

Plant Branch Monthly Dewatering Results¹

Tt TETRA TECH

January 2022

	Units	Efflu	ent Concent	ration	Permit Limits			
Parameter		Daily Min ²	Daily Avg ²	Daily Max ²	Daily Min	Daily Avg	Daily Max	
Flow	MGD	0.00	0.94	1.07	***	***	***	
pН	SU	6.7	***	8.3	6.0	***	9.0	
Total Suspended Solids	mg/L	ND^3	ND	ND	***	30.0	100.0	
Oil and Grease	mg/L	ND	ND	ND	***	15.0	20.0	

	Units		Doily				
Parameter		Week 1	Week 2	Week 3	Week 4	Week 5	Daily Average
		1/6/2022	1/13/2022	1/20/2022	1/27/2022	Sampled in February	Average
Turbidity ⁴	NTU	0.11	0.06	0.07	0.03		0.07
Total Residual Chlorine ⁴	mg/L	ND	ND	ND	ND		ND
Total Dissolved Solids	mg/L	72	27	29	18		37
Ammonia	mg/L	ND	ND	ND	ND		ND
Total Kjeldahl Nitrogen	mg/L	ND	ND	ND	ND		ND
Nitrate-Nitrite	mg/L	ND	ND	ND	ND		ND
Organic Nitrogen	mg/L	ND	ND	ND	ND		ND
Phosphorus	mg/L	ND	ND	ND	ND		ND
Ortho-Phosphorus mg		ND	ND	ND	ND		ND
Biological Oxygen Demand	mg/L	ND	ND	ND	ND		0.0
Hardness	mg/L	4	3	ND	ND		2

		Effluent Concentration ⁵					Calculated Receiving Water Concentration ⁵						Water Quality Criteria ⁶	
Parameter	Units	Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4	Week 5			
		1/6/2022	1/13/2022	1/20/2022	1/27/2022	Sampled in February	1/6/2022	1/13/2022	1/20/2022	1/27/2022	Sampled in February	Average	Acute ⁷	Chronic ⁷
Antimony ⁹	μg/L	ND	ND	ND	ND		***	***	***	***		***	***	640
Arsenic	μg/L	ND	ND	ND	ND		***	***	***	***		***	340	150
Cadmium	μg/L	ND	ND	ND	ND		***	***	***	***		***	0.94	0.43
Chromium ⁸	μg/L	ND	ND	ND	ND		***	***	***	***		***	16	11
Copper	μg/L	ND	ND	ND	ND		***	***	***	***		***	7	5
Lead	μg/L	ND	ND	ND	ND		***	***	***	***		***	30	1.2
Nickel	μg/L	ND	ND	ND	ND		***	***	***	***		***	260	29
Selenium ⁹	μg/L	ND	ND	ND	ND		***	***	***	***		***	***	5
Thallium ⁹	μg/L	ND	ND	ND	ND		***	***	***	***		***	***	0.47
Zinc	μg/L	ND	ND	ND	ND		***	***	***	***		***	65	65
Mercury	ng/L	ND	ND	ND	ND		***	***	***	***		***	1400	12

- Tetra Tech verifies the correct laboratory analysis methods were used, any applicable permit limits have been met and other results are protective of Georgia EPD's water quality standards. Daily Min and Daily Max are the lowest and highest values for any day in the morth. Daily Avg is the arithmetic average of all daily values during the entire morth.

 ND = Not Detected (below the lab's reporting limit).

- ND = Not Detected (below the lab's reporting limit).

 Turbidly and total residual richience are monitored continuously. The value reported is the weekly maximum and the daily average is the average of the weekly maximum values reported.

 Galculated Receiving Water Concentration shows the effluent concentration at the discharge once it has fully mixed in the receiving waterbody. This value is calculated as a dissolved concentration for an appropriate comparison to the numeric water quality criteria, which are also in the dissolved form. Consistent with Georgia EPD, non-detectable effluent concentrations as many that the discharge of the designated water quality criteria in the maximum connecritation of a parameter (calculated Receiving Water Concentrations.

 Numeric Water Quality Criteria is the maximum connecritation of a deal and fault hardness of 55 mg/s. a scale classification activated Receiving Water Concentrations.

 Acute (short-term) water quality criterion to be compared with the weekly excludated receiving water concentration.

 Numeric Water (path) criterion to be compared with the weekly excludated receiving water concentration.

 Numeric Water (path) criterion to be compared with the weekly excludated receiving water concentration.

 Numeric Water (path) criterion to be compared with the weekly maximum and the daily excludated receiving water concentration.

 Numeric Water (path) criterion to be compared with the water of the designated use per Georgia EPD's rules and regulations. Calculated Receiving Water Concentrations sees that the water of the water of

- mg/L = milligrams per liter = parts per million; µg/L = micrograms per liter = parts per million; µg/L = micrograms per liter = parts per trillion; SU = Standard Units; MGD = Million Gallons Day

Plant Branch

Monthly Instream Results¹

January 2022

		Lake Sinclair ²							
Parameter ³	Units	1/6/2022	1/6/2022	1/13/2022	1/13/2022				
		Upstream	Downstream	Upstream	Downstream				
pН	SU	6.3	6.2	6.3	6.4				
TSS	mg/L	6.8	5.0	6.6	5.2				
O&G	mg/L	56.0	ND ⁴	ND	ND				
TRC	mg/L	***	***	***	***				
Turbidity	NTU	39.9	9.2	39.5	9.2				
TDS	mg/L	82	60	75	55				
BOD	mg/L	ND	ND	ND	ND				
Antimony	μg/L	ND	ND	ND	ND				
Arsenic	μg/L	ND	ND	ND	ND				
Cadmium	μg/L	ND	ND	ND	ND				
Chromium	μg/L	ND	ND	ND	ND				
Copper	μg/L	ND	ND	ND	ND				
Lead	μg/L	ND	ND	ND	ND				
Mercury	ng/L	4.3	1.3	4.1	1.5				
Nickel	μg/L	ND	ND	ND	ND				
Selenium	μg/L	ND	ND	ND	ND				
Thallium	μg/L	ND	ND	ND	ND				
Zinc	μg/L	ND	ND	ND	ND				
Ammonia	mg/L	ND	ND	ND	ND				
TKN	mg/L	ND	ND	ND	ND				
Nitrate-Nitrite	mg/L	0.21	0.14	0.22	0.17				
Organic Nitrogen	mg/L	ND	ND	ND	ND				
Phosphorus	mg/L	0.06	ND	0.06	ND				
Ortho-phosphorus	mg/L	ND	ND	ND	ND				
Hardness	mg/L	23	24	21	21				

- 1 Tetra Tech verifies the correct laboratory analysis methods were used.
- 2 Lake Sinclair measured upstream near lat 33.196636 and long -83.295389, and downstream near lat 33.180392 and long -83.322964.
- 3 Metals results are total recoverable.
- 4 ND = Non-detect.
- *** = Not Applicable.

mg/L = milligrams per liter = parts per million; $\mu g/L = micrograms$ per liter = parts per billion; ng/L = micrograms per liter = parts per trillion; ng/L = micrograms per liter = parts per trillion; ng/L = micrograms per liter = parts per trillion; ng/L = micrograms per liter = parts per trillion; ng/L = micrograms per liter = parts per trillion; ng/L = micrograms per liter = parts per billion;