCHINE PRINCIPE  COCHINE PRINCIPE  COCHINE PRINCIPE  COCHINE PRINCIPE  COCHINE PRINCIPE  COCHINE PRINCIPE  COCHINE PRINCIPE  COCHINE PRINCIPE  COCHINE PRINCIPE  COCHINE PRINCIPE  COCHINE PRINCIPE  COCHINE PRINCIPE  COCHINE PRIN	1 1	0800	6 244	1/200	ngaa	s selli	1							$\vdash$			
SAMPLE ID  SAMPLE ID  SAMPLE ID  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character per bout.  One Character	Congress Proteons   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress   Congress						m	-	A TOO		-	always.	4	0	K		•	6
SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE TOP DOLL  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per box.  A Management per b	Georgia Colore Patricina Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Force Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia			8	MOUNTE	AN ABIGER	Mode		TIME	plane		MACHINE TOWN	AND PARTY	Par neg			Eleminop Tylicusty	
SAMPLE TEND ON Character per bout.  SAMPLE TO DATE OF CONTAINERS  ON Character per bout.  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  Tiles  SAMPLE TYPE (G=GRAB C=COMP)  Tiles  Tiles  Tiles  Tiles  Tiles  Tiles  Tiles  Tiles  Tiles  Tiles  Tiles  Tiles  Tiles  Tiles  Tiles  Tiles  Tiles  Tiles  Tiles  Tiles  Tiles  Tiles  Tiles  Tiles  Tiles  Tiles  Tiles  Tiles  Tiles  Tiles  Tiles  Tile	Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Com				E	F		E	E	L	<u>.                                    </u>	1500		Ų,			YHY	172
SAMPLE ID  SAMPLE ID  Sample ids must be unique  AC C HILD THE START  THE SAMPLE TYPE (GHORAB CHCOMP)  AC C HILD THE START  THE SAMPLE TYPE (GHORAB CHCOMP)  SAMPLE TYPE (GHORAB CHCOMP)  AC C HILD THE START  THE SAMPLE TYPE (GHORAB CHCOMP)  SAMPLE TYPE (GHORAB CHCOMP)  AC C HILD THE START  THE SAMPLE TYPE (GHORAB CHCOMP)  AC C HILD THE SAMPLE TYPE (GHORAB CHCOMP)  AC C HILD THE SAMPLE TYPE (GHORAB CHCOMP)  AC C HILD THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND THE SAMPLE TYPE (GHORAB CHCOMP)  AND	Copyright Press   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright				-	<u> </u>		=				<u> </u>	24/12	<b>10</b> 2			THE	1
SAMPLE ID  SAMPLE ID  On Character per box.  (AZ p. 9) - 1  Sample its must be unique  AZ P. 2 P. 2 P. 2 P. 2 P. 2 P. 2 P. 2 P.	Courte Prefer   Court   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Courte   Cour				-			_	-			JHH C	E LIVE	4			355	1
SAMPLE TIPE  Sample lds must be unique  The served was with with with with with with with with	Copyright Perfect   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyright   Copyrigh				-			-				14.25 14.25	2411/20	ليم			ZWI	1
SAMPLE ID  Semble its must be unique  These SAMPLE TYPE (G-GRAB C-COMP)  AC G G G G G G G G G G G G G G G G G G G	Coorping Power   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coopy To, Miled, Lea   Coo					<u> </u>		-	-		-	<b>32</b> EH1	تلالع	125			2 WYS	1
SAMPLE ID  Sample Ida must be unique  Sample Ida must be unique  Sample Ida must be unique  Sample Ida must be unique  SAMPLE TYPE  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SOF CONTAINERS  Unpreserved  HzSO4  HNO3  HcI  NaCH  NaSZ203  Methanol  Other  Metals by 8020  Dissolved Metals by 6020	Coorgin Power   Report To: Milled Lean   Coopy To: Milled Lean   Coopy To: Milled Lean   Coopy To: Milled Lean   Coopy To: Milled Lean   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coopy To: Mondate Officer   Coo				-			-	-			0.00	Selvia C	45			75	4
SAMPLE ID  Semple Ids must be unique  MATRIX CODE (see valid codes to left)  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SOF CONTAINERS  Unpreserved  H2SO4  HCI  NaCH  NacS203  Methanol  Other  Metals by S020  Dissolved Metals by S020  Dissolved Metals by S020	Coorpils Proved   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.   Coopy To.				_			_	<b>-</b>		-	CENT.	अद्योग क	4		Í	7,410	
SAMPLE ID  Sample its must be unique  SAMPLE TOP  Sample its must be unique  SAMPLE TYPE  GEGRAB C=COMP)  Titue  SAMPLE TEMP AT COLLECTION  FOR CONTAINERS  Unipreserved  H2SO4  HNO3  HCI  NaOH  Na2S203  Methanol  Other  Metals by 6020  Dissolved Metals by 6020	Coorgia Power   Coorgia Power   Coopy Toc   Milet Lea   Administration Parkway   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy Toc   Copy				-			_	-		_	לבנשונ	211/20	4			36	20
SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SOF CONTAINERS  Unpreserved  H2SO4  HNO3  HCI  NaOH  Na2S203  Methanol  Other  Metals by 6020  Dissolved Metals by 6020	Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia Pover   Copyrigia				-			_	<u> </u>			नामा	रद्यादित	4			ZWAZ	1
SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SOFT CONTAINERS  Unpreserved  H2SO4  HNO3  HCI  NaOH  Na2S2O3  Methanol  Other  Metals by 9020  Dissolved Metals by 9020	Coorgia Power   Copy To:   Copy To:   Adminion:   Copy To:   Copy To:   Adminion:   Copy To:   Adminion:   Copy To:   Adminion:   Adminion:   Copy To:   Adminion:   Adminion:   Adminion:   Copy To:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminion:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior:   Adminior				_	<u> </u>		_	-		,		12 M 22	45			THI	1
SAMPLE ID  Semple lds must be unique  SAMPLE TYPE  SAMPLE TYPE  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SAMPLE TEMP AT COLLECTION  SOFT CONTAINERS  Unpreserved  H2SO4  HNO3  HCI  NaOH  Na2S203  Methanol  Other  Metals by 6020  Dissolved Metals by 6020	Coorgia Power   Report To: Millet Lea   Attention:   Copy To:   Copy To:   Copy To:   Copy To:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Name:   Company Nam			E	-			-	<b>-</b>			365		بي			345	
SAMPLE ID  Sample ids must be unique  Tissus  Sample Time  SAMPLE TYPE  SAMPLE TYPE  SAMPLE TYPE  SAMPLE TYPE  SAMPLE TYPE  SAMPLE TYPE  SAMPLE TYPE  SAMPLE TYPE  SAMPLE TEMP AT COLLECTION  SOF CONTAINERS  Unpreserved  H2SO4  HNO3  HCI  NaOH  Na2S2O3  Methanol  Other  Analyzes Test  Metals by 6020  Dissolved Metals by 6020	Georgia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower  Googlia Prower	1				22						388	उद्योगेट र	45			STATE OF THE PARTY.	E.
CODE S S S COLLECTED S Preservatives	Georgia Power  Georgia Power  Georgia Power  Georgia Power  Georgia Power  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  Copy To:  C	Residual Chlorine (Y/N)				Other	NaOH Na2S203	ниоз	· · · · · · · · · · · · · · · · · · ·		<del>                                     </del>	TIME	DA			Water Water Water Water Waster Waster Waster Water Water Water Water Water Water Water Air Other Tassue	SAMPLE ID  Re Character per box.  (A-Z, 0-8 / ,-)  mple ids must be unique	
	Georgia Power   Report To: Millet, Lea   Attention:	NAME OF TAXABLE PARTY.				YOU	ervatives	Pres		ON	тер	COLLEC	COMP)			MATRIX		#54
	Georgia Power Report To: Millet Lea Attention:  1003 Westherstone Parkway Copy To: Company Name:  Woodstock, GA 30188 Address:  amillet@resoluteenv.com Purchase Order #: Pace Quote:	160			celabe.com,	,herring@pa		oject Manag	Pace Pn		,	MS stru	Plant McMa	П	Project N		76-2760	ю: (25
76-2760 Fax Project Name: Plant McManus SW Pace Project Manager: kevin.herring@pscelabs.com,	Georgia Power Report To: Millet, Lea Attention: 1003 Weatherstone Parkway Copy To: Company Name: Woodstock GA 30188							ote:	Pace Qu					Order#:	Purchase		resoluteenv.com	ii: lea.millet
soluteenv.com Purchase Order#: Pace Quote: 76-2760   Fax: Project Name: Plant NoManus SW Pace Project Manager: kevin.herring@pacelabs.com.	Georgia Power Report To: Millet Lea Attention:		0000	707				y Name:	Compan						Copy I		Weatherstone Parkway	[
1003 Westherstone Parkway  Copy To:  Company Name:  Copy Name:  Company Name:  Address:  Address:  Pace Quote:  Purchase Order #  Project Name: Plant McManus SW  Pace Project Marrager: kevin.herring@pacelabs.com.		Ξ					100		Attention				Lea	o: Miller	Report T		gia Power	Н

CHAIN-OF-CUSTODY / Analytical Request Doc
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must? WO#: 2628595

Due Date: 02/06/20 Page 33 of 34

COLLECTED
СОСТЕСТЕВ

# CHAIN-OF-CUSTODY / Analytical Request D The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields mu

W0#:2628595

	TEMP in C		DATE Signed:							PRINT Name of SAMPLER: SHIPATURE of BANDER:	PRINT						
	2	el matrix	Trave	nome		1014		ome	8	2 3/14/30	CIMONO WORD I PELA	20 Head	none	K			
<u>z</u>			1/000	Dece			7 2	1848		-11	3		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s			0	83
1	1654	100			The same			FS.	-[-	STATE CO	-	f	1	K		1	AK DWW
	200	DOM:	A PARTY	Service de	Section 200	2	11/			auna	WOLLYFILL	DAMED BY C	<b>WINTER</b>			Accounted the County	2 (1)
	-	⊢		E		F		╞	L	H	Seo		200			-447	7
<u> </u>	$\vdash$		-					-			معساصطاله		250			7.45	4
	+-		-					-			SHAM CELIFIE	TIME	6			2-369	72
	-		-					-			1432	G प्रोपीया ।भुद्रम्	45			-2 HT	3
	+		_					-			<b>37</b>	عداراح	123 C			2-2 HTS	7
	$\vdash$		-	<u></u>				-		<u> </u>	000	उद्याप्त्र व्यापित	45		:	74-247	1
	╁┈		-			F	-	-			حديدا صدارات		45		4	1	L L L
					F		F	-		<u> </u>	CTRIMESCHIE		38.			MCM-COTHT AND	NC:
	+						-	-			4	<u> जामा वद्यापिक</u>	<u>u</u>			TA - ZNAX	1
	$\vdash$		-				F	-			Sah.	C L	44X			THE	
		-						_				C phylas				-347	1
	_		_					_				V .	25			WEN TOWN	5
Residual Chlor			Metals by 6020 Dissolved Metal	Other ATIA IVA 41	Na2S2O3 Methanol	HCI NaOH	H2SO4 HNO3	# OF CONTAINE Unpreserved	SAMPLE TEMP	DATE TIME	TIME	DATE TYPE	MATRIX CODE	ł .	Wipe Air Other Tissue	One Character per box. {A-Z, 0-8 i, -} Sample ids must be unique	go _
								RS		e ND	START	(G=GRAB C	(see valid cod	O PP P P P P P P P P P P P P P P P P P	Wester Water Wester Water Product SolfSolid Oil	SAMPLE ID	7
	=7-5		ν	YN	lives	Preservat	- - -	Τ	ON	TED	COLLECTED	=COMP)	es to left)		MATRIX		
	SSSIER	alysis: Filmes (YAV	Requestedian			2919	Pace Prome #:	Pace 17						Project #:		8.0:	Requested Due Date:
Date/Ligation	1		labs.com	kevin.herring@pacelabs.com	kevin.he	nager:	Pace Project Manager:	Pace P			MS sun	Plant McManus SW	BMO:	Project Name:		(251)776-2760 Fax	Phone: (25
Ш	Ш						uote:	Pace Quote:					Purchase Order#:	Purchas		3	Email: lea.millet
		Total State of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the					Address:	Address:			Mar	210	· (1)	copy		Suite 320 Woodstock: GA 30188	uite 320 Woods
		2628595	600			100	a	Attention:			, /	Lea	o: Mille/Lea	Report To:		Georgia Power	Company: Ga
						tion:	Invoice information:	hvoice in		1725		formation	13	Required		nformation:	Required Client Information:
							ć	SOUTH STATES					I	Section			Š





February 06, 2020

Joju Abraham Georgia Power - Coal Combustion Residuals 2480 Maner Road Atlanta, GA 30339

RE: Project: Plant McManus SW

Pace Project No.: 2628598

### Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on February 04, 2020. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring

Kai Slery

kevin.herring@pacelabs.com

(704)875-9092

**HORIZON** Database Administrator

Enclosures

cc: Veronica Faye, Resolute

Trent Godwin, Resolute Environmental & Water Resources
Kristen Jurinko

Lea Millet, Resolute Environmental & Water Resources
Lauren Petty, Southern Company Services, Inc.
Kevin Stephenson, Resolute Environmental & Water
Resources Consulting, LLC
Stephen Wilson, Resolute Environmental & Water

Resources Consulting, LLC







### **CERTIFICATIONS**

Project: Plant McManus SW

Pace Project No.: 2628598

**Pace Analytical Services Atlanta** 

110 Technology Parkway Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812

Georgia DW Microbiology Certification #: 812

North Carolina Certification #: 381 South Carolina Certification #: 98011001

Virginia Certification #: 460204



### **SAMPLE SUMMARY**

Project: Plant McManus SW

Pace Project No.: 2628598

Lab ID	Sample ID	Matrix	Date Collected	Date Received
2628598001	T1-1LT	Water	02/01/20 09:50	02/04/20 08:00
2628598002	T1-4LT	Water	02/01/20 09:56	02/04/20 08:00
2628598003	T1-3LT	Water	02/01/20 10:06	02/04/20 08:00
2628598004	T1-2LT	Water	02/01/20 10:16	02/04/20 08:00
2628598005	T1-4HTS	Water	02/01/20 13:34	02/04/20 08:00
2628598006	T1-4HT	Water	02/01/20 13:40	02/04/20 08:00
2628598007	T1-3HTS	Water	02/01/20 13:52	02/04/20 08:00
2628598008	Т1-3НТ	Water	02/01/20 13:56	02/04/20 08:00
2628598009	T1-1HT	Water	02/01/20 14:08	02/04/20 08:00
2628598010	T1-2HTS	Water	02/01/20 14:16	02/04/20 08:00
2628598011	T1-2HT	Water	02/01/20 14:20	02/04/20 08:00



# **SAMPLE ANALYTE COUNT**

Project: Plant McManus SW

Pace Project No.: 2628598

Lab ID	Sample ID	Method	Analysts	Analytes Reported
2628598001	T1-1LT	EPA 6020B	CSW	1
2628598002	T1-4LT	EPA 6020B	CSW	1
2628598003	T1-3LT	EPA 6020B	CSW	1
2628598004	T1-2LT	EPA 6020B	CSW	1
2628598005	T1-4HTS	EPA 6020B	CSW	1
2628598006	T1-4HT	EPA 6020B	CSW	1
2628598007	T1-3HTS	EPA 6020B	CSW	1
2628598008	T1-3HT	EPA 6020B	CSW	1
2628598009	T1-1HT	EPA 6020B	CSW	1
2628598010	T1-2HTS	EPA 6020B	CSW	1
2628598011	T1-2HT	EPA 6020B	CSW	1



# **SUMMARY OF DETECTION**

Project: Plant McManus SW

Pace Project No.: 2628598

ab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
628598002	T1-4LT					
PA 6020B	Arsenic	0.0055J	mg/L	0.050	02/05/20 18:49	
628598003	T1-3LT					
PA 6020B	Arsenic	0.0039J	mg/L	0.050	02/05/20 18:55	
628598005	T1-4HTS					
EPA 6020B	Arsenic	0.0037J	mg/L	0.050	02/05/20 19:06	
628598006	T1-4HT					
EPA 6020B	Arsenic	0.0059J	mg/L	0.050	02/05/20 19:23	
628598007	T1-3HTS					
PA 6020B	Arsenic	0.0044J	mg/L	0.050	02/05/20 19:29	
628598008	T1-3HT					
PA 6020B	Arsenic	0.0052J	mg/L	0.050	02/05/20 19:35	
628598009	T1-1HT					
EPA 6020B	Arsenic	0.0050J	mg/L	0.050	02/05/20 19:41	
628598010	T1-2HTS					
EPA 6020B	Arsenic	0.0060J	mg/L	0.050	02/05/20 19:46	
628598011	T1-2HT					
PA 6020B	Arsenic	0.0049J	mg/L	0.050	02/05/20 19:52	



Project: Plant McManus SW

Pace Project No.: 2628598

Date: 02/06/2020 02:10 PM

Sample: T1-1LT Lab ID: 2628598001 Collected: 02/01/20 09:50 Received: 02/04/20 08:00 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

6020B MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic ND mg/L 0.050 0.0035 10 02/04/20 21:50 02/05/20 18:26 7440-38-2



Project: Plant McManus SW

Pace Project No.: 2628598

Date: 02/06/2020 02:10 PM

Sample: T1-4LT Lab ID: 2628598002 Collected: 02/01/20 09:56 Received: 02/04/20 08:00 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

6020B MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic **0.0055J** mg/L 0.050 0.0035 10 02/04/20 21:50 02/05/20 18:49 7440-38-2



Project: Plant McManus SW

Pace Project No.: 2628598

Date: 02/06/2020 02:10 PM

Sample: T1-3LT Lab ID: 2628598003 Collected: 02/01/20 10:06 Received: 02/04/20 08:00 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

6020B MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic **0.0039J** mg/L 0.050 0.0035 10 02/04/20 21:50 02/05/20 18:55 7440-38-2



Project: Plant McManus SW

Pace Project No.: 2628598

Date: 02/06/2020 02:10 PM

Sample: T1-2LT Lab ID: 2628598004 Collected: 02/01/20 10:16 Received: 02/04/20 08:00 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

6020B MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic ND mg/L 0.050 0.0035 10 02/04/20 21:50 02/05/20 19:00 7440-38-2



Project: Plant McManus SW

Pace Project No.: 2628598

Date: 02/06/2020 02:10 PM

Sample: T1-4HTS Lab ID: 2628598005 Collected: 02/01/20 13:34 Received: 02/04/20 08:00 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

6020B MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic **0.0037J** mg/L 0.050 0.0035 10 02/04/20 21:50 02/05/20 19:06 7440-38-2



Project: Plant McManus SW

Pace Project No.: 2628598

Date: 02/06/2020 02:10 PM

Sample: T1-4HT Lab ID: 2628598006 Collected: 02/01/20 13:40 Received: 02/04/20 08:00 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

6020B MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic **0.0059J** mg/L 0.050 0.0035 10 02/04/20 21:50 02/05/20 19:23 7440-38-2



Project: Plant McManus SW

Pace Project No.: 2628598

Date: 02/06/2020 02:10 PM

Sample: T1-3HTS Lab ID: 2628598007 Collected: 02/01/20 13:52 Received: 02/04/20 08:00 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

6020B MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic **0.0044J** mg/L 0.050 0.0035 10 02/04/20 21:50 02/05/20 19:29 7440-38-2



Project: Plant McManus SW

Pace Project No.: 2628598

Date: 02/06/2020 02:10 PM

Sample: T1-3HT Lab ID: 2628598008 Collected: 02/01/20 13:56 Received: 02/04/20 08:00 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

6020B MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic **0.0052J** mg/L 0.050 0.0035 10 02/04/20 21:50 02/05/20 19:35 7440-38-2



Project: Plant McManus SW

Pace Project No.: 2628598

Date: 02/06/2020 02:10 PM

Sample: T1-1HT Lab ID: 2628598009 Collected: 02/01/20 14:08 Received: 02/04/20 08:00 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

6020B MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic **0.0050J** mg/L 0.050 0.0035 10 02/04/20 21:50 02/05/20 19:41 7440-38-2



Project: Plant McManus SW

Pace Project No.: 2628598

Date: 02/06/2020 02:10 PM

Sample: T1-2HTS Lab ID: 2628598010 Collected: 02/01/20 14:16 Received: 02/04/20 08:00 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

6020B MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic **0.0060J** mg/L 0.050 0.0035 10 02/04/20 21:50 02/05/20 19:46 7440-38-2



Project: Plant McManus SW

Pace Project No.: 2628598

Date: 02/06/2020 02:10 PM

Sample: T1-2HT Lab ID: 2628598011 Collected: 02/01/20 14:20 Received: 02/04/20 08:00 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

6020B MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3005A

Arsenic **0.0049J** mg/L 0.050 0.0035 10 02/04/20 21:50 02/05/20 19:52 7440-38-2



### **QUALITY CONTROL DATA**

Project: Plant McManus SW

Pace Project No.: 2628598

Date: 02/06/2020 02:10 PM

QC Batch: 42836 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020B MET

Associated Lab Samples: 2628598001, 2628598002, 2628598003, 2628598004, 2628598005, 2628598006, 2628598007, 2628598008,

2628598009, 2628598010, 2628598011

METHOD BLANK: 195730 Matrix: Water

Associated Lab Samples: 2628598001, 2628598002, 2628598003, 2628598004, 2628598005, 2628598006, 2628598007, 2628598008,

2628598009, 2628598010, 2628598011

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Arsenic mg/L ND 0.0050 0.00035 02/05/20 18:15

LABORATORY CONTROL SAMPLE: 195731

LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 97 80-120 Arsenic mg/L 0.1 0.097

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 195732 195733

MS MSD 2628598001 Spike Spike MS MSD MS MSD % Rec Max RPD Parameter Units Result Conc. Conc. Result % Rec % Rec **RPD** Result Limits Qual Arsenic ND 0.1 0.1 0.11 0.099 106 96 75-125 9 20 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALIFIERS**

Project: Plant McManus SW

Pace Project No.: 2628598

### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 02/06/2020 02:10 PM



### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: Plant McManus SW

Pace Project No.: 2628598

Date: 02/06/2020 02:10 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
2628598001	T1-1LT	EPA 3005A	42836	EPA 6020B	42909
2628598002	T1-4LT	EPA 3005A	42836	EPA 6020B	42909
2628598003	T1-3LT	EPA 3005A	42836	EPA 6020B	42909
2628598004	T1-2LT	EPA 3005A	42836	EPA 6020B	42909
2628598005	T1-4HTS	EPA 3005A	42836	EPA 6020B	42909
2628598006	T1-4HT	EPA 3005A	42836	EPA 6020B	42909
2628598007	T1-3HTS	EPA 3005A	42836	EPA 6020B	42909
2628598008	T1-3HT	EPA 3005A	42836	EPA 6020B	42909
2628598009	T1-1HT	EPA 3005A	42836	EPA 6020B	42909
2628598010	T1-2HTS	EPA 3005A	42836	EPA 6020B	42909
2628598011	T1-2HT	EPA 3005A	42836	EPA 6020B	42909

(MY) seldmas (N/A) Cooler pelees MO#:2628598 (N/A) 8 Received on Residual Chlorine (Y/N) TEMP in C 12/6 1634 10.18 241/20/ 2/3/10 2/4/30 The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields m CHAIN-OF-CUSTODY / Analytical Request [ kevin.herring@pecelabs.com, Lonies about Have Described Metals by 6020 7 Metals by 6020 2/3 reel spaylena 2005 Detho lonsriteM Preservatives Na2S203 HOPN Attention:
Company Name:
Address:
Pace Quote:
Pace Project Manager:
Pace Profile #: 2919 нсі Section C Invoice information EONH **≯**OSZH <u>3:</u> للكطلا ديجاجاء 2401 c2/h/2 DeviesendnU # OF CONTAINERS 4/4/30 SAMPLE TEMP AT COLLECTION S DATE Comer oder per Pere COLLECTED 5/6 by 120 1355 S C ZILIZO ISHO SG Supolizes \$ C 21/120 1355 Ze askis 282 SC putto 1334 वनाक वर्गाक SG dulan ores SG zujan booto S Galifa Tonk **695**k Plant McManus SW START SGPIND DATE Required Project Information Report To: Miller Lea Copy To: 1 G SAMPLE TYPE (G-GRAB C-COMP) Project Name: Project #: Purchase Order #: MATRIX CODE (see valid codes to left) Section B MATRIX
Density Water
Water
Water
Water
Water
Product
Society delayer
Product
Society delayer
Mayor
Ar
Cober
Theses One Character per box. (A-Z, 0-9 /, -) Sample Ids must be unique NEW O LA 1003 Weatherstone Parkway SAMPLE ID MCM. O'S ST Emeil lea_millet@rescluteerv.com MANAGTEL-S TY LINTS Company Georgia Power Address 1003 Weatherston Buths 320, Woodstock, GA 30189 4 177 1 71-319 THE P Pace Analytical TO SHOW Phone: (251)776-2760 Requested Due Date: 772 78 Required Client Information 3 Page 20 of 24 ITEM #

Due Date: 02/05/20 (NVA) ntact WO#: 2628598 (N/A) Cooler **Delae**S Custody (N/A) CLIENT: 26-GA Power 80 по bevieceя Residual Chlorine (Y/N) 1 TEMP in C 0050 pc/h/6 P. X DATE The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be c kevin herring@pacefabs.com, Dissolved Metals by 6020 Metals by 6020 N/A test services Scote Other lonarteM N82S2O3 Preservatives HOBN 2919 Pace Project Manager Section C Invoice Information: HCI Company Name Address Pace Quote Pace Profile # **EONH** HS204 Attention Unpreserved AND CACIFORNICAS CENT # OF CONTAINERS SAMPLE TEMP AT COLLECTION DATE 뿔 2 DATE COLLECTED SG 212/m Mass P G DISSON STRIS S G zustonent A G ZINDUD September Sichaspara TIME S C Halzo Hay Purchase Order #: Project Name Plant McManus SW Project #: 1 START 29G Klalm DATE Required Project Information: Report To: Miller, Lea SAMPLE TYPE (G-GRAB C-COMP) MATRIX CODE (see valid codes to left) Copy To MATRUX
Drinking Water
Waste Writer
Waste Writer
Product
Product
Out
Wipe
Ak
Ak
Chies 3 One Character per box. (A-2, 0-9 / , -). Sample ids must be unique Georgia Power 1003 Weatherstone Parkway Men OSLA SAMPLE ID 3-3-3-5 MCH OS & DI SO-17M Suite 320, Woodstack, GA 30188 Email: Jea.millet@nesclukeenv.com 多 73 /HZ 77 73 215 (251)776-2760 Pace Analytical Sas Requested Due Date Page 21 of 24 ILEM *

CHAIN-OF-CUSTODY / Analytical Request Docur

Due Date: 02/05/20 (A/N) Iutect Semples (N/A) Cooler WO#: 2628598 polen; (N/A) CLIENT: 26-GA Power 8 Received on Residual Chlorine (Y/N) LEMP N.C 2/1/2 DIATE CHAIN-OF-CUSTODY / Analytical Request Doc The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must b Pace kevin.hentra@pacelabs.com, Dissolved Metals by 6020 . WellingADN Metals by 6020 Sel seguend SIA IonartiaM Nessos Preservatives HOBN Pace Quote:
Pace Project Manager
Pace Profile #: 2919 ЮН Section C Involce Information: Attention: Company Name: EONH POSZH Onpreserved 1 # OF CONTAINERS SAMPLE TEMP AT COLLECTION Zialzo DATE 잂 DATE Variable Street COLLECTED APC CALLES COPE Chapter Chap Servand De 3 G 2 Wan 1360 A Calebrower Catalana De Sandapa Pas G ट्राम्याप्टि Se ruite of Gram item Ple suppositi Cuty Original Plant McManus SW START Required Project Information: Report To: Miller, Lea Copy To: (GMOD=0 8ARD=0) 34YT 3J4MA2 Purchase Order #: MATRIX CODE (see valid codes to left) Project Name: Project #: Section B MATRIX Drinking Weeker Waster Waster Waster Product Product SoafSoald Oll Wife All Other Tissue MCM DO LT ASING One Character per box. (A-Z, 0-9 /, -) Sample kts must be unique FACE OF L 1003 Westherstone Parkway SAMPLE ID Maniost Email: tea.millat/gresoluteony.com 3 245 THE CT Suite 320, Woodstock, GA 30188 53 LAA THE-EL THE LEFT 72-46 72.24 7 37 315 Phone: (251)776-2760 Requested Due Dete: Pace Aralytical Georgia Power tequired Client Information â Page 22 of 24 ITEM #

Due Date: 02/05/20 ntact (Y/V) Semples MO#: 2628598 (NA) Cooler belse Chargody CLIENT: 26-GA Power (N/A) B Received on Residual Chlorine (Y/N) TEMP in C 165 10:48 1216 PA: KH ON/NO 2/3/20 84 20 CHAIN-OF-CUSTODY / Analytical Request Docur The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be c Compactical to c kevin.herring@pscelabs.com, Occopy d sistem bevood Metals by 6020 NA 1801 SOSYMICA JA6081 Other Methanol スとい人 Preservatives EOZSZBN HOEN Pace Quote: Pace Project Manager 2919 HCI nvoice information. Attention: Company Name: Pace Profile #. EONH H2SO4 Section C 8401 001 2/4/20 12:10 HS4 peviesendun * OF CONTAINERS SAMPLE TEMP AT COLLECTION DATE S DATE COLLECTED tehonograph / Pac S G 211 m 1428 SG plane rout A G zistasious S Chapa SS SHOO CERTO SHE रीट व्रयक्ति विम् Signatura Purchase Order #: Project Name: Plant McManus SW l START PSG kalas DATE SAMPLE TYPE (G-GRAB C-COMP) MATRIX CODE (see valid codes to left) Copy To: Section B Project #: MATRIX Dinitating Water Water Waste Water Product Sold/Solid Oal Wipe Ar Chre MCM-OSY'S PASSE One Character per box. (A-2, 0-9 f, -) Sample ids must be unique 1003 Weatherstone Parkwa SAMPLE ID MCK OS 17 80-37 V lea.millet@rosch.deenv.com 3 13 CE Surte 320, Woodstock, GA 30188 (251)776-2760 Pace Analytical Georgia Power Required Client Information Requested Due Date: 0 Company Page 23 of 24 # MB11 φ

## Sample Condition Upon Receipt

Date:		Project Manager Review:
	····-	00 10 10
	····	
		Comments/ Resolution:
Ţime:	\esteQ	Cilent Notification/ Resolutioh: Person Contacted:
N \ Y Sheningas Regulired N		
		Pace Trip Blank Lot # (if purchased):
<i>a</i> •	AND OND BOYD	Trip Blank Custody Seals Present
.91	AND OND SOYD	Trip Blank Present:
.91	ANAIS ON□ seY□	Headspace in VOA Vials ( >6mm):
14.	ADMED OUR SEY	Samples checked for dechlorination:
initial when Lot # of added completed P preservative	ON□ 94	exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)
bebbs to # 10.1	AND OND AND	complishes with EPA recommendation.
Win-		All containers needing preservation are found to be in
13.	AVID ON SAVE	All containers needing preservation have been checked.
	TW	-Includes date/time/ID/Analysis Matrix:
12.	AW ON Sey	Sample Labels match COC:
11	YNNID ON□ SOV□	Containers Intact: Fiftered volume received for Dissolved tests
.01	AWD OND AND	28 II 7, 185
	AW ON SATE	-Pace Containers Used:
	AVII ON SOYS	Sufficient Volume: Correct Containers Used:
, '9		Rush Turn Around Time Requested:
	AND OND SONT	Short Hold Time Analysis (<72hr):
(i)		Samples Arrived within Hold Time:
54	AND OND SAYD	Sampler Name & Signature on COC:
	AND OND SAND	Chain of Custody Relinquished:
		Chain of Custody Filled Out:
	NAWID OND BATES	Chain of Custody Present:
comments:		O 8 to gnizeeri evode ad bluoris qmeT
Contents 145 (A) Sept : 1187014	si eussiT lasigoloid	Cooler Temperature
Blue None Samples on ice, cooling process has begun Blue None Date and Initigate of pegrapn, examining	Type of Ice: XX	besU refermormedT
		Packing Material:  Bubble Wrap Bubble
	niskeed on 🗌	Custody Seal on CooleriBox Present:
tact: CLIENT: 26-GA Pouer	-: - <b>10</b>	Lacking #:
Pace Other PM: KH Due Date: 02/05/20	J Commercial &	Courter: Ted Ex DPS DSPS Client
MO#: 2628598	0	e ;
4 hains Duoly	alcordia	/ Face Analytical Client Name:
	,	





February 13, 2020

Joju Abraham Georgia Power - Coal Combustion Residuals 2480 Maner Road Atlanta, GA 30339

RE: Project: Plant McManus SW

Pace Project No.: 2628599

### Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on February 04, 2020. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring

Kai Slery

kevin.herring@pacelabs.com

(704)875-9092

**HORIZON** Database Administrator

Enclosures

cc: Veronica Faye, Resolute

Trent Godwin, Resolute Environmental & Water Resources Kristen Jurinko Lea Millet, Resolute Environmental & Water Resources Lauren Petty, Southern Company Services, Inc. Kevin Stephenson, Resolute Environmental & Water Resources Consulting, LLC

Resources Consulting, LLC

Stephen Wilson, Resolute Environmental & Water







### **CERTIFICATIONS**

Project: Plant McManus SW

Pace Project No.: 2628599

**Pace Analytical Services Atlanta** 

110 Technology Parkway Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812

Georgia DW Microbiology Certification #: 812

North Carolina Certification #: 381 South Carolina Certification #: 98011001

Virginia Certification #: 460204



### **SAMPLE SUMMARY**

Project: Plant McManus SW

Pace Project No.: 2628599

Lab ID	Sample ID	Matrix	Date Collected	Date Received
2628599001	T3-4HTS	Water	02/02/20 13:44	02/04/20 08:00
2628599002	ТЗ-4НТ	Water	02/02/20 13:50	02/04/20 08:00
2628599003	T3-3HTS	Water	02/02/20 14:08	02/04/20 08:00
2628599004	ТЗ-ЗНТ	Water	02/02/20 14:10	02/04/20 08:00
2628599005	T3-2HTS	Water	02/02/20 14:28	02/04/20 08:00
2628599006	T3-2HT	Water	02/02/20 14:34	02/04/20 08:00
2628599007	ТЗ-1НТ	Water	02/02/20 14:35	02/04/20 08:00
2628599008	T3-4LT	Water	02/03/20 10:40	02/04/20 08:00
2628599009	T3-3LT	Water	02/03/20 12:12	02/04/20 08:00
2628599010	T3-2LT	Water	02/03/20 13:30	02/04/20 08:00



Project: Plant McManus SW

Pace Project No.: 2628599

.ab ID	Sample ID	Method	Analysts	Analytes Reported
628599001	T3-4HTS	EPA 6020B	CSW	1
		EPA 6020B	CSW	1
628599002	Т3-4НТ	EPA 6020B	CSW	1
		EPA 6020B	CSW	1
628599003	тз-знтѕ	EPA 6020B	CSW	1
		EPA 6020B	CSW	1
628599004	Т3-3НТ	EPA 6020B	CSW	1
		EPA 6020B	CSW	1
628599005	T3-2HTS	EPA 6020B	CSW	1
		EPA 6020B	CSW	1
628599006	T3-2HT	EPA 6020B	CSW	1
		EPA 6020B	CSW	1
628599007	T3-1HT	EPA 6020B	CSW	1
		EPA 6020B	CSW	1
628599008	T3-4LT	EPA 6020B	CSW	1
		EPA 6020B	CSW	1
628599009	T3-3LT	EPA 6020B	CSW	1
		EPA 6020B	CSW	1
628599010	T3-2LT	EPA 6020B	CSW	1
		EPA 6020B	CSW	1



Project: Plant McManus SW

Pace Project No.: 2628599

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
628599001	T3-4HTS					
EPA 6020B EPA 6020B	Arsenic Arsenic, Dissolved	0.0065J 0.0047J	mg/L mg/L	0.050 0.050	02/05/20 19:58 02/12/20 18:25	D3
628599002	T3-4HT		J			
EPA 6020B EPA 6020B	Arsenic Arsenic, Dissolved	0.0064J 0.0084J	mg/L mg/L	0.050 0.050	02/05/20 20:03 02/12/20 18:48	D3
628599003	T3-3HTS					
EPA 6020B EPA 6020B	Arsenic Arsenic, Dissolved	0.0072J 0.0065J	mg/L mg/L	0.050 0.050	02/05/20 20:09 02/12/20 18:54	D3
628599004	ТЗ-ЗНТ					
EPA 6020B EPA 6020B	Arsenic Arsenic, Dissolved	0.0058J 0.0061J	mg/L mg/L	0.050 0.050	02/05/20 20:15 02/12/20 19:00	D3
628599005	T3-2HTS					
EPA 6020B EPA 6020B	Arsenic Arsenic, Dissolved	0.0054J 0.0068J	mg/L mg/L	0.050 0.050	02/05/20 20:32 02/12/20 19:17	D3
628599006	T3-2HT					
EPA 6020B EPA 6020B	Arsenic Arsenic, Dissolved	0.0056J 0.0065J	mg/L mg/L	0.050 0.050	02/05/20 20:38 02/12/20 19:23	D3
628599007	T3-1HT					
EPA 6020B EPA 6020B	Arsenic Arsenic, Dissolved	0.0066J 0.0061J	mg/L mg/L	0.050 0.050	02/05/20 20:44 02/12/20 19:28	D3
628599008	T3-4LT					
EPA 6020B EPA 6020B	Arsenic Arsenic, Dissolved	0.0048J 0.0065J	mg/L mg/L	0.050 0.050	02/05/20 20:49 02/12/20 19:34	D3
628599009	T3-3LT					
EPA 6020B EPA 6020B	Arsenic Arsenic, Dissolved	0.0052J 0.0062J	mg/L mg/L	0.050 0.050	02/05/20 20:55 02/12/20 19:40	D3
628599010	T3-2LT					
EPA 6020B EPA 6020B	Arsenic Arsenic, Dissolved	0.0044J 0.0047J	mg/L mg/L	0.050 0.050	02/06/20 19:10 02/12/20 19:45	D3 D3



Project: Plant McManus SW

Pace Project No.: 2628599

Date: 02/13/2020 03:50 PM

Sample: T3-4HTS	Lab ID:	2628599001	Collecte	d: 02/02/20	13:44	Received: 02/	04/20 08:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: E	PA 3005A			
Arsenic	0.0065J	mg/L	0.050	0.0035	10	02/04/20 21:50	02/05/20 19:58	7440-38-2	
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: E	PA 3005A			
Arsenic, Dissolved	0.0047J	mg/L	0.050	0.0035	10	02/11/20 15:11	02/12/20 18:25	7440-38-2	D3



Project: Plant McManus SW

Pace Project No.: 2628599

Date: 02/13/2020 03:50 PM

Sample: T3-4HT	Lab ID:	2628599002	Collecte	d: 02/02/20	13:50	Received: 02/	04/20 08:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: E	PA 3005A			
Arsenic	0.0064J	mg/L	0.050	0.0035	10	02/04/20 21:50	02/05/20 20:03	7440-38-2	
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: E	PA 3005A			
Arsenic, Dissolved	0.0084J	mg/L	0.050	0.0035	10	02/11/20 15:11	02/12/20 18:48	7440-38-2	D3



Project: Plant McManus SW

Pace Project No.: 2628599

Date: 02/13/2020 03:50 PM

Sample: T3-3HTS	Lab ID:	2628599003	Collecte	d: 02/02/20	14:08	Received: 02/	04/20 08:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Prep	aration Met	hod: E	PA 3005A			
Arsenic	0.0072J	mg/L	0.050	0.0035	10	02/04/20 21:50	02/05/20 20:09	7440-38-2	
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA 6	6020B Prep	aration Met	hod: E	PA 3005A			
Arsenic, Dissolved	0.0065J	mg/L	0.050	0.0035	10	02/11/20 15:11	02/12/20 18:54	7440-38-2	D3



Project: Plant McManus SW

Pace Project No.: 2628599

Date: 02/13/2020 03:50 PM

Sample: T3-3HT	Lab ID:	2628599004	Collecte	Collected: 02/02/20 14:10			04/20 08:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: Ef	PA 3005A			
Arsenic	0.0058J	mg/L	0.050	0.0035	10	02/04/20 21:50	02/05/20 20:15	7440-38-2	
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: Ef	PA 3005A			
Arsenic, Dissolved	0.0061J	mg/L	0.050	0.0035	10	02/11/20 15:11	02/12/20 19:00	7440-38-2	D3



Project: Plant McManus SW

Pace Project No.: 2628599

Date: 02/13/2020 03:50 PM

Sample: T3-2HTS	Lab ID:	2628599005	Collecte	d: 02/02/20	14:28	Received: 02	04/20 08:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Prep	aration Met	hod: E	PA 3005A			
Arsenic	0.0054J	mg/L	0.050	0.0035	10	02/04/20 21:50	02/05/20 20:32	7440-38-2	
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA 6	6020B Prep	aration Met	hod: E	PA 3005A			
Arsenic, Dissolved	0.0068J	mg/L	0.050	0.0035	10	02/11/20 15:11	02/12/20 19:17	7440-38-2	D3



Project: Plant McManus SW

Pace Project No.: 2628599

Date: 02/13/2020 03:50 PM

Sample: T3-2HT	Lab ID:	2628599006	Collecte	Collected: 02/02/20 14:34			Received: 02/04/20 08:00 Matrix: Water		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	thod: E	PA 3005A			
Arsenic	0.0056J	mg/L	0.050	0.0035	10	02/04/20 21:50	02/05/20 20:38	7440-38-2	
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: E	PA 3005A			
Arsenic, Dissolved	0.0065J	mg/L	0.050	0.0035	10	02/11/20 15:11	02/12/20 19:23	7440-38-2	D3



Project: Plant McManus SW

Pace Project No.: 2628599

Date: 02/13/2020 03:50 PM

Sample: T3-1HT	Lab ID:	2628599007	Collecte	d: 02/02/20	14:35	Received: 02/	04/20 08:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: E	PA 3005A			
Arsenic	0.0066J	mg/L	0.050	0.0035	10	02/04/20 21:50	02/05/20 20:44	7440-38-2	
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: E	PA 3005A			
Arsenic, Dissolved	0.0061J	mg/L	0.050	0.0035	10	02/11/20 15:11	02/12/20 19:28	7440-38-2	D3



Project: Plant McManus SW

Pace Project No.: 2628599

Date: 02/13/2020 03:50 PM

Sample: T3-4LT	Lab ID:	2628599008	Collecte	d: 02/03/20	10:40	Received: 02/	04/20 08:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Prep	aration Met	hod: E	PA 3005A			
Arsenic	0.0048J	mg/L	0.050	0.0035	10	02/04/20 21:50	02/05/20 20:49	7440-38-2	
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA 6	6020B Prep	aration Met	hod: E	PA 3005A			
Arsenic, Dissolved	0.0065J	mg/L	0.050	0.0035	10	02/11/20 15:11	02/12/20 19:34	7440-38-2	D3



Project: Plant McManus SW

Pace Project No.: 2628599

Date: 02/13/2020 03:50 PM

Sample: T3-3LT	I ah ID:	2628599009	Collecte	d: 02/03/20	12:12	Received: 02/	/04/20 08:00 M	atrix: Water	
Campio. 10 of	Lub ID.	202000000	Report	u. 02/00/20	7 12.12	110001100. 02	10-1/20 00:00 W	atrix. Water	
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: E	PA 3005A			
Arsenic	0.0052J	mg/L	0.050	0.0035	10	02/04/20 21:50	02/05/20 20:55	7440-38-2	
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: E	PA 3005A			
Arsenic, Dissolved	0.0062J	mg/L	0.050	0.0035	10	02/11/20 15:11	02/12/20 19:40	7440-38-2	D3



Project: Plant McManus SW

Pace Project No.: 2628599

Date: 02/13/2020 03:50 PM

Sample: T3-2LT	Lab ID:	2628599010	Collecte	d: 02/03/20	13:30	Received: 02/	/04/20 08:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: E	PA 3005A			
Arsenic	0.0044J	mg/L	0.050	0.0035	10	02/06/20 13:10	02/06/20 19:10	7440-38-2	D3
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: E	PA 3005A			
Arsenic, Dissolved	0.0047J	mg/L	0.050	0.0035	10	02/11/20 15:11	02/12/20 19:45	7440-38-2	D3



### **QUALITY CONTROL DATA**

Project: Plant McManus SW

Pace Project No.: 2628599

Date: 02/13/2020 03:50 PM

QC Batch: 42836 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020B MET

Associated Lab Samples: 2628599001, 2628599002, 2628599003, 2628599004, 2628599005, 2628599006, 2628599007, 2628599008,

2628599009

METHOD BLANK: 195730 Matrix: Water

Associated Lab Samples: 2628599001, 2628599002, 2628599003, 2628599004, 2628599005, 2628599006, 2628599007, 2628599008,

Blank

2628599009

ParameterUnitsResultLimitMDLAnalyzedQualifiersArsenicmg/LND0.00500.0003502/05/20 18:15

Reporting

LABORATORY CONTROL SAMPLE: 195731

LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 97 80-120 Arsenic mg/L 0.1 0.097

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 195732 195733

MS MSD 2628598001 Spike Spike MS MSD MS MSD % Rec Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec **RPD** Limits Qual Arsenic ND 0.1 0.1 0.11 0.099 106 96 75-125 9 20 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

75-125

107

3 20



### **QUALITY CONTROL DATA**

Plant McManus SW Project:

Pace Project No.: 2628599

Arsenic

Date: 02/13/2020 03:50 PM

QC Batch: 42953 Analysis Method: EPA 6020B QC Batch Method: **EPA 3005A** Analysis Description: 6020B MET

Associated Lab Samples: 2628599010

METHOD BLANK: 196325 Matrix: Water

mg/L

0.0061J

Associated Lab Samples: 2628599010

Blank Reporting Parameter Units Limit MDL Qualifiers Result Analyzed Arsenic ND 02/06/20 18:59

0.0050 0.00035 mg/L

LABORATORY CONTROL SAMPLE:

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Arsenic mg/L 0.10 102 80-120

0.1

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 196330 196331 MS MSD MSD 2628600001 Spike Spike MS MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual

0.1

0.11

0.11

110

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALITY CONTROL DATA**

Project: Plant McManus SW

Pace Project No.: 2628599

QC Batch: 43171 Analysis Method: EPA 6020B

QC Batch Method: EPA 3005A Analysis Description: 6020B MET Dissolved

Associated Lab Samples: 2628599001, 2628599002, 2628599003, 2628599004, 2628599005, 2628599006, 2628599007, 2628599008,

2628599009, 2628599010

METHOD BLANK: 197298 Matrix: Water

Associated Lab Samples: 2628599001, 2628599002, 2628599003, 2628599004, 2628599005, 2628599006, 2628599007, 2628599008,

2628599009, 2628599010

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Arsenic, Dissolved mg/L ND 0.0050 0.00035 02/12/20 18:08

LABORATORY CONTROL SAMPLE: 197299

Parameter

Arsenic, Dissolved

Date: 02/13/2020 03:50 PM

299

Units

mg/L

 Spike
 LCS
 LCS
 % Rec

 Conc.
 Result
 % Rec
 Limits
 Qualifiers

 0.1
 0.10
 101
 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

197300

197301

		2628599001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic, Dissolved	mg/L	0.0065J	0.1	0.1	0.12	0.11	111	109	75-125	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALIFIERS**

Project: Plant McManus SW

Pace Project No.: 2628599

### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

### **ANALYTE QUALIFIERS**

Date: 02/13/2020 03:50 PM

D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.



### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: Plant McManus SW

Pace Project No.: 2628599

Date: 02/13/2020 03:50 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
2628599001	T3-4HTS	EPA 3005A	42836	EPA 6020B	42909
2628599002	T3-4HT	EPA 3005A	42836	EPA 6020B	42909
2628599003	T3-3HTS	EPA 3005A	42836	EPA 6020B	42909
2628599004	T3-3HT	EPA 3005A	42836	EPA 6020B	42909
2628599005	T3-2HTS	EPA 3005A	42836	EPA 6020B	42909
2628599006	T3-2HT	EPA 3005A	42836	EPA 6020B	42909
2628599007	T3-1HT	EPA 3005A	42836	EPA 6020B	42909
2628599008	T3-4LT	EPA 3005A	42836	EPA 6020B	42909
2628599009	T3-3LT	EPA 3005A	42836	EPA 6020B	42909
2628599010	T3-2LT	EPA 3005A	42953	EPA 6020B	42956
2628599001	T3-4HTS	EPA 3005A	43171	EPA 6020B	43192
2628599002	T3-4HT	EPA 3005A	43171	EPA 6020B	43192
2628599003	T3-3HTS	EPA 3005A	43171	EPA 6020B	43192
2628599004	ТЗ-ЗНТ	EPA 3005A	43171	EPA 6020B	43192
2628599005	T3-2HTS	EPA 3005A	43171	EPA 6020B	43192
2628599006	T3-2HT	EPA 3005A	43171	EPA 6020B	43192
2628599007	T3-1HT	EPA 3005A	43171	EPA 6020B	43192
2628599008	T3-4LT	EPA 3005A	43171	EPA 6020B	43192
2628599009	T3-3LT	EPA 3005A	43171	EPA 6020B	43192
2628599010	T3-2LT	EPA 3005A	43171	EPA 6020B	43192

# CHAIN-OF-CUSTODY / Analytical Request D

ć	X		8		12		8		00	1	6	•	4	4	2		ITEM#		Kequeste		Email:	Address.	Company:	Section A Required
		(	Day	SUSPENDO TRICODICOL	MGM-05 HT Lamp	73 2454	314	T3 34TS	53 YHT	13 HATS	72-215	72-317	72-465	Cher OLY	MCM-DG LT Day	12-4H1-21	SAMPLE ID One Character per box. (A-Z, 0-9 /,-) Sample lds must be unique	15	Requested Due Date:	(251)776-2760 Fax:	Suite 320, Wooderook, GA 30188	1003 Weatherstone Parkway	V: Georgis Power	Section A Required Client Information:
	25		×		į.										1		Orinking Wase DW Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial Virial		Project #	Project Name:	Purchase Order #:	Copy To:	Report To:	Section B Required Project Information:
	the	t	t	P	4	50	4	100	4,	4	3	400	<b>15</b> %	2	27	فرير	MATRIX CODE (see valid code	s to left)	l	<b>B</b>	Order #	Σ	X.	Projec
	8	4	1		2	5	C	C		62	C 2	0	5	0	5	3	SAMPLE TYPE (G=GRAB C=	COMP)	L		1	100 S	٥	la for
16	new distallers	1	- Sheep	D BYJORLAN	प्रयम्बक्ताम् उठ	डक्रा वर्मा	CHARCE		_		क्रमा कर्मा	क्टा वन्ध	थेभिक व्यक्ति	This Chap	CENTRAL PROPERTY.	-	START TIME	8		Plant McManus SW		Transfer !		mation:
PRINT Name of SA			ئ	Arrical	Ľ								5	U	0	-	DATE	COLLECTED						
AD SOLDATION	Celhil	2/4/20	ودادك	DATE													SAMPLE TEMP AT COLLECTION		100					
	روا	1 3	6		Ε	E	Ξ	-		=		-	=	-	=		# OF CONTAINERS	"	1		18	8	À	E S
	ا اله	18401	4534	1	=		-	-		-	-	_	-	-	-	-	Unpreserved	П	Pace Profile #:	Pace Project Manager	Page Out	Company Name:	Attention	Section C
8.	1	10	17				38				H	1000		-	-		H2SO4 HNO3	, 1	<b>₩</b>	BCI K	ě.	Name		
V		3	IX.		8												HCI	rese	2919	72 00 00 00 00 00 00 00 00 00 00 00 00 00		1	П	
1	e	B	1	N	_	0											NaOH	Preservativ	۳					
	Did.	B	3	(Salasa)	$\vdash$	-	-	-	-			-		-			Na2S2O3 Methanol	g.	l	Nevin I			П	
1	10	0	1	18													Other		١	Suma			П	
	1	12	1	1	_								_	_	_		Analyses Test	YAN		Post I		١,		
7,	12	2	1	É	┢	-	_	_	-	-	_	_	-	-	-		Metals by 6020 Dissolved Metals by 6020			evin, herring@pacalabs.com,		П	П	
	ice	Det.							47.7									- Andrews		Ä				
	- 4		2															- Indian		Ц		2		=
	1	11/6	1	Bring	H						udka		1.100				×			П		628599		
	8	8	8																H		1	99		3
	12/6	10,48	1654	Tius.	H	_	_	_				- A	-	83				NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE PERSON NAME OF THE P						
	C1214000		4												0							į		
MP in C	0.4		1		-	0				iii = 18		- 1					Residual Chlorine (Y/N)			500	1			
ceived on			~	E		0		jonn.					П			Г			5	1 (See		E		
N) stody				100						18										ation		=	П	
oler			۲	XIX					5				1											2,
N) mples	11									50	10 23													
ct N)	114	1	1	1							S ]	9												

Расе Анауйса! **** энения стан

## CHAIN-OF-CUSTODY / Analytical Request Dr

The Chain-of Custody is a LEGAL DOCUMENT. All relevant fields mus

C ITEM # equested Due Date quired Client Information: 6-920, Woodstock, GA 30188 MCM-CAPAL LIPS leg.millet@resoluteerv.com STALOS NOW 為五 ALC: NO. TWO 7-7-1 SAME - T 1-4H S. PART - T 11-315 1 MEN O LA 1-4-4 1003 Westherstone Parkway Georgia Power 251)776-2760 (A-Z, 0-9 / , · ) Sample ids must be unique One Character per box. OWN **SAMPLE ID** Đ, MATRIX Orincling Weter Water Water Water Water Water Water Product Boll/Solid Oil Wipe Air Other Project #: Required Project Information:
Report To: Miles Lea
Copy To All Address Art All Address Art All Address Art All Address Art All Address Art All Address Art All Address Art All Address Art All Address Art All Address Art All Address Art All Address Art All Address Art All Address Art All Address Art All Address Art All Address Art All Address Art All Address Art All Address Art All Address Art All Address Art All Address Art All Address Art All Address Art All Address Art All Address Art All Address Art All Address Art All Address Art All Address Art All Address Art All Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Art Address Purchase Order #: Hotacate Try र्दे द्वारीय अस्त 13 July 20 1 15/6 2/40/ 36211122 العطابلطاجا SSEI Daile 1955 36 July 01362 MATRIX CODE (see valid codes to left) Capping SAMPLE TYPE Plant McManus SW START 1355 CHE 13.3 15 ES TIME PRINT Name of SAMPLER: COLLECTED THE OF SALE DATE ENO a/4/ao 1 Ē 14/20 SAMPLE TEMP AT COLLECTION 1048 19:16 # OF CONTAINERS Attertion: Company Name: Address: Pace Profile #: 2919 Pace Quote: Pace Project Manager. Invoice information: Unpreserved Û H2SO4 Comero Secles HNO3 Preservatives HCI Scor + NaOH Na2S2O3 kevin.herring@pacelabs.com Methanol Other DATE Signed: Alcelyses from 111 Metals by 6020 lPare mer Disapived Metals by 6020 2/3/20 24130 PH: 조 CLIENT: 26-GR Power 10.4 1654 TEMP in C ١ Due Date: 02/07/20 Residual Chlorine (Y/N) Received on Custody Sealed Cooler Samples

Ice (Y/N)

(Y/N)

Intact (Y/N) WO#: 2628599

Face Analytical

Saction B
Required Project Information:
Report To: Milyn, Lea
Copy To: CHAIN-OF-CUSTODY / Analytical Request Doc The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must t Section C
Invoice information:
Attention:
Company Name: PH: 주 W0#:2628599 CLIENT: 26-GR Power Due Date: **82/07/20**Page 23 of 24

The characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of	ustody aled poler /N) amples act /N)	eceived on	MP in C		E Signed:	DATE			U	j č	PRINT Name of SAMPLER:	PRINT Name of	\ K				
Contract Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract		Angelon and a second											200				
Contract Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract   Contract		0		11 oct 14	ace	1/0/2	norte	Well	1	بق	3/4/14O	18/18	dayio	mer	æ		ļ
ACTION AND COLLECTION  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID				+	6	17/2	axo	mere	2	de	2/4/20	)	6/2				
A COLLEGION SAMPLE TO COLLEGION STATE AND COLLEGION STATE AND COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE TO COLLEGION SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE	isi	<del> </del>	}	3/10		7	17	The contract of		Sal	212	V		1	K	04/4	61
COLENT 2000 COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLENT COLE	sile and	Simple	Claim .	3		40 July 1	を対し	6		į	ogs	Strick	and Strategic	等 美		MARKATON CONTRACTOR	
COLENT : 26-GR Power  COLINA COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  COLLEGATION  CO							E			E		8	21/120/15	1300		YEAR.	172-
CONTROL TO CONTINUES  Secret to Control Power  Control No. Control Power  Control No. Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control		9				-		-		E		6		100		345	N.
CLENT: 28-GR Power    Classific Name   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control				-		-				E		*	HAZINE	ريا		3 FEB T	173
Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of Power Continue of		T				-				F		B	ORINI	45		ZWI	10.
COLLEGED To Compile Project Information:    County   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Franch   Fran		Ī		-		-				F		8	2 dule	12		ZWYS	7
CONTRACTOR OF MANUAL COLLECTED  SAMPLE TIME  SAMPLE TEMP AT COLLECTION  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Character per box.  One Ch						_				E		6	adula	47		4	
COLLECTED  SAMPLE TOME  SAMPLE TYPE (G-GRAD C-COMP)  One Character par box.  WA A PRIOR OF COLLECTED  SAMPLE TYPE (G-GRAD C-COMP)  One Character par box.  WA A PRIOR OF COLLECTED  SAMPLE TYPE (G-GRAD C-COMP)  One Character par box.  WA A PRIOR OF COLLECTED  SAMPLE TYPE (G-GRAD C-COMP)  One Character par box.  WA A PRIOR OF COLLECTED  SAMPLE TYPE (G-GRAD C-COMP)  One Character par box.  WA A PRIOR OF COLLECTED  SAMPLE TYPE (G-GRAD C-COMP)  One Character par box.  WA A PRIOR OF COLLECTED  SAMPLE TYPE (G-GRAD C-COMP)  One Character par box.  WA A PRIOR OF COLLECTED  SAMPLE TYPE (G-GRAD C-COMP)  One Character par box.  WA A PRIOR OF COLLECTED  SAMPLE TYPE (G-GRAD C-COMP)  One Character par box.  WA A PRIOR OF COLLECTED  SAMPLE TYPE (G-GRAD C-COMP)  One Character par box.  WA A PRIOR OF COLLECTED  SAMPLE TYPE (G-GRAD C-COMP)  One Character par box.  WA A PRIOR OF COLLECTED  SAMPLE TYPE (G-GRAD C-COMP)  One Character par box.  WA A PRIOR OF COLLECTED  SAMPLE TYPE (G-GRAD C-COMP)  One Character par box.  WA A PRIOR OF COLLECTED  A PRIOR OF COLLECTED  SAMPLE TYPE (G-GRAD C-COMP)  One Character par box.  WA A PRIOR OF COLLECTED  SAMPLE TYPE (G-GRAD C-COMP)  One Character par box.  WA A PRIOR OF COLLECTED  SAMPLE TYPE (G-GRAD C-COMP)  One Character par box.  WA A PRIOR OF COLLECTED  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.  PROS OCCUR.						_	E			E		8				THEFO	Inch.
SAMPLE ID  SAMPLE TOUR  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE TIME  SAMPLE		<u>'-</u>				-				E		ð	arthre		r	L	NG
Clarify Power  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Properties  General Pro								-		E		5	42112	2		CHAT	17.
CLIENT: 26-GR Pouer  Classifier Point  Condition Patienty  Condition  Condition  Condition  Considered  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condition  Condit		<u>.                                    </u>								Ε		80	CT WEST			THE	44
SAMPLE TIME Sample Idea must be unique  Sample Idea must be unique  Sample Idea must be unique  Sample Idea must be unique  Sample Idea must be unique  Time  Time  Time  Time  Time  Time  Time  Time  CLIENT: 25-GR Power  Sample Idea must be unique  Time  Time  Time  Time  CLIENT: 25-GR Power  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Address:  Ad										E		5	مطابلا	32		341	
SAMPLE TYPE (G=GRAB C-COMP)  One Character per box.  AR A R OT COMP Titus  Sample kis must be unique  Sample kis must be unique  CLIENT: 25-GR Power  Regulation:  Regulation:  Attention:  Company Name  Address:  Regulation:  Regulation:  Company Name  Address:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Regulation:  Address:  Regulation:  Regulation:  Regulation:  Regulation:  Regulation:  Regulation:  Regulation:  Regulation:  Regulation:  Regulation:  Regulation:  Regulation:  Regulation:  Regulation:  Regulation:  Regulation:  Regulation:  Regulation:  Regulation:  Regulation:  Regulation:  Regulation:  Regulation:  Regulation:  Regulation:  Regulation:  Regulation:  Regulation:  Regulation:  Regulation:  Regulation:  Regulation:  Regulation:				aportion and compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the c	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s		100	and of the second		-		3	actults			THAT!	twe.
Client information: Regulared Project Information: Regulared Project Information: Regulared Project Information: Regulared Project Information: Regulared Project Information: Regulared Project Information: Regulared Project Information: Regulared Project Information: Regulared Project Information: Regulared Project Information: Regulared Project Information: Regulared Project Information: Regulared Project Information: Regulared Project Information: Regulared Project Information: Regulared Project Information: Regulared Project Information: Regulared Project Information: Regulared Project Information: Regulared Project Information: Regulared Project Information: Regulared Project Information: Regulared Project Information: Regulared Project Information: Regulared Project Information: Regulared Project Information: Regulared Project Information: Regulared Project Information: Invoice information: Regulared Project Information: Regulared Project Information: Report To: MillyL. Lea		Residual Chlorine (Y/N)				Metals by 6020	Methanol	NaOH	H2SO4	# OF CONTAINERS	TIME	Š.	STA	MATRIX CODE (see valid cod			iTEM#
Client information:  Regulared Project Information:  Report To: Milyst Lea  1003 Weatherstone Parkway  Copy To: Weatherstone  Copy To: Weatherstone  Copy To: Weatherstone  Copy To: Weatherstone  Copy To: Weatherstone  Copy To: Weatherstone  Copy To: Weatherstone  Copy To: Weatherstone  Copy To: Weatherstone  Copy To: Weatherstone  Copy To: Weatherstone  Copy To: Weatherstone  Copy To: Weatherstone  Copy To: Weatherstone  Company Name  Company Name  Address  Reading  Report To: Allight Lea  Company Name  Address  Reading  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report To: Allight Lea  Report Lea  Report Lea  Report Lea  Report Lea  Report Lea  Report Lea  Report Lea  Report Lea  Report Lea  Report Lea  Report Lea  Report Lea  Report Lea  Report Lea  Report Lea  Report Lea  Report Lea  Report Lea  Report Lea  Report Lea  Report Lea  Report Lea  Report Lea  Report Lea  Report Lea  Report Lea  Report Lea  Report Lea  Report Lea  Report Lea  Report						Yell	is .		Pn	DN .	j J	соцеств	COMP)	es to left)			
CCLIENT: 25-GR Power Georgia Power 1003 Westherstone Parkway Woodstock, GA 30188 COpy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Warfange Copy To Wa		g g	1975	Mar Margalio	TO CONTROL AND	1	ATA		Profile #:	Paca				# P	Projec	ale:	lequested Due D
A Client information:  Regulated Project Information:  Report To: Milys Lea Autention:  1003 Weatherstone Parkway  Copy To: Ward Project Information:  Company Name  Company Name  Company Name  Report To: Milys Lea Autention:  Company Name  Address  Read To: Milys Lea Autention:  Purchase Order #:  Pace Quote:  Pace Quote:	Hotel Control Hotel	State (Logic	STEEL PROPERTY.		oom,	Specelabs	evin herring	Ш	Project Mar	Pace		WS	Plant McManus	Ш	Projec	76-2760	Phone: (2
Citent information:  Georgia Power  Georgia Power  1003 Weetherstone Parkway  Woodstock GA 30188  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway  Copy To Weetherstone Parkway						36.55	8		Quote:	Pace		07		ise Order#:	Purch	3	Email: ka.mille
Client information:  Required Project Information:  Georgia Power  Report To: Millyt, Lea , / Attention:  Section C  Section C  Section C  Attention:  CLIENT: 26-GR Power			Control States				1		any Name	Comp		٤	V	6	Сору	03 Weetherstone Parkway book, GA 30188	uite 320. Woods
Client information: Section C Section C Section C CLIENT: 26-GR Power									ion:	VICE STATE				To: Milly	Repor	orgia Power	
		Power		CLIENT:				ion:	on C	Inval			nformation:	red Project	Requi	nformation:	Section A Required Client

## Sample Condition Upon Receipt

:ejsd Project Manager Review: Comments/ Resolution: Date/Time: Person Contacted: Field Data Required? Client Notification/ Resolution: N / A Pace Trip Blank Lot # (if purchased): Trip Blank Custody Seals Present oN□ <del>23</del>Y□ AMA Trip Blank Present: AND ON BOY :(mm3< ) slsiV AOV ni sosqebseH .6. ON Sey Samples checked for dechlorination: ON D SOY D AND. exceptions: VOA, coliform, TOC, O&G, VM-DRO (water) evitsvieseng completed ON□ 946 bebbs to # fol nertw leitini compliance with EPA recommendation. AND ON BY All containers needing preservation are found to be in AND OND **XE All containers needing preservation have been checked. -Includes date/time/ID/Analysis IMI.St Awa awa maya Sample Labels match COC: Eltered volume received for Dissolved tests 111 Y/N/Z Containers Intact: AVI [ %D **/₽> -Pace Containers Used: A/N OND #9人子 Correct Containers Used: .6| AW□ on□ seĥS. Sufficient Volume: AW ON D SOY • ON SAN Rush Turn Around Time Requested: AW Short Hold Time Analysis (<\2hr): 3M2 seY□ AW Samples Arrived within Hold Time: AW ON SAKE Sampler Name & Signature on COC: AW. 9ND 99457 Chain of Custody Relinquished: ON D SAN A/N Chain of Custody Filled Out: AW ON D SOLE Chain of Custody Present: AW ON | 994 O'8 of gaissent evods ed bluods qmeT Comments: Date and initials of person examining Cooler Temperature Biological Tissue is Frozen: Yes No Samples on ice, cooling process has begun Type of ice: N'et Sine None besU tetemomentT इिन्द्र भागाताच ☐ Bubble Bags ☐ None Ch Other Packing Material: 🔲 Bubble Wrap 🚽 Custody Seal on CoolenBox Present: Seals intact: CLIENT: 26-6A Power Tracking #: Due Date: 62/07/20 Courter: Ted Ex Dups Dusps Dictient Commercial Teace Other 6698797: #OM Client Name: Coroloc Face Analytical

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHMR

Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)





February 14, 2020

Joju Abraham Georgia Power - Coal Combustion Residuals 2480 Maner Road Atlanta, GA 30339

RE: Project: Plant McManus SW Pace Project No.: 2628600

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on February 04, 2020. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring

Kan Sleng

kevin.herring@pacelabs.com

(704)875-9092

**HORIZON** Database Administrator

Enclosures

cc: Veronica Faye, Resolute

Trent Godwin, Resolute Environmental & Water Resources
Kristen Jurinko

Lea Millet, Resolute Environmental & Water Resources
Lauren Petty, Southern Company Services, Inc.
Kevin Stephenson, Resolute Environmental & Water
Resources Consulting, LLC
Stephen Wilson, Resolute Environmental & Water

Resources Consulting, LLC







### **CERTIFICATIONS**

Project: Plant McManus SW

Pace Project No.: 2628600

**Pace Analytical Services Atlanta** 

110 Technology Parkway Peachtree Corners, GA 30092

Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 Georgia DW Microbiology Certification #: 812 North Carolina Certification #: 381 South Carolina Certification #: 98011001

Virginia Certification #: 460204



### **SAMPLE SUMMARY**

Project: Plant McManus SW

Pace Project No.: 2628600

Lab ID	Sample ID	Matrix	Date Collected	Date Received
2628600001	MCM-07LT ASHPOND	Water	02/01/20 09:40	02/04/20 08:00
2628600002	MCM-07LT	Water	02/01/20 10:15	02/04/20 08:00
2628600003	MCM-06HT ASHPOND	Water	02/01/20 13:55	02/04/20 08:00
2628600004	MCM-06HT	Water	02/01/20 13:55	02/04/20 08:00
2628600005	MCM-07HT ASHPOND	Water	02/01/20 14:20	02/04/20 08:00
2628600006	MCM-07HT	Water	02/01/20 14:20	02/04/20 08:00
2628600007	MCM-06LT ASHPOND	Water	02/02/20 08:50	02/04/20 08:00
2628600008	MCM-06LT	Water	02/02/20 09:00	02/04/20 08:00
2628600009	MCM-05HT ASHPOND	Water	02/02/20 14:30	02/04/20 08:00
2628600010	MCM-05HT	Water	02/02/20 14:46	02/04/20 08:00
2628600011	MCM-05LT ASHPOND	Water	02/03/20 09:45	02/04/20 08:00
2628600012	MCM-05LT	Water	02/03/20 09:47	02/04/20 08:00
2628600013	DUP-1	Water	02/03/20 00:00	02/04/20 08:00
2628600014	T2-1HT	Water	02/01/20 13:55	02/04/20 08:00
2628600015	T2-2HTS	Water	02/01/20 14:28	02/04/20 08:00
2628600016	T2-2HT	Water	02/01/20 14:32	02/04/20 08:00
2628600017	T2-3HTS	Water	02/01/20 14:46	02/04/20 08:00
2628600018	T2-3HT	Water	02/01/20 14:50	02/04/20 08:00
2628600019	T2-4HTS	Water	02/01/20 15:00	02/04/20 08:00
2628600020	T2-4HT	Water	02/01/20 15:14	02/04/20 08:00
2628600021	T2-4LT	Water	02/02/20 09:46	02/04/20 08:00
2628600022	T2-3LT	Water	02/02/20 11:20	02/04/20 08:00
2628600023	T2-2LT	Water	02/02/20 11:38	02/04/20 08:00
2628600024	T1-1LT	Water	02/01/20 09:50	02/04/20 08:00
2628600025	T1-4LT	Water	02/01/20 09:56	02/04/20 08:00
2628600026	T1-3LT	Water	02/01/20 10:06	02/04/20 08:00
2628600027	T1-2LT	Water	02/01/20 10:16	02/04/20 08:00
2628600028	T1-4HTS	Water	02/01/20 13:34	02/04/20 08:00
2628600029	T1-4HT	Water	02/01/20 13:40	02/04/20 08:00
2628600030	T1-3HTS	Water	02/01/20 13:52	02/04/20 08:00
2628600031	T1-3HT	Water	02/01/20 13:56	02/04/20 08:00
2628600032	T1-1HT	Water	02/01/20 14:08	02/04/20 08:00
2628600033	T1-2HTS	Water	02/01/20 14:16	02/04/20 08:00
2628600034	T1-2HT	Water	02/01/20 14:20	02/04/20 08:00
2628600035	T3-4HTS	Water	02/02/20 13:44	02/04/20 08:00
2628600036	T3-4HT	Water	02/02/20 13:50	02/04/20 08:00
2628600037	T3-3HTS	Water	02/02/20 14:08	02/04/20 08:00



### **SAMPLE SUMMARY**

Project: Plant McManus SW

Pace Project No.: 2628600

Lab ID	Sample ID	Matrix	Date Collected	Date Received
2628600038	Т3-3НТ	Water	02/02/20 14:10	02/04/20 08:00
2628600039	T3-2HTS	Water	02/02/20 14:28	02/04/20 08:00
2628600040	T3-2HT	Water	02/02/20 14:34	02/04/20 08:00
2628600041	T3-1HT	Water	02/02/20 14:35	02/04/20 08:00
2628600042	T3-4LT	Water	02/03/20 10:40	02/04/20 08:00
2628600043	T3-3LT	Water	02/03/20 12:12	02/04/20 08:00
2628600044	T3-2LT	Water	02/03/20 13:30	02/04/20 08:00



Project: Plant McManus SW

Pace Project No.: 2628600

Lab ID	Sample ID	Method	Analysts	Analytes Reported
2628600001	MCM-07LT ASHPOND	EPA 6020B	CSW	3
		EPA 6020B	CSW	3
2628600002	MCM-07LT	EPA 6020B	CSW	3
		EPA 6020B	CSW	3
2628600003	MCM-06HT ASHPOND	EPA 6020B	CSW	3
		EPA 6020B	CSW	3
2628600004	MCM-06HT	EPA 6020B	CSW	3
		EPA 6020B	CSW	3
2628600005	MCM-07HT ASHPOND	EPA 6020B	CSW	3
		EPA 6020B	CSW	3
2628600006	MCM-07HT	EPA 6020B	CSW	3
		EPA 6020B	CSW	3
2628600007	MCM-06LT ASHPOND	EPA 6020B	CSW	3
		EPA 6020B	CSW	3
2628600008	MCM-06LT	EPA 6020B	CSW	3
		EPA 6020B	CSW	3
2628600009	MCM-05HT ASHPOND	EPA 6020B	CSW	3
		EPA 6020B	CSW	3
2628600010	MCM-05HT	EPA 6020B	CSW	3
		EPA 6020B	CSW	3
2628600011	MCM-05LT ASHPOND	EPA 6020B	CSW	3
		EPA 6020B	CSW	3
2628600012	MCM-05LT	EPA 6020B	CSW	3
		EPA 6020B	CSW	3
2628600013	DUP-1	EPA 6020B	CSW	3
		EPA 6020B	CSW	3
2628600014	T2-1HT	EPA 6020B	CSW	2
		EPA 6020B	CSW	2
2628600015	T2-2HTS	EPA 6020B	CSW	2
		EPA 6020B	CSW	2
2628600016	T2-2HT	EPA 6020B	CSW	2
		EPA 6020B	CSW	2
2628600017	T2-3HTS	EPA 6020B	CSW	2
		EPA 6020B	CSW	2
2628600018	T2-3HT	EPA 6020B	CSW	2
		EPA 6020B	CSW	2
2628600019	T2-4HTS	EPA 6020B	CSW	2



Project: Plant McManus SW

Pace Project No.: 2628600

EPA 6020B	Lab ID	Sample ID	Method	Analysts	Analytes Reported
PA 6020B			EPA 6020B	CSW	2
2628600021       T2-4LT       EPA 6020B       CSW       2         2628600022       T2-3LT       EPA 6020B       CSW       2         2628600023       T2-2LT       EPA 6020B       CSW       2         2628600024       T1-1LT       EPA 6020B       CSW       2         2628600025       T1-4LT       EPA 6020B       CSW       2         2628600026       T1-3LT       EPA 6020B       CSW       2         2628600026       T1-3LT       EPA 6020B       CSW       2         2628600027       T1-2LT       EPA 6020B       CSW       2         2628600028       T1-3LT       EPA 6020B       CSW       2         2628600029       T1-4HTS       EPA 6020B       CSW       2         2628600028       T1-4HTS       EPA 6020B       CSW       2         2628600029       T1-3HT       EPA 6020B       CSW       2         2628600029       T1-3HT       EPA 6020B       CSW       2         2628600030       T1-3HT       EPA 6020B       CSW       2         2628600031       T1-1HT       EPA 6020B       CSW       2         2628600032       T1-1HT       EPA 6020B       CSW	2628600020	T2-4HT	EPA 6020B	CSW	2
PA 6020B			EPA 6020B	CSW	2
2628600022       T2-3LT       EPA 6020B       CSW       2         2628600023       T2-2LT       EPA 6020B       CSW       2         2628600024       T1-1LT       EPA 6020B       CSW       2         2628600025       T1-4LT       EPA 6020B       CSW       2         2628600026       T1-3LT       EPA 6020B       CSW       2         2628600027       T1-3LT       EPA 6020B       CSW       2         2628600027       T1-2LT       EPA 6020B       CSW       2         2628600028       T1-4HTS       EPA 6020B       CSW       2         2628600029       T1-4HTS       EPA 6020B       CSW       2         2628600029       T1-3HTS       EPA 6020B       CSW       2         2628600029       T1-3HTS       EPA 6020B       CSW       2         2628600031       T1-3HTS       EPA 6020B       CSW       2         2628600032       T1-3HT       EPA 6020B       CSW       2         2628600033       T1-3HT       EPA 6020B       CSW       2         2628600034       T1-2HT       EPA 6020B       CSW       2         2628600035       T1-3HTS       EPA 6020B       CSW	2628600021	T2-4LT	EPA 6020B	CSW	2
PA 6020B			EPA 6020B	CSW	2
2628600023       T2-2LT       EPA 6020B       CSW       2         2628600024       T1-1LT       EPA 6020B       CSW       2         2628600025       T1-4LT       EPA 6020B       CSW       2         2628600026       T1-4LT       EPA 6020B       CSW       2         2628600026       T1-3LT       EPA 6020B       CSW       2         2628600027       T1-2LT       EPA 6020B       CSW       2         2628600028       T1-4HTS       EPA 6020B       CSW       2         2628600029       T1-4HTS       EPA 6020B       CSW       2         2628600029       T1-4HTS       EPA 6020B       CSW       2         2628600029       T1-3HTS       EPA 6020B       CSW       2         2628600030       T1-3HTS       EPA 6020B       CSW       2         2628600031       T1-3HT       EPA 6020B       CSW       2         2628600032       T1-3HT       EPA 6020B       CSW       2         2628600033       T1-2HTS       EPA 6020B       CSW       2         2628600034       T1-2HTS       EPA 6020B       CSW       2         2628600035       T3-4HTS       EPA 6020B       CSW	2628600022	T2-3LT	EPA 6020B	CSW	2
PA 6020B			EPA 6020B	CSW	2
2628600024       T1-1LT       EPA 6020B       CSW       2         2628600025       T1-4LT       EPA 6020B       CSW       2         2628600026       T1-3LT       EPA 6020B       CSW       2         2628600027       T1-3LT       EPA 6020B       CSW       2         2628600027       T1-2LT       EPA 6020B       CSW       2         2628600028       T1-4HTS       EPA 6020B       CSW       2         2628600029       T1-4HT       EPA 6020B       CSW       2         2628600030       T1-3HTS       EPA 6020B       CSW       2         2628600031       T1-3HTS       EPA 6020B       CSW       2         2628600032       T1-3HT       EPA 6020B       CSW       2         2628600033       T1-3HT       EPA 6020B       CSW       2         2628600034       T1-2HTS       EPA 6020B       CSW       2         2628600035       T1-2HTS       EPA 6020B       CSW       2         2628600036       T1-2HTS       EPA 6020B       CSW       2         2628600037       T1-2HTS       EPA 6020B       CSW       2         2628600038       T1-2HTS       EPA 6020B       CSW	2628600023	T2-2LT	EPA 6020B	CSW	2
PA 6020B			EPA 6020B	CSW	2
2628600025       T1-4LT       EPA 6020B       CSW       2         2628600026       T1-3LT       EPA 6020B       CSW       2         2628600027       T1-2LT       EPA 6020B       CSW       2         2628600028       T1-4HTS       EPA 6020B       CSW       2         2628600029       T1-4HTS       EPA 6020B       CSW       2         2628600029       T1-4HT       EPA 6020B       CSW       2         2628600030       T1-3HTS       EPA 6020B       CSW       2         2628600031       T1-3HT       EPA 6020B       CSW       2         2628600032       T1-1HT       EPA 6020B       CSW       2         2628600033       T1-3HT       EPA 6020B       CSW       2         2628600034       T1-2HTS       EPA 6020B       CSW       2         2628600035       T1-2HTS       EPA 6020B       CSW       2         2628600036       T1-2HTS       EPA 6020B       CSW       2         2628600037       T1-2HTS       EPA 6020B       CSW       2         2628600038       T1-2HTS       EPA 6020B       CSW       2         2628600036       T3-4HTS       EPA 6020B       CSW	2628600024	T1-1LT	EPA 6020B	CSW	2
2628600026       T1-3LT       EPA 6020B       CSW       2         2628600027       T1-2LT       EPA 6020B       CSW       2         2628600028       T1-2LT       EPA 6020B       CSW       2         2628600028       T1-4HTS       EPA 6020B       CSW       2         2628600029       T1-4HT       EPA 6020B       CSW       2         2628600030       T1-3HT       EPA 6020B       CSW       2         2628600031       T1-3HT       EPA 6020B       CSW       2         2628600032       T1-3HT       EPA 6020B       CSW       2         2628600031       T1-3HT       EPA 6020B       CSW       2         2628600032       T1-1HT       EPA 6020B       CSW       2         2628600033       T1-2HTS       EPA 6020B       CSW       2         2628600034       T1-2HTS       EPA 6020B       CSW       2         2628600035       T1-2HTS       EPA 6020B       CSW       2         2628600036       T3-4HTS       EPA 6020B       CSW       2         2628600037       T3-3HTS       EPA 6020B       CSW       2         26286000380       T3-4HT       EPA 6020B       CSW			EPA 6020B	CSW	2
2628600026       T1-3LT       EPA 6020B       CSW       2         2628600027       T1-2LT       EPA 6020B       CSW       2         2628600028       T1-4HTS       EPA 6020B       CSW       2         2628600029       T1-4HT       EPA 6020B       CSW       2         2628600029       T1-4HT       EPA 6020B       CSW       2         2628600030       T1-3HTS       EPA 6020B       CSW       2         2628600031       T1-3HT       EPA 6020B       CSW       2         2628600032       T1-1HT       EPA 6020B       CSW       2         2628600033       T1-2HTS       EPA 6020B       CSW       2         2628600034       T1-2HTS       EPA 6020B       CSW       2         2628600035       T1-2HTS       EPA 6020B       CSW       2         2628600036       T1-2HTS       EPA 6020B       CSW       2         2628600037       T1-2HTS       EPA 6020B       CSW       2         2628600038       T3-4HTS       EPA 6020B       CSW       2         2628600039       T3-4HTS       EPA 6020B       CSW       2         2628600036       T3-4HTS       EPA 6020B       CSW	2628600025	T1-4LT	EPA 6020B	CSW	2
2628600027       T1-2LT       EPA 6020B       CSW       2         2628600028       T1-4HTS       EPA 6020B       CSW       2         2628600028       T1-4HTS       EPA 6020B       CSW       2         2628600029       T1-4HT       EPA 6020B       CSW       2         2628600030       T1-3HTS       EPA 6020B       CSW       2         2628600031       T1-3HT       EPA 6020B       CSW       2         2628600032       T1-1HT       EPA 6020B       CSW       2         2628600033       T1-2HTS       EPA 6020B       CSW       2         2628600034       T1-2HTS       EPA 6020B       CSW       2         2628600035       T1-2HTS       EPA 6020B       CSW       2         2628600036       T1-2HTS       EPA 6020B       CSW       2         2628600037       T1-2HTS       EPA 6020B       CSW       2         2628600038       T1-2HTS       EPA 6020B       CSW       2         2628600036       T3-4HTS       EPA 6020B       CSW       2         2628600037       T3-4HTS       EPA 6020B       CSW       2         2628600038       T3-4HTS       EPA 6020B       CSW			EPA 6020B	CSW	2
2628600027       T1-2LT       EPA 6020B       CSW       2         2628600028       T1-4HTS       EPA 6020B       CSW       2         2628600029       T1-4HTS       EPA 6020B       CSW       2         2628600029       T1-4HT       EPA 6020B       CSW       2         2628600030       T1-3HTS       EPA 6020B       CSW       2         2628600031       T1-3HT       EPA 6020B       CSW       2         2628600032       T1-1HT       EPA 6020B       CSW       2         2628600033       T1-2HTS       EPA 6020B       CSW       2         2628600034       T1-2HTS       EPA 6020B       CSW       2         2628600035       T1-2HT       EPA 6020B       CSW       2         2628600036       T1-2HTS       EPA 6020B       CSW       2         2628600037       T1-2HTS       EPA 6020B       CSW       2         2628600036       T3-4HTS       EPA 6020B       CSW       2         2628600037       T3-4HT       EPA 6020B       CSW       2         2628600037       T3-4HT       EPA 6020B       CSW       2         2628600037       T3-4HT       EPA 6020B       CSW	2628600026	T1-3LT	EPA 6020B	CSW	2
2628600028       T1-4HTS       EPA 6020B       CSW       2         2628600029       T1-4HT       EPA 6020B       CSW       2         2628600029       T1-4HT       EPA 6020B       CSW       2         2628600030       T1-3HTS       EPA 6020B       CSW       2         2628600031       T1-3HT       EPA 6020B       CSW       2         2628600032       T1-1HT       EPA 6020B       CSW       2         2628600033       T1-2HTS       EPA 6020B       CSW       2         2628600034       T1-2HTS       EPA 6020B       CSW       2         2628600034       T1-2HT       EPA 6020B       CSW       2         2628600035       T3-4HTS       EPA 6020B       CSW       2         2628600036       T3-4HTS       EPA 6020B       CSW       2         2628600037       T3-4HTS       EPA 6020B       CSW       2         2628600036       T3-4HT       EPA 6020B       CSW       2         2628600037       T3-4HT       EPA 6020B       CSW       2         2628600037       T3-4HT       EPA 6020B       CSW       2         2628600037       T3-4HT       EPA 6020B       CSW			EPA 6020B	CSW	2
2628600028       T1-4HTS       EPA 6020B       CSW       2         2628600029       T1-4HT       EPA 6020B       CSW       2         2628600030       T1-3HTS       EPA 6020B       CSW       2         2628600031       T1-3HT       EPA 6020B       CSW       2         2628600032       T1-1HT       EPA 6020B       CSW       2         2628600033       T1-2HTS       EPA 6020B       CSW       2         2628600034       T1-2HT       EPA 6020B       CSW       2         2628600035       T3-4HTS       EPA 6020B       CSW       2         2628600036       T3-4HTS       EPA 6020B       CSW       2         2628600037       T3-3HTS       EPA 6020B       CSW       2         2628600037       T3-3HTS       EPA 6020B       CSW       2         2628600037       T3-3HTS       EPA 6020B       CSW       2	2628600027	T1-2LT	EPA 6020B	CSW	2
EPA 6020B			EPA 6020B	CSW	2
2628600029       T1-4HT       EPA 6020B       CSW       2         2628600030       T1-3HTS       EPA 6020B       CSW       2         2628600031       T1-3HT       EPA 6020B       CSW       2         2628600032       T1-1HT       EPA 6020B       CSW       2         2628600033       T1-2HTS       EPA 6020B       CSW       2         2628600034       T1-2HT       EPA 6020B       CSW       2         2628600035       T3-4HTS       EPA 6020B       CSW       2         2628600036       T3-4HTS       EPA 6020B       CSW       2         2628600036       T3-4HTS       EPA 6020B       CSW       2         2628600036       T3-4HTS       EPA 6020B       CSW       2         2628600037       T3-3HTS       EPA 6020B       CSW       2         2628600037       T3-3HTS       EPA 6020B       CSW       2	2628600028	T1-4HTS	EPA 6020B	CSW	2
EPA 6020B			EPA 6020B	CSW	2
2628600030       T1-3HTS       EPA 6020B       CSW       2         2628600031       T1-3HT       EPA 6020B       CSW       2         2628600032       T1-1HT       EPA 6020B       CSW       2         2628600033       T1-2HTS       EPA 6020B       CSW       2         2628600034       T1-2HTS       EPA 6020B       CSW       2         2628600035       T3-4HTS       EPA 6020B       CSW       2         2628600036       T3-4HT       EPA 6020B       CSW       2         2628600037       T3-3HTS       EPA 6020B       CSW       2         2628600037       T3-3HTS       EPA 6020B       CSW       2	2628600029	T1-4HT	EPA 6020B	CSW	2
EPA 6020B   CSW   2   2   2   2   2   2   2   2   2			EPA 6020B	CSW	2
2628600031       T1-3HT       EPA 6020B       CSW       2         2628600032       T1-1HT       EPA 6020B       CSW       2         2628600033       T1-2HTS       EPA 6020B       CSW       2         2628600034       T1-2HT       EPA 6020B       CSW       2         2628600035       T3-4HTS       EPA 6020B       CSW       2         2628600036       T3-4HTS       EPA 6020B       CSW       2         2628600037       T3-3HTS       EPA 6020B       CSW       2         2628600037       T3-3HTS       EPA 6020B       CSW       2	2628600030	T1-3HTS	EPA 6020B	CSW	2
EPA 6020B   CSW   2   2   2   2   2   2   2   2   2			EPA 6020B	CSW	2
2628600032       T1-1HT       EPA 6020B       CSW       2         EPA 6020B       CSW       2 </td <td>2628600031</td> <td>T1-3HT</td> <td>EPA 6020B</td> <td>CSW</td> <td>2</td>	2628600031	T1-3HT	EPA 6020B	CSW	2
2628600033       T1-2HTS       EPA 6020B       CSW       2			EPA 6020B	CSW	2
2628600033       T1-2HTS       EPA 6020B       CSW       2         2628600034       T1-2HT       EPA 6020B       CSW       2	2628600032	T1-1HT	EPA 6020B	CSW	2
2628600034       T1-2HT       EPA 6020B       CSW       2         2628600035       T3-4HTS       EPA 6020B       CSW       2         2628600036       T3-4HT       EPA 6020B       CSW       2         2628600036       T3-4HT       EPA 6020B       CSW       2         EPA 6020B       CSW       2         EPA 6020B       CSW       2         EPA 6020B       CSW       2         2628600037       T3-3HTS       EPA 6020B       CSW       2			EPA 6020B	CSW	2
2628600034       T1-2HT       EPA 6020B       CSW       2         2628600037       T3-3HTS       EPA 6020B       CSW       2	2628600033	T1-2HTS	EPA 6020B	CSW	2
2628600035       T3-4HTS       EPA 6020B       CSW       2         2628600037       T3-3HTS       EPA 6020B       CSW       2			EPA 6020B	CSW	2
2628600035       T3-4HTS       EPA 6020B       CSW       2         EPA 6020B       CSW       2         2628600036       T3-4HT       EPA 6020B       CSW       2         EPA 6020B       CSW       2         EPA 6020B       CSW       2         2628600037       T3-3HTS       EPA 6020B       CSW       2	2628600034	T1-2HT	EPA 6020B	CSW	2
EPA 6020B CSW 2 2628600036 T3-4HT EPA 6020B CSW 2 EPA 6020B CSW 2 EPA 6020B CSW 2 EPA 6020B CSW 2			EPA 6020B	CSW	2
2628600036       T3-4HT       EPA 6020B       CSW       2         EPA 6020B       CSW       2         2628600037       T3-3HTS       EPA 6020B       CSW       2	2628600035	T3-4HTS	EPA 6020B	CSW	2
EPA 6020B CSW 2 2628600037 T3-3HTS EPA 6020B CSW 2			EPA 6020B	CSW	2
<b>2628600037 T3-3HTS</b> EPA 6020B CSW 2	2628600036	T3-4HT	EPA 6020B	CSW	2
			EPA 6020B	CSW	2
EPA 6020B CSW 2	2628600037	T3-3HTS	EPA 6020B	CSW	2
			EPA 6020B	CSW	2

### **REPORT OF LABORATORY ANALYSIS**



Project: Plant McManus SW

Pace Project No.: 2628600

Lab ID	Sample ID	Method	Analysts	Analytes Reported
2628600038	Т3-3НТ	EPA 6020B	CSW	2
		EPA 6020B	CSW	2
2628600039	T3-2HTS	EPA 6020B	CSW	2
		EPA 6020B	CSW	2
2628600040	T3-2HT	EPA 6020B	CSW	2
		EPA 6020B	CSW	2
2628600041	T3-1HT	EPA 6020B	CSW	2
		EPA 6020B	CSW	2
2628600042	T3-4LT	EPA 6020B	CSW	2
		EPA 6020B	CSW	2
2628600043	T3-3LT	EPA 6020B	CSW	2
		EPA 6020B	CSW	2
2628600044	T3-2LT	EPA 6020B	CSW	2
		EPA 6020B	CSW	2



Project: Plant McManus SW

Pace Project No.: 2628600

_ab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
628600001	MCM-07LT ASHPOND					
EPA 6020B	Lithium	0.022J	mg/L	0.30	02/06/20 19:16	D3
EPA 6020B	Arsenic, Dissolved	0.0061J	mg/L	0.050	02/12/20 19:51	D3
PA 6020B	Lithium, Dissolved	0.022J	mg/L	0.30	02/12/20 19:51	D3
628600002	MCM-07LT					
EPA 6020B	Arsenic	0.022J	mg/L	0.050	02/06/20 19:39	D3
EPA 6020B	Lithium	0.053J	mg/L	0.30	02/06/20 19:39	D3
PA 6020B	Arsenic, Dissolved	0.022J	mg/L	0.050	02/12/20 19:57	D3
PA 6020B	Lithium, Dissolved	0.055J	mg/L	0.30	02/12/20 19:57	D3
628600003	MCM-06HT ASHPOND					
PA 6020B	Arsenic	0.0045J	mg/L	0.050	02/06/20 19:44	D3
PA 6020B	Lithium	0.023J	mg/L	0.30	02/06/20 19:44	D3
PA 6020B	Arsenic, Dissolved	0.0040J	mg/L	0.050	02/12/20 20:03	D3
PA 6020B	Lithium, Dissolved	0.023J	mg/L	0.30	02/12/20 20:03	D3
628600004	MCM-06HT					
PA 6020B	Arsenic	0.46	mg/L	0.050	02/06/20 19:50	
PA 6020B	Lithium	0.11J	mg/L	0.30	02/06/20 19:50	D3
PA 6020B	Arsenic, Dissolved	0.25	mg/L	0.050	02/12/20 20:08	
PA 6020B	Lithium, Dissolved	0.11J	mg/L	0.30	02/12/20 20:08	D3
28600005	MCM-07HT ASHPOND					
PA 6020B	Lithium	0.020J	mg/L	0.30	02/06/20 20:07	D3
PA 6020B	Lithium, Dissolved	0.020J	mg/L	0.30	02/12/20 20:26	D3
328600006	MCM-07HT					
PA 6020B	Arsenic	0.022J	mg/L	0.050	02/06/20 20:13	D3
PA 6020B	Lithium	0.050J	mg/L	0.30	02/06/20 20:13	D3
PA 6020B	Arsenic, Dissolved	0.023J	mg/L	0.050	02/12/20 20:31	D3
PA 6020B	Lithium, Dissolved	0.048J	mg/L	0.30	02/12/20 20:31	D3
28600007	MCM-06LT ASHPOND					
PA 6020B	Arsenic	0.0047J	mg/L	0.050	02/06/20 20:19	D3
PA 6020B	Lithium	0.022J	mg/L	0.30	02/06/20 20:19	D3
PA 6020B	Lithium, Dissolved	0.021J	mg/L	0.30	02/12/20 20:37	D3
328600008	MCM-06LT					
PA 6020B	Arsenic	0.50	mg/L	0.050	02/06/20 20:24	
PA 6020B	Lithium	0.10J	mg/L		02/06/20 20:24	D3
PA 6020B	Arsenic, Dissolved	0.50	mg/L		02/12/20 20:43	
PA 6020B	Lithium, Dissolved	0.099J	mg/L	0.30	02/12/20 20:43	D3
328600009	MCM-05HT ASHPOND					
PA 6020B	Lithium	0.022J	mg/L	0.30	02/06/20 20:30	D3
PA 6020B	Arsenic, Dissolved	0.0051J	mg/L		02/12/20 20:48	D3
PA 6020B	Lithium, Dissolved	0.021J	mg/L		02/12/20 20:48	D3
628600010	MCM-05HT					
PA 6020B	Lithium	0.022J	mg/L	0.30	02/06/20 20:36	D3
PA 6020B	Arsenic, Dissolved	0.0039J	mg/L		02/12/20 09:55	

### **REPORT OF LABORATORY ANALYSIS**



Project: Plant McManus SW

Pace Project No.: 2628600

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
628600010	MCM-05HT					
EPA 6020B	Lithium, Dissolved	0.023J	mg/L	0.30	02/12/20 09:55	D3
628600011	MCM-05LT ASHPOND					
EPA 6020B	Lithium	0.022J	mg/L	0.30	02/06/20 20:42	D3
EPA 6020B	Arsenic, Dissolved	0.0051J	mg/L	0.050	02/12/20 10:01	B,D3
EPA 6020B	Lithium, Dissolved	0.022J	mg/L	0.30	02/12/20 10:01	D3
628600012	MCM-05LT					
EPA 6020B	Lithium	0.022J	mg/L	0.30	02/06/20 20:47	D3
EPA 6020B	Arsenic, Dissolved	0.0041J	mg/L	0.050	02/12/20 10:24	B,D3
PA 6020B	Lithium, Dissolved	0.023J	mg/L	0.30	02/12/20 10:24	D3
628600013	DUP-1					
PA 6020B	Arsenic	0.0054J	mg/L	0.050	02/06/20 20:53	D3
PA 6020B	Lithium	0.082J	mg/L	0.30	02/06/20 20:53	D3
PA 6020B	Arsenic, Dissolved	0.0078J	mg/L	0.050	02/12/20 10:30	B,D3
EPA 6020B	Lithium, Dissolved	0.081J	mg/L	0.30	02/12/20 10:30	D3
628600014	T2-1HT					
EPA 6020B	Lithium	0.055J	mg/L	0.30	02/06/20 12:02	D3
EPA 6020B	Lithium, Dissolved	0.060J	mg/L	0.30	02/13/20 14:15	D3
628600015	T2-2HTS					
PA 6020B	Lithium	0.071J	mg/L	0.30	02/06/20 12:07	D3
EPA 6020B	Lithium, Dissolved	0.065J	mg/L	0.30	02/13/20 14:20	D3
628600016	T2-2HT					
EPA 6020B	Lithium	0.10J	mg/L	0.30	02/06/20 12:13	D3
PA 6020B	Lithium, Dissolved	0.093J	mg/L	0.30	02/13/20 14:26	D3
628600017	T2-3HTS					
EPA 6020B	Lithium	0.10J	mg/L	0.30	02/06/20 12:19	D3
PA 6020B	Lithium, Dissolved	0.10J	mg/L	0.30	02/13/20 14:49	D3
628600018	T2-3HT					
EPA 6020B	Lithium	0.10J	mg/L	0.30	02/06/20 12:24	D3
EPA 6020B	Lithium, Dissolved	0.11J	mg/L	0.30	02/13/20 14:55	D3
628600019	T2-4HTS					
EPA 6020B	Lithium	0.10J	mg/L	0.30	02/06/20 12:30	D3
EPA 6020B	Lithium, Dissolved	0.10J	mg/L		02/13/20 15:35	
628600020	T2-4HT		ž			
EPA 6020B	Lithium	0.10J	mg/L	0.30	02/06/20 12:36	D3
EPA 6020B	Lithium, Dissolved	0.10J	mg/L		02/13/20 15:43	
628600021	T2-4LT		J.			
EPA 6020B	Lithium	0.085J	mg/L	0.30	02/06/20 12:42	D3
PA 6020B	Lithium, Dissolved	0.086J	mg/L		02/06/20 12:42	
		2.223	···g/ =	3.30		
528600022	T2-3LT	0.040 !	a: B	0.00	00/00/00 40 47	Do
PA 6020B	Lithium	0.046J	mg/L	0.30	02/06/20 12:47	D3

### **REPORT OF LABORATORY ANALYSIS**



Project: Plant McManus SW

Pace Project No.: 2628600

Lab Sample ID  Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
EPA 6020B	Lithium, Dissolved	0.049J	mg/L	0.30	02/13/20 15:54	D3
2628600023	T2-2LT					
EPA 6020B	Lithium	0.066J	mg/L		02/06/20 12:53	D3
EPA 6020B	Lithium, Dissolved	0.063J	mg/L	0.30	02/13/20 16:29	D3
2628600024	T1-1LT					
EPA 6020B	Lithium Dissahund	0.027J	mg/L		02/05/20 18:26 02/13/20 16:35	Do
EPA 6020B	Lithium, Dissolved	0.025J	mg/L	0.30	02/13/20 16:35	D3
2628600025	T1-4LT		_			
EPA 6020B EPA 6020B	Lithium Dissolved	0.095J 0.099J	mg/L	0.30	02/05/20 18:49 02/13/20 16:41	D3
	Lithium, Dissolved	0.099J	mg/L	0.30	02/13/20 10.41	טט
2628600026	T1-3LT			_	00/07/07	
EPA 6020B EPA 6020B	Lithium Dissolved	0.023J 0.025J	mg/L	0.30 0.30		D3
	Lithium, Dissolved	0.025J	mg/L	0.30	02/13/20 16:47	DЗ
2628600027	T1-2LT		_			
EPA 6020B	Lithium Dissahund	0.029J	mg/L		02/05/20 19:00	Do
EPA 6020B	Lithium, Dissolved	0.031J	mg/L	0.30	02/13/20 16:52	D3
2628600028	T1-4HTS					
EPA 6020B EPA 6020B	Lithium Lithium, Dissolved	0.092J 0.10J	mg/L mg/L		02/05/20 19:06 02/13/20 16:58	D3
		0.103	IIIg/L	0.30	02/13/20 10.38	DS
2628600029	T1-4HT					
EPA 6020B EPA 6020B	Lithium Lithium, Dissolved	0.099J 0.10J	mg/L mg/L		02/05/20 19:23 02/13/20 17:15	D3
		0.103	mg/L	0.30	02/13/20 17.13	D3
2628600030	T1-3HTS					
EPA 6020B EPA 6020B	Lithium Lithium, Dissolved	0.069J 0.091J	mg/L mg/L	0.30	02/05/20 19:29 02/13/20 17:21	D3
		0.0310	mg/L	0.50	02/10/20 17:21	D0
2628600031	T1-3HT	0.0001		0.00	00/05/00 40 05	
EPA 6020B EPA 6020B	Lithium Lithium, Dissolved	0.096J 0.11J	mg/L mg/L	0.30 0.30		D3
		0.110	mg/L	0.50	02/13/20 17.27	D0
2628600032	T1-1HT	0.0001		0.00	00/05/00 40 44	
EPA 6020B EPA 6020B	Lithium Lithium, Dissolved	0.039J 0.049J	mg/L mg/L		02/05/20 19:41 02/13/20 17:32	D3
	,	0.0100	9/ _	0.00	02,10,20 11.02	50
2628600033	T1-2HTS	0.0661		0.20	02/05/20 40:46	
EPA 6020B EPA 6020B	Lithium Lithium, Dissolved	0.066J 0.070J	mg/L mg/L		02/05/20 19:46 02/13/20 17:38	D3
		0.0700	g/ <u>_</u>	0.50	52, 13,20 17.00	20
2628600034	T1-2HT	0.40 !	m e /l	0.00	00/05/00 40:50	
EPA 6020B EPA 6020B	Lithium Lithium, Dissolved	0.10J 0.098J	mg/L mg/L		02/05/20 19:52 02/12/20 18:20	D3
		0.0000	g/ <u>_</u>	0.50	52, 12,20 10.20	20
2628600035	T3-4HTS	0.40 !	m e /l	0.00	00/05/00 40:50	
EPA 6020B	Lithium	0.10J	mg/L	0.30	02/05/20 19:58	

### **REPORT OF LABORATORY ANALYSIS**



# **SUMMARY OF DETECTION**

Project: Plant McManus SW

Pace Project No.: 2628600

Lab Sample ID Method	Client Sample ID  Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2628600035	T3-4HTS					
EPA 6020B	Lithium, Dissolved	0.097J	mg/L	0.30	02/12/20 18:25	D3
2628600036	T3-4HT		J			
EPA 6020B	Lithium	0.097J	mg/L	0.30	02/05/20 20:03	
EPA 6020B	Lithium, Dissolved	0.094J	mg/L	0.30		D3
628600037	T3-3HTS					
EPA 6020B	Lithium	0.087J	mg/L	0.30	02/05/20 20:09	
PA 6020B	Lithium, Dissolved	0.087J	mg/L	0.30	02/12/20 18:54	D3
628600038	Т3-3НТ					
EPA 6020B	Lithium	0.095J	mg/L	0.30	02/05/20 20:15	
EPA 6020B	Lithium, Dissolved	0.095J	mg/L	0.30	02/12/20 19:00	D3
628600039	T3-2HTS					
EPA 6020B	Lithium	0.081J	mg/L	0.30	02/05/20 20:32	
EPA 6020B	Lithium, Dissolved	0.077J	mg/L	0.30	02/12/20 19:17	D3
628600040	T3-2HT					
EPA 6020B	Lithium	0.097J	mg/L	0.30	02/05/20 20:38	
EPA 6020B	Lithium, Dissolved	0.093J	mg/L	0.30	02/12/20 19:23	D3
628600041	T3-1HT					
EPA 6020B	Lithium	0.086J	mg/L		02/05/20 20:44	
EPA 6020B	Lithium, Dissolved	0.084J	mg/L	0.30	02/12/20 19:28	D3
628600042	T3-4LT					
EPA 6020B	Lithium	0.076J	mg/L	0.30	02/05/20 20:49	
EPA 6020B	Lithium, Dissolved	0.077J	mg/L	0.30	02/12/20 19:34	D3
628600043	T3-3LT					
EPA 6020B	Lithium	0.081J	mg/L	0.30		
EPA 6020B	Lithium, Dissolved	0.078J	mg/L	0.30	02/12/20 19:40	D3
628600044	T3-2LT					
EPA 6020B	Lithium	0.083J	mg/L	0.30	02/06/20 19:10	D3
EPA 6020B	Lithium, Dissolved	0.087J	mg/L	0.30	02/12/20 19:45	D3

# **REPORT OF LABORATORY ANALYSIS**



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: MCM-07LT ASHPOND	Lab ID:	2628600001	Collecte	d: 02/01/20	09:40	Received: 02/	Received: 02/04/20 08:00 Matrix: Water		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical I	Method: EPA	6020B Prep	aration Met	hod: El	PA 3005A			
Arsenic	ND	mg/L	0.050	0.0035	10	02/06/20 13:10	02/06/20 19:16	7440-38-2	D3
Cobalt	ND	mg/L	0.050	0.0030	10	02/06/20 13:10	02/06/20 19:16	7440-48-4	D3
Lithium	0.022J	mg/L	0.30	0.0078	10	02/06/20 13:10	02/06/20 19:16	7439-93-2	D3
6020B MET ICPMS, Lab Filtered	Analytical I	Method: EPA	6020B Prep	aration Met	hod: El	PA 3005A			
Arsenic, Dissolved	0.0061J	mg/L	0.050	0.0035	10	02/11/20 15:11	02/12/20 19:51	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/12/20 19:51	7440-48-4	D3
Lithium, Dissolved	0.022J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/12/20 19:51	7439-93-2	D3



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: MCM-07LT	Lab ID:	2628600002	Collecte	d: 02/01/20	10:15	Received: 02/	Received: 02/04/20 08:00 Matrix: Water		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Prep	aration Met	hod: El	PA 3005A			
Arsenic	0.022J	mg/L	0.050	0.0035	10	02/06/20 13:10	02/06/20 19:39	7440-38-2	D3
Cobalt	ND	mg/L	0.050	0.0030	10	02/06/20 13:10	02/06/20 19:39	7440-48-4	D3
Lithium	0.053J	mg/L	0.30	0.0078	10	02/06/20 13:10	02/06/20 19:39	7439-93-2	D3
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA 6	6020B Prep	aration Met	hod: El	PA 3005A			
Arsenic, Dissolved	0.022J	mg/L	0.050	0.0035	10	02/11/20 15:11	02/12/20 19:57	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/12/20 19:57	7440-48-4	D3
Lithium, Dissolved	0.055J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/12/20 19:57	7439-93-2	D3



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: MCM-06HT ASHPOND	Lab ID:	2628600003	Collecte	d: 02/01/20	13:55	Received: 02/	Received: 02/04/20 08:00 Matrix: Water		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Prep	aration Met	hod: El	PA 3005A			
Arsenic	0.0045J	mg/L	0.050	0.0035	10	02/06/20 13:10	02/06/20 19:44	7440-38-2	D3
Cobalt	ND	mg/L	0.050	0.0030	10	02/06/20 13:10	02/06/20 19:44	7440-48-4	D3
Lithium	0.023J	mg/L	0.30	0.0078	10	02/06/20 13:10	02/06/20 19:44	7439-93-2	D3
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA 6	6020B Prep	aration Met	hod: El	PA 3005A			
Arsenic, Dissolved	0.0040J	mg/L	0.050	0.0035	10	02/11/20 15:11	02/12/20 20:03	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/12/20 20:03	7440-48-4	D3
Lithium, Dissolved	0.023J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/12/20 20:03	7439-93-2	D3



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: MCM-06HT	Lab ID:	2628600004	Collecte	d: 02/01/20	13:55	Received: 02/	Received: 02/04/20 08:00 Matrix: Water		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Prep	aration Met	hod: El	PA 3005A			
Arsenic	0.46	mg/L	0.050	0.0035	10	02/06/20 13:10	02/06/20 19:50	7440-38-2	
Cobalt	ND	mg/L	0.050	0.0030	10	02/06/20 13:10	02/06/20 19:50	7440-48-4	D3
Lithium	0.11J	mg/L	0.30	0.0078	10	02/06/20 13:10	02/06/20 19:50	7439-93-2	D3
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA 6	6020B Prep	aration Met	hod: El	PA 3005A			
Arsenic, Dissolved	0.25	mg/L	0.050	0.0035	10	02/11/20 15:11	02/12/20 20:08	7440-38-2	
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/12/20 20:08	7440-48-4	D3
Lithium, Dissolved	0.11J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/12/20 20:08	7439-93-2	D3



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: MCM-07HT ASHPOND	Lab ID:	2628600005	Collecte	d: 02/01/20	14:20	Received: 02/	Received: 02/04/20 08:00 Matrix: Water		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: E	PA 3005A			
Arsenic	ND	mg/L	0.050	0.0035	10	02/06/20 13:10	02/06/20 20:07	7440-38-2	D3
Cobalt	ND	mg/L	0.050	0.0030	10	02/06/20 13:10	02/06/20 20:07	7440-48-4	D3
Lithium	0.020J	mg/L	0.30	0.0078	10	02/06/20 13:10	02/06/20 20:07	7439-93-2	D3
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: El	PA 3005A			
Arsenic, Dissolved	ND	mg/L	0.050	0.0035	10	02/11/20 15:11	02/12/20 20:26	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/12/20 20:26	7440-48-4	D3
Lithium, Dissolved	0.020J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/12/20 20:26	7439-93-2	D3



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: MCM-07HT	Lab ID:	2628600006	Collecte	d: 02/01/20	14:20	Received: 02/	04/20 08:00 Ma	atrix: Water	
			Report					0.10.11	
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Prep	aration Met	hod: E	PA 3005A			
Arsenic	0.022J	mg/L	0.050	0.0035	10	02/06/20 13:10	02/06/20 20:13	7440-38-2	D3
Cobalt	ND	mg/L	0.050	0.0030	10	02/06/20 13:10	02/06/20 20:13	7440-48-4	D3
Lithium	0.050J	mg/L	0.30	0.0078	10	02/06/20 13:10	02/06/20 20:13	7439-93-2	D3
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA 6	6020B Prep	aration Met	hod: E	PA 3005A			
Arsenic, Dissolved	0.023J	mg/L	0.050	0.0035	10	02/11/20 15:11	02/12/20 20:31	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/12/20 20:31	7440-48-4	D3
Lithium, Dissolved	0.048J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/12/20 20:31	7439-93-2	D3



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: MCM-06LT ASHPOND	Lab ID:	2628600007	Collecte	d: 02/02/20	08:50	Received: 02/	Received: 02/04/20 08:00 Mar		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
	——————————————————————————————————————	———— ·			DI	- Frepareu	- Allalyzeu	CAS NO.	– Quai
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Prep	aration Met	hod: El	PA 3005A			
Arsenic	0.0047J	mg/L	0.050	0.0035	10	02/06/20 13:10	02/06/20 20:19	7440-38-2	D3
Cobalt	ND	mg/L	0.050	0.0030	10	02/06/20 13:10	02/06/20 20:19	7440-48-4	D3
Lithium	0.022J	mg/L	0.30	0.0078	10	02/06/20 13:10	02/06/20 20:19	7439-93-2	D3
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA 6	6020B Prep	aration Met	hod: El	PA 3005A			
Arsenic, Dissolved	ND	mg/L	0.050	0.0035	10	02/11/20 15:11	02/12/20 20:37	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/12/20 20:37	7440-48-4	D3
Lithium, Dissolved	0.021J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/12/20 20:37	7439-93-2	D3



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: MCM-06LT	Lab ID:	2628600008	Collecte	d: 02/02/20	09:00	Received: 02/	/04/20 08:00 Ma	atrix: Water		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: Ef	PA 3005A				
Arsenic	0.50	mg/L	0.050	0.0035	10	02/06/20 13:10	02/06/20 20:24	7440-38-2		
Cobalt	ND	mg/L	0.050	0.0030	10	02/06/20 13:10	02/06/20 20:24	7440-48-4	D3	
Lithium	0.10J	mg/L	0.30	0.0078	10	02/06/20 13:10	02/06/20 20:24	7439-93-2	D3	
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: Ef	PA 3005A				
Arsenic, Dissolved	0.50	mg/L	0.050	0.0035	10	02/11/20 15:11	02/12/20 20:43	7440-38-2		
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/12/20 20:43	7440-48-4	D3	
Lithium, Dissolved	0.099J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/12/20 20:43	7439-93-2	D3	



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: MCM-05HT ASHPOND	Lab ID:	2628600009	Collecte	d: 02/02/20	14:30	Received: 02/	Received: 02/04/20 08:00 Matrix: Water		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Prep	aration Met	hod: El	PA 3005A			
Arsenic	ND	mg/L	0.050	0.0035	10	02/06/20 13:10	02/06/20 20:30	7440-38-2	D3
Cobalt	ND	mg/L	0.050	0.0030	10	02/06/20 13:10	02/06/20 20:30	7440-48-4	D3
Lithium	0.022J	mg/L	0.30	0.0078	10	02/06/20 13:10	02/06/20 20:30	7439-93-2	D3
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA 6	6020B Prep	aration Met	hod: El	PA 3005A			
Arsenic, Dissolved	0.0051J	mg/L	0.050	0.0035	10	02/11/20 15:11	02/12/20 20:48	7440-38-2	D3
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/12/20 20:48	7440-48-4	D3
Lithium, Dissolved	0.021J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/12/20 20:48	7439-93-2	D3



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: MCM-05HT	Lab ID:	2628600010	Collecte	d: 02/02/20	14:46	Received: 02/	/04/20 08:00 Ma	atrix: Water		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Prep	aration Met	hod: El	PA 3005A				
Arsenic	ND	mg/L	0.050	0.0035	10	02/06/20 13:10	02/06/20 20:36	7440-38-2	D3	
Cobalt	ND	mg/L	0.050	0.0030	10	02/06/20 13:10	02/06/20 20:36	7440-48-4	D3	
Lithium	0.022J	mg/L	0.30	0.0078	10	02/06/20 13:10	02/06/20 20:36	7439-93-2	D3	
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA 6	6020B Prep	aration Met	hod: El	PA 3005A				
Arsenic, Dissolved	0.0039J	mg/L	0.050	0.0035	10	02/11/20 12:56	02/12/20 09:55	7440-38-2	B,D3	
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 12:56	02/12/20 09:55	7440-48-4	D3	
Lithium, Dissolved	0.023J	mg/L	0.30	0.0078	10	02/11/20 12:56	02/12/20 09:55	7439-93-2	D3	



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: MCM-05LT ASHPOND	Lab ID:	2628600011	Collecte	d: 02/03/20	09:45	Received: 02/	Received: 02/04/20 08:00 Matrix: Water		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: El	PA 3005A			
Arsenic	ND	mg/L	0.050	0.0035	10	02/06/20 13:10	02/06/20 20:42	7440-38-2	D3
Cobalt	ND	mg/L	0.050	0.0030	10	02/06/20 13:10	02/06/20 20:42	7440-48-4	D3
Lithium	0.022J	mg/L	0.30	0.0078	10	02/06/20 13:10	02/06/20 20:42	7439-93-2	D3
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: El	PA 3005A			
Arsenic, Dissolved	0.0051J	mg/L	0.050	0.0035	10	02/11/20 12:56	02/12/20 10:01	7440-38-2	B,D3
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 12:56	02/12/20 10:01	7440-48-4	D3
Lithium, Dissolved	0.022J	mg/L	0.30	0.0078	10	02/11/20 12:56	02/12/20 10:01	7439-93-2	D3



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: MCM-05LT	Lab ID:	2628600012	Collecte	d: 02/03/20	09:47	Received: 02/	04/20 08:00 Ma	atrix: Water		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
6020B MET ICPMS	Analytical	Method: EPA 6	6020B Prep	aration Met	hod: El	PA 3005A				
Arsenic	ND	mg/L	0.050	0.0035	10	02/06/20 13:10	02/06/20 20:47	7440-38-2	D3	
Cobalt	ND	mg/L	0.050	0.0030	10	02/06/20 13:10	02/06/20 20:47	7440-48-4	D3	
Lithium	0.022J	mg/L	0.30	0.0078	10	02/06/20 13:10	02/06/20 20:47	7439-93-2	D3	
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA 6	6020B Prep	aration Met	hod: El	PA 3005A				
Arsenic, Dissolved	0.0041J	mg/L	0.050	0.0035	10	02/11/20 12:56	02/12/20 10:24	7440-38-2	B,D3	
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 12:56	02/12/20 10:24	7440-48-4	D3	
Lithium, Dissolved	0.023J	mg/L	0.30	0.0078	10	02/11/20 12:56	02/12/20 10:24	7439-93-2	D3	



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: DUP-1	Lab ID:	2628600013	Collecte	Collected: 02/03/20 00:00			Received: 02/04/20 08:00 Matrix: Water		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: El	PA 3005A			
Arsenic	0.0054J	mg/L	0.050	0.0035	10	02/06/20 13:10	02/06/20 20:53	7440-38-2	D3
Cobalt	ND	mg/L	0.050	0.0030	10	02/06/20 13:10	02/06/20 20:53	7440-48-4	D3
Lithium	0.082J	mg/L	0.30	0.0078	10	02/06/20 13:10	02/06/20 20:53	7439-93-2	D3
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: El	PA 3005A			
Arsenic, Dissolved	0.0078J	mg/L	0.050	0.0035	10	02/11/20 12:56	02/12/20 10:30	7440-38-2	B,D3
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 12:56	02/12/20 10:30	7440-48-4	D3
Lithium, Dissolved	0.081J	mg/L	0.30	0.0078	10	02/11/20 12:56	02/12/20 10:30	7439-93-2	D3



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T2-1HT	Lab ID:	2628600014	Collecte	d: 02/01/20	13:55	Received: 02/04/20 08:00 Matrix: Water			
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: El	PA 3005A			
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 09:25	02/06/20 12:02	7440-48-4	D3
Lithium	0.055J	mg/L	0.30	0.0078	10	02/04/20 09:25	02/06/20 12:02	7439-93-2	D3
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: El	PA 3005A			
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/13/20 14:15	7440-48-4	D3
Lithium, Dissolved	0.060J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/13/20 14:15	7439-93-2	D3



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T2-2HTS	Lab ID:	2628600015	Collecte	d: 02/01/20	14:28	Received: 02/04/20 08:00 Matrix: Water			
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: Ef	 PA 3005A			
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 09:25	02/06/20 12:07	7440-48-4	D3
Lithium	0.071J	mg/L	0.30	0.0078	10	02/04/20 09:25	02/06/20 12:07	7439-93-2	D3
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: Ef	PA 3005A			
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/13/20 14:20	7440-48-4	D3
Lithium, Dissolved	0.065J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/13/20 14:20	7439-93-2	D3



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T2-2HT	Lab ID:	2628600016	Collecte	d: 02/01/20	14:32	Received: 02/04/20 08:00 Matrix: Water			
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: El	PA 3005A			
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 09:25	02/06/20 12:13	7440-48-4	D3
Lithium	0.10J	mg/L	0.30	0.0078	10	02/04/20 09:25	02/06/20 12:13	7439-93-2	D3
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: El	PA 3005A			
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/13/20 14:26	7440-48-4	D3
Lithium, Dissolved	0.093J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/13/20 14:26	7439-93-2	D3



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T2-3HTS	Lab ID:	2628600017	Collecte	d: 02/01/20	14:46	Received: 02/04/20 08:00 Matrix: Water			
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: Ef	PA 3005A			
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 09:25	02/06/20 12:19	7440-48-4	D3
Lithium	0.10J	mg/L	0.30	0.0078	10	02/04/20 09:25	02/06/20 12:19	7439-93-2	D3
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: Ef	PA 3005A			
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/13/20 14:49	7440-48-4	D3
Lithium, Dissolved	0.10J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/13/20 14:49	7439-93-2	D3



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T2-3HT	Lab ID:	2628600018	Collecte	d: 02/01/20	14:50	Received: 02/			
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: EF	PA 3005A			
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 09:25	02/06/20 12:24	7440-48-4	D3
Lithium	0.10J	mg/L	0.30	0.0078	10	02/04/20 09:25	02/06/20 12:24	7439-93-2	D3
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: EF	PA 3005A			
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/13/20 14:55	7440-48-4	D3
Lithium, Dissolved	0.11J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/13/20 14:55	7439-93-2	D3



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T2-4HTS	Lab ID:	2628600019	Collecte	d: 02/01/20	15:00	Received: 02/04/20 08:00 Matrix: Water			
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
	——————————————————————————————————————				ы	- ————	- Allalyzeu	CAS NO.	- Quai
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: EF	PA 3005A			
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 09:25	02/06/20 12:30	7440-48-4	D3
Lithium	0.10J	mg/L	0.30	0.0078	10	02/04/20 09:25	02/06/20 12:30	7439-93-2	D3
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: EF	PA 3005A			
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/13/20 15:35	7440-48-4	D3
Lithium, Dissolved	0.10J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/13/20 15:35	7439-93-2	D3



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T2-4HT	Lab ID:	2628600020	Collecte	d: 02/01/20	15:14	Received: 02/04/20 08:00 Matrix: Water			
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: EF	PA 3005A			
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 09:25	02/06/20 12:36	7440-48-4	D3
Lithium	0.10J	mg/L	0.30	0.0078	10	02/04/20 09:25	02/06/20 12:36	7439-93-2	D3
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: EF	PA 3005A			
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/13/20 15:43	7440-48-4	D3
Lithium, Dissolved	0.11J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/13/20 15:43	7439-93-2	D3



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T2-4LT	Lab ID:	2628600021	Collecte	d: 02/02/20	09:46	Received: 02/04/20 08:00 Matrix: Water			
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: Ef	PA 3005A			
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 09:25	02/06/20 12:42	7440-48-4	D3
Lithium	0.085J	mg/L	0.30	0.0078	10	02/04/20 09:25	02/06/20 12:42	7439-93-2	D3
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: Ef	PA 3005A			
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/13/20 15:49	7440-48-4	D3
Lithium, Dissolved	0.086J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/13/20 15:49	7439-93-2	D3



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T2-3LT	Lab ID:	2628600022	Collecte	d: 02/02/20	11:20	Received: 02/04/20 08:00 Matrix: Water			
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: El	PA 3005A			
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 09:25	02/06/20 12:47	7440-48-4	D3
Lithium	0.046J	mg/L	0.30	0.0078	10	02/04/20 09:25	02/06/20 12:47	7439-93-2	D3
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: El	PA 3005A			
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/13/20 15:54	7440-48-4	D3
Lithium, Dissolved	0.049J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/13/20 15:54	7439-93-2	D3



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T2-2LT	Lab ID:	2628600023	Collecte	d: 02/02/20	11:38	Received: 02/04/20 08:00 Matrix: Water			
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: Ef	PA 3005A			
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 09:25	02/06/20 12:53	7440-48-4	D3
Lithium	0.066J	mg/L	0.30	0.0078	10	02/04/20 09:25	02/06/20 12:53	7439-93-2	D3
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: Ef	PA 3005A			
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/13/20 16:29	7440-48-4	D3
Lithium, Dissolved	0.063J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/13/20 16:29	7439-93-2	D3



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T1-1LT	Lab ID:	2628600024	Collecte	d: 02/01/20	09:50	Received: 02/04/20 08:00 Matrix: Water			
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: EF	PA 3005A			
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 21:50	02/05/20 18:26	7440-48-4	
Lithium	0.027J	mg/L	0.30	0.0078	10	02/04/20 21:50	02/05/20 18:26	7439-93-2	
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: EF	PA 3005A			
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/13/20 16:35	7440-48-4	D3
Lithium, Dissolved	0.025J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/13/20 16:35	7439-93-2	D3



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T1-4LT	Lab ID:	2628600025	Collecte	d: 02/01/20	09:56	Received: 02/04/20 08:00 Matrix: Water						
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual			
6020B MET ICPMS	Analytical	Analytical Method: EPA 6020B Preparation Method: EPA 3005A										
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 21:50	02/05/20 18:49	7440-48-4				
Lithium	0.095J	mg/L	0.30	0.0078	10	02/04/20 21:50	02/05/20 18:49	7439-93-2				
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: Ef	PA 3005A						
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/13/20 16:41	7440-48-4	D3			
Lithium, Dissolved	0.099J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/13/20 16:41	7439-93-2	D3			



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T1-3LT	Lab ID:	2628600026	Collecte	d: 02/01/20	10:06	Received: 02/04/20 08:00 Matrix: Water			
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: Ef	PA 3005A			
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 21:50	02/05/20 18:55	7440-48-4	
Lithium	0.023J	mg/L	0.30	0.0078	10	02/04/20 21:50	02/05/20 18:55	7439-93-2	
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: Ef	PA 3005A			
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/13/20 16:47	7440-48-4	D3
Lithium, Dissolved	0.025J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/13/20 16:47	7439-93-2	D3



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T1-2LT	Lab ID:	2628600027	Collecte	d: 02/01/20	10:16	Received: 02/04/20 08:00 Matrix: Water			
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: Ef	PA 3005A			
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 21:50	02/05/20 19:00	7440-48-4	
Lithium	0.029J	mg/L	0.30	0.0078	10	02/04/20 21:50	02/05/20 19:00	7439-93-2	
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: Ef	PA 3005A			
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/13/20 16:52	7440-48-4	D3
Lithium, Dissolved	0.031J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/13/20 16:52	7439-93-2	D3



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T1-4HTS	Lab ID:	2628600028	Collecte	d: 02/01/20	13:34	Received: 02/04/20 08:00 Matrix: Water			
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: Ef	PA 3005A			
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 21:50	02/05/20 19:06	7440-48-4	
Lithium	0.092J	mg/L	0.30	0.0078	10	02/04/20 21:50	02/05/20 19:06	7439-93-2	
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: Ef	PA 3005A			
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/13/20 16:58	7440-48-4	D3
Lithium, Dissolved	0.10J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/13/20 16:58	7439-93-2	D3



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T1-4HT	Lab ID:	2628600029	Collecte	d: 02/01/20	13:40	Received: 02/	Received: 02/04/20 08:00 Matrix: Water			
			Report							
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: EF	PA 3005A				
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 21:50	02/05/20 19:23	7440-48-4		
Lithium	0.099J	mg/L	0.30	0.0078	10	02/04/20 21:50	02/05/20 19:23	7439-93-2		
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: EF	PA 3005A				
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/13/20 17:15	7440-48-4	D3	
Lithium, Dissolved	0.10J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/13/20 17:15	7439-93-2	D3	



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T1-3HTS	Lab ID:	2628600030	Collecte	d: 02/01/20	13:52	Received: 02/04/20 08:00 Matrix: Water			
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: EF	PA 3005A			
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 21:50	02/05/20 19:29	7440-48-4	
Lithium	0.069J	mg/L	0.30	0.0078	10	02/04/20 21:50	02/05/20 19:29	7439-93-2	
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: EF	PA 3005A			
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/13/20 17:21	7440-48-4	D3
Lithium, Dissolved	0.091J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/13/20 17:21	7439-93-2	D3



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T1-3HT	Lab ID:	2628600031	Collecte	d: 02/01/20	13:56	Received: 02/04/20 08:00 Matrix: Water			
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: Ef	PA 3005A			
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 21:50	02/05/20 19:35	7440-48-4	
Lithium	0.096J	mg/L	0.30	0.0078	10	02/04/20 21:50	02/05/20 19:35	7439-93-2	
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: Ef	PA 3005A			
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/13/20 17:27	7440-48-4	D3
Lithium, Dissolved	0.11J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/13/20 17:27	7439-93-2	D3



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T1-1HT	Lab ID:	2628600032	Collecte	d: 02/01/20	14:08	Received: 02/	Received: 02/04/20 08:00 Matrix: Water			
			Report							
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: EF	PA 3005A				
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 21:50	02/05/20 19:41	7440-48-4		
Lithium	0.039J	mg/L	0.30	0.0078	10	02/04/20 21:50	02/05/20 19:41	7439-93-2		
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: EF	PA 3005A				
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/13/20 17:32	7440-48-4	D3	
Lithium, Dissolved	0.049J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/13/20 17:32	7439-93-2	D3	



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T1-2HTS	Lab ID:	2628600033	Collecte	Collected: 02/01/20 14:16			Received: 02/04/20 08:00 Matrix: Water		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: EF	PA 3005A			
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 21:50	02/05/20 19:46	7440-48-4	
Lithium	0.066J	mg/L	0.30	0.0078	10	02/04/20 21:50	02/05/20 19:46	7439-93-2	
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: EF	PA 3005A			
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/13/20 17:38	7440-48-4	D3
Lithium, Dissolved	0.070J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/13/20 17:38	7439-93-2	D3



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T1-2HT	Lab ID:	2628600034	Collecte	d: 02/01/20	14:20	Received: 02/	Received: 02/04/20 08:00 Matrix: Water			
			Report							
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: EF	PA 3005A				
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 21:50	02/05/20 19:52	7440-48-4		
Lithium	0.10J	mg/L	0.30	0.0078	10	02/04/20 21:50	02/05/20 19:52	7439-93-2		
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: EF	PA 3005A				
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/12/20 18:20	7440-48-4	D3	
Lithium, Dissolved	0.098J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/12/20 18:20	7439-93-2	D3	



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T3-4HTS	Lab ID:	2628600035	Collecte	Collected: 02/02/20 13:44			Received: 02/04/20 08:00 Matrix: Water		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA	6020B Prep	aration Met	hod: EF	PA 3005A			
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 21:50	02/05/20 19:58	7440-48-4	
Lithium	0.10J	mg/L	0.30	0.0078	10	02/04/20 21:50	02/05/20 19:58	7439-93-2	
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: EF	PA 3005A			
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/12/20 18:25	7440-48-4	D3
Lithium, Dissolved	0.097J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/12/20 18:25	7439-93-2	D3



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T3-4HT	Lab ID:	2628600036	Collecte	d: 02/02/20	13:50	Received: 02/	Received: 02/04/20 08:00 Matrix: Water						
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual				
6020B MET ICPMS	Analytical	Analytical Method: EPA 6020B Preparation Method: EPA 3005A											
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 21:50	02/05/20 20:03	7440-48-4					
Lithium	0.097J	mg/L	0.30	0.0078	10	02/04/20 21:50	02/05/20 20:03	7439-93-2					
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: Ef	PA 3005A							
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/12/20 18:48	7440-48-4	D3				
Lithium, Dissolved	0.094J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/12/20 18:48	7439-93-2	D3				



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T3-3HTS	Lab ID:	2628600037	Collecte	d: 02/02/20	14:08	Received: 02/	/04/20 08:00 Ma	atrix: Water					
			Report										
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual				
6020B MET ICPMS	Analytical	Analytical Method: EPA 6020B Preparation Method: EPA 3005A											
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 21:50	02/05/20 20:09	7440-48-4					
Lithium	0.087J	mg/L	0.30	0.0078	10	02/04/20 21:50	02/05/20 20:09	7439-93-2					
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: EF	PA 3005A							
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/12/20 18:54	7440-48-4	D3				
Lithium, Dissolved	0.087J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/12/20 18:54	7439-93-2	D3				



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T3-3HT	Lab ID:	2628600038	Collecte	d: 02/02/20	14:10	Received: 02/	Received: 02/04/20 08:00 Matrix: Water						
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual				
6020B MET ICPMS	Analytical	Analytical Method: EPA 6020B Preparation Method: EPA 3005A											
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 21:50	02/05/20 20:15	7440-48-4					
Lithium	0.095J	mg/L	0.30	0.0078	10	02/04/20 21:50	02/05/20 20:15	7439-93-2					
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: Ef	PA 3005A							
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/12/20 19:00	7440-48-4	D3				
Lithium, Dissolved	0.095J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/12/20 19:00	7439-93-2	D3				



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T3-2HTS	Lab ID:	2628600039	Collecte	d: 02/02/20	14:28	Received: 02/	04/20 08:00 Ma	atrix: Water					
			Report										
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual				
6020B MET ICPMS	Analytical	Analytical Method: EPA 6020B Preparation Method: EPA 3005A											
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 21:50	02/05/20 20:32	7440-48-4					
Lithium	0.081J	mg/L	0.30	0.0078	10	02/04/20 21:50	02/05/20 20:32	7439-93-2					
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: EF	PA 3005A							
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/12/20 19:17	7440-48-4	D3				
Lithium, Dissolved	0.077J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/12/20 19:17	7439-93-2	D3				



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T3-2HT	Lab ID:	2628600040	Collecte	d: 02/02/20	14:34	Received: 02/	04/20 08:00 Ma	atrix: Water						
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual					
6020B MET ICPMS	Analytical	Analytical Method: EPA 6020B Preparation Method: EPA 3005A												
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 21:50	02/05/20 20:38	7440-48-4						
Lithium	0.097J	mg/L	0.30	0.0078	10	02/04/20 21:50	02/05/20 20:38	7439-93-2						
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: Ef	PA 3005A								
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/12/20 19:23	7440-48-4	D3					
Lithium, Dissolved	0.093J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/12/20 19:23	7439-93-2	D3					



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T3-1HT	Lab ID:	2628600041	Collecte	d: 02/02/20	14:35	Received: 02/	Received: 02/04/20 08:00 Matrix: Water							
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual					
6020B MET ICPMS	Analytical	Analytical Method: EPA 6020B Preparation Method: EPA 3005A												
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 21:50	02/05/20 20:44	7440-48-4						
Lithium	0.086J	mg/L	0.30	0.0078	10	02/04/20 21:50	02/05/20 20:44	7439-93-2						
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: El	PA 3005A								
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/12/20 19:28	7440-48-4	D3					
Lithium, Dissolved	0.084J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/12/20 19:28	7439-93-2	D3					



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T3-4LT	Lab ID:	2628600042	Collecte	d: 02/03/20	10:40	Received: 02/	04/20 08:00 Ma	atrix: Water					
			Report										
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual				
6020B MET ICPMS	Analytical	Analytical Method: EPA 6020B Preparation Method: EPA 3005A											
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 21:50	02/05/20 20:49	7440-48-4					
Lithium	0.076J	mg/L	0.30	0.0078	10	02/04/20 21:50	02/05/20 20:49	7439-93-2					
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: EF	PA 3005A							
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/12/20 19:34	7440-48-4	D3				
Lithium, Dissolved	0.077J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/12/20 19:34	7439-93-2	D3				



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T3-3LT	Lab ID:	2628600043	Collecte	d: 02/03/20	12:12	Received: 02/	04/20 08:00 Ma	atrix: Water					
			Report										
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual				
6020B MET ICPMS	Analytical	Analytical Method: EPA 6020B Preparation Method: EPA 3005A											
Cobalt	ND	mg/L	0.050	0.0030	10	02/04/20 21:50	02/05/20 20:55	7440-48-4					
Lithium	0.081J	mg/L	0.30	0.0078	10	02/04/20 21:50	02/05/20 20:55	7439-93-2					
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: EF	PA 3005A							
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/12/20 19:40	7440-48-4	D3				
Lithium, Dissolved	0.078J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/12/20 19:40	7439-93-2	D3				



Project: Plant McManus SW

Pace Project No.: 2628600

Sample: T3-2LT	Lab ID:	Lab ID: 2628600044		d: 02/03/20	13:30	Received: 02/	Received: 02/04/20 08:00 Matrix: Water						
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual				
6020B MET ICPMS	Analytical	Analytical Method: EPA 6020B Preparation Method: EPA 3005A											
Cobalt	ND	mg/L	0.050	0.0030	10	02/06/20 13:10	02/06/20 19:10	7440-48-4	D3				
Lithium	0.083J	mg/L	0.30	0.0078	10	02/06/20 13:10	02/06/20 19:10	7439-93-2	D3				
6020B MET ICPMS, Lab Filtered	Analytical	Method: EPA	6020B Prep	aration Met	hod: El	PA 3005A							
Cobalt, Dissolved	ND	mg/L	0.050	0.0030	10	02/11/20 15:11	02/12/20 19:45	7440-48-4	D3				
Lithium, Dissolved	0.087J	mg/L	0.30	0.0078	10	02/11/20 15:11	02/12/20 19:45	7439-93-2	D3				



Project: Plant McManus SW

Pace Project No.: 2628600

Date: 02/14/2020 09:31 AM

QC Batch: 42836 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020B MET

Associated Lab Samples: 2628600024, 2628600025, 2628600026, 2628600027, 2628600028, 2628600029, 2628600030, 2628600031,

2628600032, 2628600033, 2628600034, 2628600035, 2628600036, 2628600037, 2628600038, 2628600039,

2628600040, 2628600041, 2628600042, 2628600043

METHOD BLANK: 195730 Matrix: Water

Associated Lab Samples: 2628600024, 2628600025, 2628600026, 2628600027, 2628600028, 2628600029, 2628600030, 2628600031,

2628600032, 2628600033, 2628600034, 2628600035, 2628600036, 2628600037, 2628600038, 2628600039,

 $2628600040,\, 2628600041,\, 2628600042,\, 2628600043$ 

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Cobalt	mg/L	ND ND	0.0050	0.00030	02/05/20 18:15	
Lithium	mg/L	ND	0.030	0.00078	02/05/20 18:15	

LABORATORY CONTROL SAMPLE:	195731					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Cobalt	mg/L	0.1	0.099	99	80-120	
Lithium	mg/L	0.1	0.099	99	80-120	

MATRIX SPIKE & MATRIX SP	PIKE DUPLI	CATE: 1957	32		195733							
			MS	MSD								
		2628598001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Cobalt	mg/L	ND	0.1	0.1	0.10	0.096	101	96	75-125	5	20	
Lithium	mg/L	0.027J	0.1	0.1	0.13J	0.13J	103	99	75-125		20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Plant McManus SW

Pace Project No.: 2628600

Date: 02/14/2020 09:31 AM

QC Batch: 42953 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020B MET

Associated Lab Samples: 2628600001, 2628600002, 2628600003, 2628600004, 2628600005, 2628600006, 2628600007, 2628600008,

2628600009, 2628600010, 2628600011, 2628600012, 2628600013, 2628600044

METHOD BLANK: 196325 Matrix: Water

Associated Lab Samples: 2628600001, 2628600002, 2628600003, 2628600004, 2628600005, 2628600006, 2628600007, 2628600008,

2628600009, 2628600010, 2628600011, 2628600012, 2628600013, 2628600044

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Arsenic	mg/L	ND	0.0050	0.00035	02/06/20 18:59	
Cobalt	mg/L	ND	0.0050	0.00030	02/06/20 18:59	
Lithium	mg/L	ND	0.030	0.00078	02/06/20 18:59	

LABORATORY CONTROL SAMPLE:	196326	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/L	0.1	0.10	102	80-120	
Cobalt	mg/L	0.1	0.11	106	80-120	
Lithium	mg/L	0.1	0.10	102	80-120	

MATRIX SPIKE & MATRIX SI  Parameter	Units	ICATE: 1963 2628600001 Result	MS Spike Conc.	MSD Spike Conc.	196331 MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Arsenic	mg/L	0.0061J	0.1	0.1	0.11	0.11	110	107	75-125	3	20	
Cobalt	mg/L	ND	0.1	0.1	0.11	0.10	105	104	75-125	0	20	
Lithium	mg/L	0.022J	0.1	0.1	0.13J	0.12J	103	102	75-125		20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Plant McManus SW

Pace Project No.: 2628600

Date: 02/14/2020 09:31 AM

QC Batch: 43169 Analysis Method: EPA 6020B

QC Batch Method: EPA 3005A Analysis Description: 6020B MET Dissolved

Associated Lab Samples: 2628600010, 2628600011, 2628600012, 2628600013

METHOD BLANK: 197290 Matrix: Water Associated Lab Samples: 2628600010, 2628600011, 2628600012, 2628600013

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Arsenic, Dissolved	mg/L	ND	0.0050	0.00035	02/12/20 09:44	
Cobalt, Dissolved	mg/L	ND	0.0050	0.00030	02/12/20 09:44	
Lithium, Dissolved	mg/L	ND	0.030	0.00078	02/12/20 09:44	

LABORATORY CONTROL SAMPLE:	197291					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic, Dissolved	mg/L	0.1	0.11	106	80-120	
Cobalt, Dissolved	mg/L	0.1	0.10	101	80-120	
Lithium, Dissolved	mg/L	0.1	0.10	103	80-120	

MATRIX SPIKE & MATRIX SI	PIKE DUPLI	CATE: 1972	92		197293							
			MS	MSD								
		2628600011	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic, Dissolved	mg/L	0.0051J	0.1	0.1	0.11	0.11	102	104	75-125	1	20	
Cobalt, Dissolved	mg/L	ND	0.1	0.1	0.10	0.10	100	102	75-125	2	20	
Lithium, Dissolved	mg/L	0.022J	0.1	0.1	0.13J	0.13J	105	105	75-125		20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Plant McManus SW

Pace Project No.: 2628600

Date: 02/14/2020 09:31 AM

QC Batch: 43170 Analysis Method: EPA 6020B

QC Batch Method: EPA 3005A Analysis Description: 6020B MET Dissolved

Associated Lab Samples: 2628600014, 2628600015, 2628600016, 2628600017, 2628600018, 2628600019, 2628600020, 2628600021,

2628600022, 2628600023, 2628600024, 2628600025, 2628600026, 2628600027, 2628600028, 2628600029,

2628600030, 2628600031, 2628600032, 2628600033

METHOD BLANK: 197294 Matrix: Water

Associated Lab Samples: 2628600014, 2628600015, 2628600016, 2628600017, 2628600018, 2628600019, 2628600020, 2628600021,

2628600022, 2628600023, 2628600024, 2628600025, 2628600026, 2628600027, 2628600028, 2628600029,

2628600030, 2628600031, 2628600032, 2628600033

Blank Reporting Parameter Result Limit MDL Qualifiers Units Analyzed Cobalt, Dissolved ND 0.0050 0.00030 02/13/20 14:03 mg/L Lithium, Dissolved mg/L ND 0.030 0.00078 02/13/20 14:03

LABORATORY CONTROL SAMPLE: 197295

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

 Cobalt, Dissolved
 mg/L
 0.1
 0.11
 105
 80-120

 Lithium, Dissolved
 mg/L
 0.1
 0.10
 103
 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 197296 197297

MSD MS 2628595003 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Cobalt, Dissolved ND 0.1 0.1 0.11 0.12 114 75-125 20 mg/L 116 Lithium, Dissolved mg/L 0.093J 0.1 0.1 0.21J 0.22J 118 129 75-125 20 M6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Plant McManus SW

Pace Project No.: 2628600

Date: 02/14/2020 09:31 AM

QC Batch: 43171 Analysis Method: EPA 6020B

QC Batch Method: **EPA 3005A** Analysis Description: 6020B MET Dissolved

2628600001, 2628600002, 2628600003, 2628600004, 2628600005, 2628600006, 2628600007, 2628600008, Associated Lab Samples:

2628600009, 2628600034, 2628600035, 2628600036, 2628600037, 2628600038, 2628600039, 2628600040,

2628600041, 2628600042, 2628600043, 2628600044

METHOD BLANK: 197298 Matrix: Water

Associated Lab Samples:

2628600041, 2628600042, 2628600043, 2628600044

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Arsenic, Dissolved	mg/L	ND	0.0050	0.00035	02/12/20 18:08	
Cobalt, Dissolved	mg/L	ND	0.0050	0.00030	02/12/20 18:08	
Lithium, Dissolved	mg/L	ND	0.030	0.00078	02/12/20 18:08	

LABORATORY CONTROL SAMPLE: 197299 Spike LCS LCS % Rec Conc. % Rec Limits Parameter Units Result Qualifiers Arsenic, Dissolved mg/L 0.1 0.10 101 80-120 Cobalt, Dissolved mg/L 0.1 0.10 105 80-120 Lithium, Dissolved 0.1 104 80-120 mg/L 0.10

MATRIX SPIKE & MATRIX SF	PIKE DUPL	ICATE: 1973	00		197301							
		2628599001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic, Dissolved	mg/L	0.0065J	0.1	0.1	0.12	0.11	111	109	75-125	2	20	
Cobalt, Dissolved	mg/L	ND	0.1	0.1	0.10	0.11	101	105	75-125	3	20	
Lithium, Dissolved	mg/L	0.097J	0.1	0.1	0.20J	0.20J	99	99	75-125		20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALIFIERS**

Project: Plant McManus SW

Pace Project No.: 2628600

### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

### **ANALYTE QUALIFIERS**

Date: 02/14/2020 09:31 AM

B Analyte was detected in the associated method blank.

D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.



### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: Plant McManus SW

Pace Project No.: 2628600

Date: 02/14/2020 09:31 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
2628600001	MCM-07LT ASHPOND	EPA 3005A	42953	EPA 6020B	42956
628600002	MCM-07LT	EPA 3005A	42953	EPA 6020B	42956
628600003	MCM-06HT ASHPOND	EPA 3005A	42953	EPA 6020B	42956
628600004	MCM-06HT	EPA 3005A	42953	EPA 6020B	42956
628600005	MCM-07HT ASHPOND	EPA 3005A	42953	EPA 6020B	42956
628600006	MCM-07HT	EPA 3005A	42953	EPA 6020B	42956
628600007	MCM-06LT ASHPOND	EPA 3005A	42953	EPA 6020B	42956
628600008	MCM-06LT	EPA 3005A	42953	EPA 6020B	42956
628600009	MCM-05HT ASHPOND	EPA 3005A	42953	EPA 6020B	42956
28600010	MCM-05HT	EPA 3005A	42953	EPA 6020B	42956
528600011	MCM-05LT ASHPOND	EPA 3005A	42953	EPA 6020B	42956
528600012	MCM-05LT	EPA 3005A	42953	EPA 6020B	42956
628600013	DUP-1	EPA 3005A	42953	EPA 6020B	42956
628600014	T2-1HT	EPA 3005A	42781	EPA 6020B	42798
628600015	T2-2HTS	EPA 3005A	42781	EPA 6020B	42798
628600016	T2-2HT	EPA 3005A	42781	EPA 6020B	42798
628600017	T2-3HTS	EPA 3005A	42781	EPA 6020B	42798
628600018	T2-3HT	EPA 3005A	42781	EPA 6020B	42798
628600019	T2-4HTS	EPA 3005A	42781	EPA 6020B	42798
628600020	T2-4HT	EPA 3005A	42781	EPA 6020B	42798
528600020 528600021	T2-4LT	EPA 3005A	42781	EPA 6020B	42798
528600021 528600022	T2-3LT	EPA 3005A	42781	EPA 6020B	42798
628600023	T2-2LT	EPA 3005A	42781	EPA 6020B	42798
628600024	T1-1LT	EPA 3005A	42836	EPA 6020B	42909
628600025	T1-4LT	EPA 3005A	42836	EPA 6020B	42909
628600026	T1-3LT	EPA 3005A	42836	EPA 6020B	42909
628600027	T1-2LT	EPA 3005A	42836	EPA 6020B	42909
628600028	T1-4HTS	EPA 3005A	42836	EPA 6020B	42909
628600029	T1-4HT	EPA 3005A	42836	EPA 6020B	42909
528600030	T1-3HTS	EPA 3005A	42836	EPA 6020B	42909
528600031	T1-3HT	EPA 3005A	42836	EPA 6020B	42909
628600031	T1-1HT	EPA 3005A	42836	EPA 6020B	42909
628600033	T1-2HTS	EPA 3005A	42836	EPA 6020B	42909
528600033 528600034	T1-2HT	EPA 3005A	42836	EPA 6020B	42909
528600035	T3-4HTS	EPA 3005A	42836	EPA 6020B	42909
628600036	T3-4HT	EPA 3005A	42836	EPA 6020B	42909
628600037	T3-3HTS	EPA 3005A	42836	EPA 6020B	42909
528600037 528600038	T3-3HT	EPA 3005A	42836	EPA 6020B	42909
628600039	T3-2HTS	EPA 3005A EPA 3005A	42836	EPA 6020B	42909
628600039 628600040	T3-2HT	EPA 3005A EPA 3005A	42836	EPA 6020B	42909
528600040 528600041	T3-1HT		42836 42836		42909 42909
		EPA 3005A		EPA 6020B	
328600042	T3-4LT	EPA 3005A	42836	EPA 6020B	42909
628600043	T3-3LT	EPA 3005A	42836	EPA 6020B	42909
628600044	T3-2LT	EPA 3005A	42953	EPA 6020B	42956
628600001	MCM-07LT ASHPOND	EPA 3005A	43171	EPA 6020B	43192
628600002	MCM-07LT	EPA 3005A	43171	EPA 6020B	43192
628600003	MCM-06HT ASHPOND	EPA 3005A	43171	EPA 6020B	43192

### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: Plant McManus SW

Pace Project No.: 2628600

Date: 02/14/2020 09:31 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
2628600004	MCM-06HT	EPA 3005A	43171	EPA 6020B	43192
2628600005	MCM-07HT ASHPOND	EPA 3005A	43171	EPA 6020B	43192
628600006	MCM-07HT	EPA 3005A	43171	EPA 6020B	43192
628600007	MCM-06LT ASHPOND	EPA 3005A	43171	EPA 6020B	43192
628600008	MCM-06LT	EPA 3005A	43171	EPA 6020B	43192
628600009	MCM-05HT ASHPOND	EPA 3005A	43171	EPA 6020B	43192
628600010	MCM-05HT	EPA 3005A	43169	EPA 6020B	43190
628600011	MCM-05LT ASHPOND	EPA 3005A	43169	EPA 6020B	43190
628600012	MCM-05LT	EPA 3005A	43169	EPA 6020B	43190
628600013	DUP-1	EPA 3005A	43169	EPA 6020B	43190
628600014	T2-1HT	EPA 3005A	43170	EPA 6020B	43193
628600015	T2-2HTS	EPA 3005A	43170	EPA 6020B	43193
628600016	T2-2HT	EPA 3005A	43170	EPA 6020B	43193
628600017	T2-3HTS	EPA 3005A	43170	EPA 6020B	43193
628600018	T2-3HT	EPA 3005A	43170	EPA 6020B	43193
628600019	T2-4HTS	EPA 3005A	43170	EPA 6020B	43193
628600020	T2-4HT	EPA 3005A	43170	EPA 6020B	43193
628600021	T2-4LT	EPA 3005A	43170	EPA 6020B	43193
628600022	T2-3LT	EPA 3005A	43170	EPA 6020B	43193
628600023	T2-2LT	EPA 3005A	43170	EPA 6020B	43193
628600024	T1-1LT	EPA 3005A	43170	EPA 6020B	43193
628600025	T1-4LT	EPA 3005A	43170	EPA 6020B	43193
628600026	T1-3LT	EPA 3005A	43170	EPA 6020B	43193
628600027	T1-2LT	EPA 3005A	43170	EPA 6020B	43193
628600028	T1-4HTS	EPA 3005A	43170	EPA 6020B	43193
628600029	T1-4HT	EPA 3005A	43170	EPA 6020B	43193
628600030	T1-3HTS	EPA 3005A	43170	EPA 6020B	43193
628600031	T1-3HT	EPA 3005A	43170	EPA 6020B	43193
628600032	T1-1HT	EPA 3005A	43170	EPA 6020B	43193
628600033	T1-2HTS	EPA 3005A	43170	EPA 6020B	43193
628600034	T1-2HT	EPA 3005A	43171	EPA 6020B	43192
628600035	T3-4HTS	EPA 3005A	43171	EPA 6020B	43192
628600036	T3-4HT	EPA 3005A	43171	EPA 6020B	43192
628600037	T3-3HTS	EPA 3005A	43171	EPA 6020B	43192
628600038	T3-3HT	EPA 3005A	43171	EPA 6020B	43192
628600039	T3-2HTS	EPA 3005A	43171	EPA 6020B	43192
628600040	T3-2HT	EPA 3005A	43171	EPA 6020B	43192
628600041	T3-1HT	EPA 3005A	43171	EPA 6020B	43192
628600042	T3-4LT	EPA 3005A	43171	EPA 6020B	43192
628600043	T3-3LT	EPA 3005A	43171	EPA 6020B	43192
628600044	T3-2LT	EPA 3005A	43171	EPA 6020B	43192

### 3 ITEM# 8 ompeny: Georgia Power Idress: 1003 Weatherstone Parkway Jita 320, Woodstock, GA 30188 quired Client Information: lea.millet@resoluteenv.com 3-345 13-44T MCM-06 LT Ashpon MCW-OS HT 73-3W75 72 215 BE THEN OUT 13-245S 77-31-7 15-4HT 13-4W-2 52-445 One Character per box. {A-Z, 0-9 /, -} Sample ids must be unique (251)776-2760 ملاس **SAMPLE ID** DOMONT CONTRACTS Fex MATRIX Drinking Weeker Winder Winder Witter Product Soil/Soild Oil Wipe Air Other Tissue Required Project Information: Report To: Millet, Lea Copy To: Project Name: Purchase Order #: Section B 3988685868 Karin Shaganson र्जित विक्रांकि क्ष्मं के कि ا صداداد عامد SELENOMBIED BY LAFELLATION 25 क्रीदिव्यव्यक्षि र्ज (दक्षिक) भड़ क्रिक्रमाव्यक्ष क्षात्रम् व्यक्तिक जनभग्रे व्यादाय मा ज्वास्य क्रम्म माञ्जाक्याम्ब म्यूड् MATRIX CODE (see valid codes to left) ० अद्याक्षितव गुरु SAMPLE TYPE (G=GRAB C=COMP) Plant McManus SW उस्र विकास DATE START SELL) 0 V2V IME MELER NAME AND SIGNATURE PRINT Name of SAMPLER: COLLECTED CHAIN-OF-CUSTODY / Analytical Reques The Chain-of-Custody is a LEGAL DOCUMENT. All relevant field: DATE 8 2262 DATE SAMPLE TEMP AT COLLECTION Invoice information: Attention: Company Name: Address: 417 # OF CONTAINERS Pace Project Manager. Pace Quote: 텵 Unpreserved H2SO4 HNO3 Preservatives 11 HCI 2919 Wellingtons NaOH No. kevin.herring@pacelabs.com ACCEPTED BY / ATTENDON Na2S2O3 Methanol Other YM **Analyses Test** Metals by 6020 Puce Dissolved Metals by 6020 W0#:2628600 24 DATE 60800 BALL 1.4 Pagalatory Agents TEMP in C State / Local Residual Chlorine (Y/N) B Received on BAMPLE CONDITIONS Ice (Y/N) Custody Sealed Coole (Y/N) Samples Intact (Y/N)

# Face Analytical

CHAIN-OF-CUSTODY / Analytical Request D
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields mu

WO#: 2628600

PN: KI CLIENT: 26-GA Power

Report To: Millet, Lea  Copy To:  Purchase Order #:  Project Name: Plant McManus SW  Project #:  Plant McManus SW  Project #:  Plant McManus SW  Project #:  AR SAR SAR COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  Tis Collected Bridge Collected Time  AR Collected Bridge Collected Time  AR Collected Bridge Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collected Time  AR Collec	TIME DATE TIME DATE TIME DATE TIME DATE TIME Pace Profile #: 2919  ART COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  ARTHURON  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  ARTHURON  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTED  COLLECTE	COLLECTED  COLLECTED  COLLECTED  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Information:  Company Inf	COLLECTED  IN COLLECTION  Read Profile # 2919  Prose Profile # 2919  Prose Profile # 2919  Prose Profile # 2919  Prose Profile # 2919  AND HIGH NaOH NaOH NaOH NaOH NaOH NaOH NaOH NaO
	Time  # OF CONTAINERS  Unpreserved  H2SO4  HCI  NaOH  NaOH  Invoke Information:  Attention:  Page Project Manager:  HCI  NaOH  NaOH  Invoke Information:  Attention:  Page Project Manager:  NaOH  NaOH	The Table Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test  Accepted Wilness Test	Address:  Pose Project Manager:  Unpreserved  H2SO4  HCI  NaOH  NaOH  NaCS203  Methanel  Other  Analyses Test  VIN  Metals by 6020  Dissolved Metals by 6020  Dissolved Metals by 6020  Dissolved Metals by 6020  Dissolved Metals by 6020  Dissolved Metals by 6020  Dissolved Metals by 6020  Dissolved Metals by 6020  Dissolved Metals by 6020  Dissolved Metals by 6020  Dissolved Metals by 6020  Dissolved Metals by 6020  Dissolved Metals by 6020  Dissolved Metals by 6020  Dissolved Metals by 6020  Dissolved Metals by 6020  Dissolved Metals by 6020  Dissolved Metals by 6020  Dissolved Metals by 6020  Dissolved Metals by 6020  Dissolved Metals by 6020  Dissolved Metals by 6020

# Sample Condition Upon Receipt

Date:	30	Project Manager Review:
		H 90 H
	6)	<u> </u>
	- Dated	Person Confected: Comments/ Resolution:
Field Data Required? Y / N		Client Hotffication/ Resolution:
	52 40.	Pace Trip Blank Lot # (if purchased):
•	AND OND SOYD	Trip Blank Custody Seals Present
.91	AWID ON BOY	Trip Blank Present:
.gı	AWAY ON BOY!	Headspace in VOA Vials ( >6mm):
.pl	ADD ON BOY	Samples checked for dechlorination:
completed Wy persensitive	ON□ *9×[2]	exceptions: VOA, coliform, TOC, O&G, VM-DRO (water)
Initial when Lot # of added	AND ON DO	All containers needing preservation are found to be in compliance with EPA recommendation.
13.	AND ON SAVE	PROPERTY PROPERTY TO A PROPERTY TO A PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY
CULTURE OF STREET STREET	1.01	-Includes date/filme/ID/Analysis Matrix: -Includes needing preservation have been checked.
12.	AWD OND BOYD	Sample Labels match COC:
11.	YANGZI ON□ ##X□	Filtered volume received for Dissolved tests
.01		Containers Intact:
	AND OND #97	-Pace Containers Used:
.6	VN□ 9N□ 393€	Correct Containers Used:
, '9	V/N□ 0N□ ****	Sufficient Volume:
	AND OND 89%	Sush Turn Around Time Requested:
	AND MAS **YD	:(\rightarrows) sievisnA emiT bloH trons
	AVI ON SAYDS	emiT bloH nithiw bevinA selqme
	AND OND SOFE	sampler Name & Signature on COC:
	AND OND SOADS	Chain of Custody Relinquished:
	AWD OND BAND	Chain of Custody Filled Out:
	AWD OND SAND	Chain of Custody Present:
Contents: Ves No Date and Initials of person examining contents:	Biological Tissue ia	O-H should be above the sing to 6.0.
Blue None Samples on ice, cooling process has begun Date and Initials of person examining	Type of Ice: We	best retemorment
	anov 🔲 sesse	scking Material: 🔲 Bubble Wrap 🔝 Bubbl
	niskseS on 🔲	custody Seal on Cooler/Box Present:
isat:	, , , , , , , , , , , , , , , , , , ,	racking #:
Lesce Oth CLIENT: 26-GA Power	ant ∐Commercial &	Courter: Ted Ex Tups Tusps Cite
PM: KH Due Date: 02/11/20		;
Hans MO#: 2628600	: Cororara	Client Name

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR

Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)



## Arcadis U.S., Inc.

2839 Paces Ferry Road Suite 900 Atlanta, Georgia 30339 Tel 770 431 8666 Fax 770 435 2666

www.arcadis.com